▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Poisson Voronoi tessellation in hyperbolic space

Elliot Paquette

Weizmann Institute of Science (Rehovot, Israel)

Seymour Sherman Conference May 17, 2015

ヘロト 人間 とくほ とくほとう

э

Hyperbolic space

Figure : A tessellation of \mathbb{H}

Voronoi tessellation

1. $\mathcal{P} \subset \mathcal{X}$ a discrete set.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Voronoi tessellation

- 1. $\mathcal{P} \subset \mathcal{X}$ a discrete set.
- 2. For a point $p_0 \in \mathcal{P}$, the cell with *nucleus* p_0 is given by

$$\left\{z \in \mathcal{X} : d(z, p_0) = \min_{p \in \mathcal{P}} d(z, p)\right\}.$$

<ロ> (四) (四) (三) (三) (三)

Hyperbolic space

Figure : A tessellation of \mathbb{H} , with nuclei shown

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lattices

Say that a Voronoi tessellation of \mathbb{H} is a *lattice* if

1. The isometries that fix the set of nuclei act transitively.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Lattices

Say that a Voronoi tessellation of \mathbb{H} is a *lattice* if

- 1. The isometries that fix the set of nuclei act transitively.
- 2. A Voronoi cell has finite volume.

Lattices

Say that a Voronoi tessellation of \mathbb{H} is a *lattice* if

- 1. The isometries that fix the set of nuclei act transitively.
- 2. A Voronoi cell has finite volume.

Make the lattice into a graph by attaching two nuclei if and only if their Voronoi cells have a codimension-1 intersection.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Lattices capture the space

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Lattices capture the space

• III is nonamenable:

$$\inf_{\substack{V \subset \mathbb{H} \\ \partial V \text{ smooth} \\ \mathrm{Vol}_{\mathbb{H}}(V) < \infty}} \frac{|\partial V|}{\mathrm{Vol}_{\mathbb{H}}(V)} > 0.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lattices capture the space

• III is nonamenable:

$$\inf_{\substack{V \subset \mathbb{H} \\ \partial V \text{ smooth} \\ \operatorname{Vol}_{\mathbb{H}}(V) < \infty}} \frac{|\partial V|}{\operatorname{Vol}_{\mathbb{H}}(V)} > 0.$$

• Any lattice *L* in \mathbb{H} is nonamenable:

$$\inf_{\substack{V \subset L \\ V| < \infty}} \frac{|\partial V|}{|V|} > 0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

HPV

Overarching question: does a "statistical lattice" still capture the space?

Overarching question: does a "statistical lattice" still capture the space?

Let Π^{λ} be a Poisson point process on \mathbb{H} with intensity a multiple λ of hyperbolic area measure. Then HPV is the Voronoi tessellation with nuclei Π^{λ} .

Overarching question: does a "statistical lattice" still capture the space?

Let Π^{λ} be a Poisson point process on \mathbb{H} with intensity a multiple λ of hyperbolic area measure. Then HPV is the Voronoi tessellation with nuclei Π^{λ} .

Let \mathscr{V}^{λ} be the dual graph of HPV.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

HPV

Figure : $\lambda = 0.2$ and r = 0.9995.

HPV

Figure : $\lambda = 1$ and r = 0.9975.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HPV properties

1. Every cell of the hyperbolic Poisson Voronoi tessellation is almost surely finite.

HPV properties

1. Every cell of the hyperbolic Poisson Voronoi tessellation is almost surely finite. Moreover:

Lemma

Let S_0 *be the Voronoi cell with nucleus* 0*. There is a* t_0 *and a* $\delta > 0$ *so that for all* $t > t_0$,

$$\mathbb{P}\left[S_0 \not\subset B_{\mathbb{H}}(0,r)\right] \le e^{-\lambda e^{\delta r}},$$

where $B_{\mathbb{H}}(x, r)$ is the hyperbolic ball centered at x of radius r.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

HPV properties

2. $\limsup_{r\to\infty} |B_{\mathbb{H}}(0,r) \cap \mathscr{V}^{\lambda}|^{1/r} < \infty$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HPV properties

2. $\limsup_{r\to\infty} |B_{\mathbb{H}}(0,r) \cap \mathscr{V}^{\lambda}|^{1/r} < \infty.$

3. \mathscr{V}^{λ} is a randomly rooted local limits of finite random graphs.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HPV properties

2. $\limsup_{r\to\infty} |B_{\mathbb{H}}(0,r) \cap \mathscr{V}^{\lambda}|^{1/r} < \infty.$

3. Ψ^λ is a randomly rooted local limits of finite random graphs.
4. Ψ^λ is unimodular.

Anchored expansion

 \mathscr{V}^{λ} fails to be nonamenable.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Anchored expansion

 \mathscr{V}^{λ} fails to be nonamenable.

Let

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Anchored expansion

 \mathscr{V}^{λ} fails to be nonamenable.

Let

$$i^{*}(G) := \liminf_{\substack{|S| \to \infty \\ \rho \in S \\ G|_{S} \text{ connected}}} \frac{|\partial S|}{\operatorname{Vol}_{G}(S)}.$$
(1)

Theorem

For $G = \mathscr{V}^{\lambda}$ there is a constant $c = c(\lambda) > 0$ so that $i^*(G) > c$ almost surely.

For d = 2, Benjamini-P-Pfeffer '14. For $d \ge 2$, Benjamini-Krauz-P '15+.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Some consequences of anchored expansion

In a graph with bounded degree and *i**(*G*) > 0, Virág ('00) shows that SRW *X_k* has

$$\liminf_{k\to\infty}\frac{d(\rho,X_k)}{k}>0.$$

Some consequences of anchored expansion

In a graph with bounded degree and *i**(*G*) > 0, Virág ('00) shows that SRW *X_k* has

$$\liminf_{k\to\infty}\frac{d(\rho,X_k)}{k}>0.$$

Also, he shows that

$$p^n(x,y) < e^{-\alpha n^{1/3}}.$$

Some consequences of anchored expansion

In a graph with bounded degree and *i**(*G*) > 0, Virág ('00) shows that SRW *X_k* has

$$\liminf_{k\to\infty}\frac{d(\rho,X_k)}{k}>0.$$

• Also, he shows that

$$p^n(x,y) < e^{-\alpha n^{1/3}}$$

• Infinite Bernoulli percolation clusters inherit positive anchored expansion for *p* sufficiently close to 1 (Chen, Peres, and Pete '03)

Some consequences of anchored expansion

In a graph with bounded degree and *i**(*G*) > 0, Virág ('00) shows that SRW *X_k* has

$$\liminf_{k\to\infty}\frac{d(\rho,X_k)}{k}>0.$$

• Also, he shows that

$$p^n(x,y) < e^{-\alpha n^{1/3}}$$

- Infinite Bernoulli percolation clusters inherit positive anchored expansion for *p* sufficiently close to 1 (Chen, Peres, and Pete '03)
- The Ising model on *G* exhibits a phase transition with nonzero external field (Häggrström, Schonnman, Steif '00).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Stationary random graphs

A rooted, unlabeled random graph (G, ρ) is called *stationary* if it has the same distribution as (G, X₁) where {X_k}_{k=0}[∞] is simple random walk with X₀ = ρ.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Stationary random graphs

- A rooted, unlabeled random graph (*G*, *ρ*) is called *stationary* if it has the same distribution as (*G*, *X*₁) where {*X_k*}[∞]_{k=0} is simple random walk with *X*₀ = *ρ*.
- (G, ρ) is called *reversible* if (G, X₀, X₁) [⊥] = (G, X₁, X₀) as birooted random graphs.

Stationary random graphs

- A rooted, unlabeled random graph (G, ρ) is called *stationary* if it has the same distribution as (G, X₁) where {X_k}_{k=0}[∞] is simple random walk with X₀ = ρ.
- (G, ρ) is called *reversible* if (G, X₀, X₁) [⊥] = (G, X₁, X₀) as birooted random graphs.
- Let *P* be the law of (G, ρ) , and define a measure *Q* by $\frac{dQ}{dP} = \frac{\deg \rho}{\mathbb{E}_P \deg \rho}.$ For $\mathbb{E}_P \deg \rho < \infty$,

P unimodular $\iff Q$ reversible.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Stationary random graphs

• Any transitive graph with arbitrary rooting gives an example of a stationary random graph.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Stationary random graphs

- Any transitive graph with arbitrary rooting gives an example of a stationary random graph.
- Any Cayley graph gives an example of a reversible random graph.

Stationary random graphs

- Any transitive graph with arbitrary rooting gives an example of a stationary random graph.
- Any Cayley graph gives an example of a reversible random graph.
- An augmented Galton-Watson tree with positive offspring distribution is another example of a reversible random graph.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Ergodic theory

Stationary graphs allow the application of ergodic theory.

Ergodic theory

Stationary graphs allow the application of ergodic theory.

• For example, the speed of random walk exists almost surely:

$$s = \lim_{k \to \infty} \frac{d(\rho, X_k)}{k}$$

exists.

Ergodic theory

Stationary graphs allow the application of ergodic theory.

• For example, the speed of random walk exists almost surely:

$$s = \lim_{k \to \infty} \frac{d(\rho, X_k)}{k}$$

exists.

• (Under the assumption of exponential growth) positive speed is equivalent to the existence of nonconstant bounded harmonic functions (Benjamini-Curien '12 and Piaggio-Lessa '15+).

Anchored expansion and positive speed

Theorem (Benjamini-P-Pfeffer '14)

Let (G, ρ) *be a stationary random graph so that:*

- 1. (G, ρ) has positive anchored expansion almost surely and
- 2. $\limsup_{r\to\infty} |B(\rho, r)|^{1/r} < \infty$ almost surely.

Then, simple random walk X_k *started from* ρ *has positive speed, i.e.*

$$s = \lim_{k \to \infty} \frac{d(\rho, X_k)}{k} > 0$$

almost surely.

Hence simple random walk on \mathscr{V}^{λ} has positive speed.

Anchored expansion and positive speed

Theorem (Benjamini-P-Pfeffer '14)

Let (G, ρ) *be a stationary random graph so that:*

- 1. (G, ρ) has positive anchored expansion almost surely and
- 2. $\limsup_{r\to\infty} |B(\rho, r)|^{1/r} < \infty$ almost surely.

Then, simple random walk X_k *started from* ρ *has positive speed, i.e.*

$$s = \lim_{k \to \infty} \frac{d(\rho, X_k)}{k} > 0$$

almost surely.

Hence simple random walk on \mathscr{V}^{λ} has positive speed.

Conjecture

The exponential growth assumption can be removed.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull.

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull.

Let $\mathbf{X} \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull.

Let $\mathbf{X} \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of X.

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull.

Let $X \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of X.

 $4\pi |\partial \operatorname{conv}_{\mathbb{H}}(\mathbf{X}') \cap \mathbf{X}'| \geq \operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\partial \operatorname{conv}_{\mathbb{H}}(\mathbf{X}') \cap \mathbf{X}')).$

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull.

Let $X \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of X.

 $4\pi |\partial \operatorname{conv}_{\mathbb{H}}(\mathbf{X}') \cap \mathbf{X}'| \geq \operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\partial \operatorname{conv}_{\mathbb{H}}(\mathbf{X}') \cap \mathbf{X}')).$

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull. Let $\mathbf{X} \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of **X**.

 $C|\partial_L \mathbf{X}| \geq \operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X}')).$

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull. Let $\mathbf{X} \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of **X**.

 $C|\partial_L \mathbf{X}| \geq \operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X}')) \geq c \left| \left\{ \operatorname{Delaunay triangles in } \operatorname{conv}_{\mathbb{H}}(\mathbf{X}') \right\} \right|.$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lattice proof

Lemma (Benjamini-Eldan '12)

For any finite set $\mathbf{X} \subset \mathbb{H}$, $\operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X})) \leq 4\pi |\mathbf{X}|$, where $\operatorname{conv}_{\mathbb{H}}(\mathbf{X})$ denotes the hyperbolic convex hull. Let $\mathbf{X} \subset \mathbb{H}$ be a finite set of nuclei in Lattice *L*.

Let $X' \subset \mathbb{H}$ be the 1-neighborhood of X.

 $C|\partial_L \mathbf{X}| \geq \operatorname{Vol}_{\mathbb{H}}(\operatorname{conv}_{\mathbb{H}}(\mathbf{X}')) \geq c|\mathbf{X}|.$

Proof 1 (BPP, d = 2)

Proposition

There is a constant c > 0 and a $k_0 > 0$ random so that for all collections of Delaunay triangles t_1, t_2, \ldots, t_k whose union $\cup_{i=1}^k t_i$ is simply connected and contains 0,

$$\sum_{i=1}^k \operatorname{Vol}_{\mathbb{H}}(t_i) > ck.$$

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$.

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$. Let $x_2, x_3, x_4, \ldots, x_k$ be i.i.d. points chosen according to normalized hyperbolic area measure on $B_{\mathbb{H}}(0, r)$.

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$. Let $x_2, x_3, x_4, \ldots, x_k$ be i.i.d. points chosen according to normalized hyperbolic area measure on $B_{\mathbb{H}}(0, r)$. Let $\Delta(x, y, z)$ denote the hyperbolic triangle with endpoints x, y, and z.

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$. Let $x_2, x_3, x_4, \ldots, x_k$ be i.i.d. points chosen according to normalized hyperbolic area measure on $B_{\mathbb{H}}(0, r)$. Let $\Delta(x, y, z)$ denote the hyperbolic triangle with endpoints x, y, and z.

Problem

Show

$$\mathbb{P}\left[\sum_{i=0}^{k-2} \operatorname{Vol}_{\mathbb{H}}(\Delta(x_i, x_{i+1}, x_{i+2})) \le \epsilon k\right] \approx \exp(k\Theta(\log \epsilon)).$$

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$. Let $x_2, x_3, x_4, \ldots, x_k$ be i.i.d. points chosen according to normalized hyperbolic area measure on $B_{\mathbb{H}}(0, r)$. Let $\Delta(x, y, z)$ denote the hyperbolic triangle with endpoints x, y, and z.

Problem

Show

$$\mathbb{P}\left[\sum_{i=0}^{k-2} \operatorname{Vol}_{\mathbb{H}}(\Delta(x_i, x_{i+1}, x_{i+2})) \leq \epsilon k\right] \approx \exp(k\Theta(\log \epsilon)).$$

Caveat: we need a bound that is good enough that this estimate beats the number of *k*-element subsets of points from $\Pi^{\lambda} \cap B_{\mathbb{H}}(0, r)$.

Toy problem

Fix some large $r \ge 0$, and let $x_1 = 0$. Let $x_2, x_3, x_4, \ldots, x_k$ be i.i.d. points chosen according to normalized hyperbolic area measure on $B_{\mathbb{H}}(0, r)$. Let $\Delta(x, y, z)$ denote the hyperbolic triangle with endpoints x, y, and z.

Problem

Show

$$\mathbb{P}\left[\sum_{i=0}^{k-2} \operatorname{Vol}_{\mathbb{H}}(\Delta(x_i, x_{i+1}, x_{i+2})) \leq \epsilon k\right] \approx \exp(k\Theta(\log \epsilon)).$$

Caveat: we need a bound that is good enough that this estimate beats the number of *k*-element subsets of points from $\Pi^{\lambda} \cap B_{\mathbb{H}}(0, r)$. Naïvely, we need $r \approx k$, and so this is $\approx e^{\Theta(k^2)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Toy problem 2

Let \mathcal{E} be the event that for all $i, 1 \le i \le k - 2$, $\{x_i, x_{i+1}, x_{i+2}\}$ have a finite circumdisc (as all Delaunay triangles do).

Toy problem 2

Let \mathcal{E} be the event that for all $i, 1 \leq i \leq k - 2$, $\{x_i, x_{i+1}, x_{i+2}\}$ have a finite circumdisc (as all Delaunay triangles do).

Problem

Show

$$\mathbb{P}\left[\left\{\sum_{i=0}^{k-2} \operatorname{Vol}_{\mathbb{H}}(\Delta_i) \le \epsilon k\right\} \cap \mathcal{E}\right] \approx \frac{\exp(k\Theta(\log \epsilon))}{\operatorname{Vol}_{\mathbb{H}}(B_{\mathbb{H}}(0,r))^{k-2}}$$

Toy problem 2

Let \mathcal{E} be the event that for all $i, 1 \leq i \leq k - 2$, $\{x_i, x_{i+1}, x_{i+2}\}$ have a finite circumdisc (as all Delaunay triangles do).

Problem

Show

$$\mathbb{P}\left[\left\{\sum_{i=0}^{k-2} \operatorname{Vol}_{\mathbb{H}}(\Delta_i) \le \epsilon k\right\} \cap \mathcal{E}\right] \approx \frac{\exp(k\Theta(\log \epsilon))}{\operatorname{Vol}_{\mathbb{H}}(B_{\mathbb{H}}(0,r))^{k-2}}$$

This approach leads to a proof of the area lower bound for Delaunay triangles.

Geometric ingredient

Proposition

Suppose that r > 0 is fixed. Let y be a point that is picked uniformly from the $B_{\mathbb{H}}(0,r)$ according to hyperbolic area measure. There is an absolute constant C > 0 so that

$$\mathbb{P}\left[|\Delta(0,x,y)| \le \theta and \operatorname{CD}_{\mathbb{H}}(0,x,y) \ exists\right] \le \frac{C\theta}{d_{\mathbb{H}}(0,x)|B_{\mathbb{H}}(0,r)|}.$$

Poof of geometric ingredient

Conjectures

Anchored expansion for discrete random graphs is stable with respect to random perturbation. This phenomenon should hold as well for other randomly discretized symmetric spaces.

Conjecture

Let X be any nonpositively curved Riemanninan symmetric space, and let Π^{λ} be a Poisson process with invariant intensity measure. Then the dual graph of the Voronoi tessellation has anchored expansion.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjectures

Anchored expansion for discrete random graphs is stable with respect to random perturbation. This phenomenon should hold as well for other randomly discretized symmetric spaces.

Conjecture

Let X be any nonpositively curved Riemanninan symmetric space, and let Π^{λ} be a Poisson process with invariant intensity measure. Then the dual graph of the Voronoi tessellation has anchored expansion.

It's straightforward to show that SRW on \mathscr{V}^{λ} converges, as a sequence of points in \mathbb{C} , to a point on the unit circle.

Conjectures

Anchored expansion for discrete random graphs is stable with respect to random perturbation. This phenomenon should hold as well for other randomly discretized symmetric spaces.

Conjecture

Let X be any nonpositively curved Riemanninan symmetric space, and let Π^{λ} be a Poisson process with invariant intensity measure. Then the dual graph of the Voronoi tessellation has anchored expansion.

It's straightforward to show that SRW on \mathscr{V}^{λ} converges, as a sequence of points in \mathbb{C} , to a point on the unit circle. Let ν_0 be the harmonic measure on S^1 of SRW started from 0.

Conjecture

For almost every realization of \mathscr{V}^{λ} , ν_0 is singular with respect to Lebesgue measure on S^1 .