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Hyperbolic space

Figure : A tessellation of H
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Voronoi tessellation

1. P ⊂ X a discrete set.

2. For a point p0 ∈ P , the cell with nucleus p0 is given by{
z ∈ X : d(z, p0) = min

p∈P
d(z, p)

}
.
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Hyperbolic space

Figure : A tessellation of H, with nuclei shown
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Lattices

Say that a Voronoi tessellation of H is a lattice if
1. The isometries that fix the set of nuclei act transitively.

2. A Voronoi cell has finite volume.

Make the lattice into a graph by attaching two nuclei if and
only if their Voronoi cells have a codimension-1 intersection.
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Lattices capture the space

• H is nonamenable:

inf
V⊂H

∂V smooth
VolH(V)<∞

|∂V|
VolH(V)

> 0.

• Any lattice L in H is nonamenable:

inf
V⊂L
|V|<∞

|∂V|
|V|

> 0.
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HPV

Overarching question: does a “statistical lattice” still capture
the space?

Let Πλ be a Poisson point process on H with intensity a
multiple λ of hyperbolic area measure. Then HPV is the
Voronoi tessellation with nuclei Πλ.

Let V λ be the dual graph of HPV.
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HPV

Figure : λ = 0.2 and r = 0.9995.
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HPV

Figure : λ = 1 and r = 0.9975.
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HPV properties

1. Every cell of the hyperbolic Poisson Voronoi tessellation is
almost surely finite.

Moreover:

Lemma
Let S0 be the Voronoi cell with nucleus 0. There is a t0 and a δ > 0 so
that for all t > t0,

P [S0 6⊂ BH(0, r)] ≤ e−λeδr
,

where BH(x, r) is the hyperbolic ball centered at x of radius r.
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HPV properties

2. lim supr→∞ |BH(0, r) ∩ V λ|1/r <∞.

3. V λ is a randomly rooted local limits of finite random graphs.
4. V λ is unimodular.
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Anchored expansion

V λ fails to be nonamenable.

Let

i∗(G) := lim inf
|S|→∞
ρ∈S

G|Sconnected

|∂S|
VolG(S)

. (1)

Theorem
For G = V λ there is a constant c = c(λ) > 0 so that i∗(G) > c
almost surely.
For d = 2, Benjamini-P-Pfeffer ’14.
For d ≥ 2, Benjamini-Krauz-P ’15+.
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Some consequences of anchored expansion

• In a graph with bounded degree and i∗(G) > 0, Virág (’00)
shows that SRW Xk has

lim inf
k→∞

d(ρ,Xk)

k
> 0.

• Also, he shows that

pn(x, y) < e−αn1/3
.

• Infinite Bernoulli percolation clusters inherit positive
anchored expansion for p sufficiently close to 1 (Chen,
Peres, and Pete ’03)

• The Ising model on G exhibits a phase transition with
nonzero external field (Häggrström, Schonnman, Steif ’00).
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Stationary random graphs

• A rooted, unlabeled random graph (G, ρ) is called
stationary if it has the same distribution as (G,X1) where
{Xk}∞k=0 is simple random walk with X0 = ρ.

• (G, ρ) is called reversible if (G,X0,X1)
L
= (G,X1,X0) as

birooted random graphs.
• Let P be the law of (G, ρ), and define a measure Q by

dQ
dP =

deg ρ
EP deg ρ . For EP deg ρ <∞,

P unimodular ⇐⇒ Q reversible .



HPV Stationary random graphs Proving anchored expansion Open Questions

Stationary random graphs

• A rooted, unlabeled random graph (G, ρ) is called
stationary if it has the same distribution as (G,X1) where
{Xk}∞k=0 is simple random walk with X0 = ρ.

• (G, ρ) is called reversible if (G,X0,X1)
L
= (G,X1,X0) as

birooted random graphs.

• Let P be the law of (G, ρ), and define a measure Q by
dQ
dP =

deg ρ
EP deg ρ . For EP deg ρ <∞,

P unimodular ⇐⇒ Q reversible .



HPV Stationary random graphs Proving anchored expansion Open Questions

Stationary random graphs

• A rooted, unlabeled random graph (G, ρ) is called
stationary if it has the same distribution as (G,X1) where
{Xk}∞k=0 is simple random walk with X0 = ρ.

• (G, ρ) is called reversible if (G,X0,X1)
L
= (G,X1,X0) as

birooted random graphs.
• Let P be the law of (G, ρ), and define a measure Q by

dQ
dP =

deg ρ
EP deg ρ . For EP deg ρ <∞,

P unimodular ⇐⇒ Q reversible .



HPV Stationary random graphs Proving anchored expansion Open Questions

Stationary random graphs

• Any transitive graph with arbitrary rooting gives an
example of a stationary random graph.

• Any Cayley graph gives an example of a reversible
random graph.

• An augmented Galton-Watson tree with positive offspring
distribution is another example of a reversible random
graph.
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Ergodic theory

Stationary graphs allow the application of ergodic theory.

• For example, the speed of random walk exists almost
surely:

s = lim
k→∞

d(ρ,Xk)

k
exists.

• (Under the assumption of exponential growth) positive
speed is equivalent to the existence of nonconstant
bounded harmonic functions (Benjamini-Curien ’12 and
Piaggio-Lessa ’15+).
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Anchored expansion and positive speed

Theorem (Benjamini-P-Pfeffer ’14)
Let (G, ρ) be a stationary random graph so that:

1. (G, ρ) has positive anchored expansion almost surely and
2. lim supr→∞ |B(ρ, r)|1/r <∞ almost surely.

Then, simple random walk Xk started from ρ has positive speed, i.e.

s = lim
k→∞

d(ρ,Xk)

k
> 0

almost surely.
Hence simple random walk on V λ has positive speed.

Conjecture
The exponential growth assumption can be removed.
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Lattice proof

Lemma (Benjamini-Eldan ’12)
For any finite set X ⊂ H, VolH(convH(X)) ≤ 4π|X|, where
convH(X) denotes the hyperbolic convex hull.
Let X ⊂ H be a finite set of nuclei in Lattice L.

Let X′ ⊂ H be the 1-neighborhood of X.
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Proof 1 (BPP, d = 2)

Proposition
There is a constant c > 0 and a k0 > 0 random so that for all
collections of Delaunay triangles t1, t2, . . . , tk whose union ∪k

i=1ti is
simply connected and contains 0,

k∑
i=1

VolH(ti) > ck.
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Toy problem

Fix some large r ≥ 0, and let x1 = 0.

Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r). Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r). Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem

Fix some large r ≥ 0, and let x1 = 0. Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r).

Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r). Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem

Fix some large r ≥ 0, and let x1 = 0. Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r). Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r). Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem

Fix some large r ≥ 0, and let x1 = 0. Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r). Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r). Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem

Fix some large r ≥ 0, and let x1 = 0. Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r). Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r).

Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem

Fix some large r ≥ 0, and let x1 = 0. Let x2, x3, x4, . . . , xk be i.i.d.
points chosen according to normalized hyperbolic area
measure on BH(0, r). Let ∆(x, y, z) denote the hyperbolic
triangle with endpoints x, y, and z.

Problem
Show

P

[
k−2∑
i=0

VolH(∆(xi, xi+1, xi+2)) ≤ εk

]
≈ exp(kΘ(log ε)).

Caveat: we need a bound that is good enough that this estimate
beats the number of k-element subsets of points from
Πλ ∩ BH(0, r). Naïvely, we need r ≈ k, and so this is ≈ eΘ(k2).



HPV Stationary random graphs Proving anchored expansion Open Questions

Toy problem 2

Let E be the event that for all i, 1 ≤ i ≤ k− 2, {xi, xi+1, xi+2}
have a finite circumdisc (as all Delaunay triangles do).

Problem
Show

P
[{k−2∑

i=0

VolH(∆i) ≤ εk
}
∩ E
]
≈ exp(kΘ(log ε))

VolH(BH(0, r))k−2

This approach leads to a proof of the area lower bound for
Delaunay triangles.
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Geometric ingredient

Proposition
Suppose that r > 0 is fixed. Let y be a point that is picked uniformly
from the BH(0, r) according to hyperbolic area measure. There is an
absolute constant C > 0 so that

P [|∆(0, x, y)| ≤ θand CDH(0, x, y) exists] ≤ Cθ
dH(0, x)|BH(0, r)|

.
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Poof of geometric ingredient
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Conjectures

Anchored expansion for discrete random graphs is stable with
respect to random perturbation. This phenomenon should hold
as well for other randomly discretized symmetric spaces.

Conjecture
Let X be any nonpositively curved Riemanninan symmetric space,
and let Πλ be a Poisson process with invariant intensity measure.
Then the dual graph of the Voronoi tessellation has anchored
expansion.

It’s straightforward to show that SRW on V λ converges, as a
sequence of points in C, to a point on the unit circle. Let ν0 be
the harmonic measure on S1 of SRW started from 0.

Conjecture
For almost every realization of V λ, ν0 is singular with respect to
Lebesgue measure on S1.
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Anchored expansion for discrete random graphs is stable with
respect to random perturbation. This phenomenon should hold
as well for other randomly discretized symmetric spaces.

Conjecture
Let X be any nonpositively curved Riemanninan symmetric space,
and let Πλ be a Poisson process with invariant intensity measure.
Then the dual graph of the Voronoi tessellation has anchored
expansion.
It’s straightforward to show that SRW on V λ converges, as a
sequence of points in C, to a point on the unit circle. Let ν0 be
the harmonic measure on S1 of SRW started from 0.

Conjecture
For almost every realization of V λ, ν0 is singular with respect to
Lebesgue measure on S1.
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