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Setting

We consider bond percolation in Zd.

Pp = Πe∈E(Zd)(pδ0 + (1− p)δ1),

(w(e))e∈E(Zd) with distribution Pp. An edge e is open if w(e) = 1,
closed if w(e) = 0.

Order parameter:

θ(p) = Pp(component of 0 is infinite).

In dimension d = 2,

pc := inf{p : θ(p) > 0} =
1

2
,

(Kesten, 1982).



Chemical distance

Chemical distance in percolation: the distance between two subsets A and
B is the minimum number of edges in any open path between A and B.

When there is no path, define dist(A,B) =∞. In practice, we condition
on the event that A and B are connected.

Example: crossing of a box of side length 2n. A is the left side
{−n} × [−n, n], B the right side. By Russo-Seymour-Welsh:

Pp(dist(A,B) <∞) ≥ C

for p ≥ 1
2 .



Supercritical percolation: Antal-Pisztora

In the supercritical phase, distances are comparable to the Euclidean
distance in all dimensions.

Theorem (Antal-Pisztora, 1996)
For any p > pc there is a constant ρ(p, d) such that, P-almost surely

lim sup
|x|→∞

1

|x|
dist(0, x)1{0↔x} ≤ ρ(p, d).

Large and moderate deviations by Garet-Marchand (2007, 2009).

The result is central in the study of random walk on percolation clusters;
used in heat kernels estimates (Barlow, 2004), convergence of RW on
infinite cluster to Brownian motion (Sidoravicius-Sznitman, 2004;
Berger-Biskup, 2007; Mathieu-Piatnitski, 2007).



Critical percolation: high dimension

As part of their work on the Alexander-Orbach conjecture on the
high-dimensional incipient infinite cluster, Kozma and Nachmias (2011)
show that in high dimensions (d ≥ 19 enough):

Ppc(0↔ ∂BZd(n)) � n−2.

van der Hofstad and Sapozhnikov (2013) show using another argument
of Kozma-Nachmias (2009) that this implies, for |x| large:

Ppc(0↔ ∂BZd(n) by a path with less than εn2 edges | 0↔ x) ≤ C
√
ε.

Upper bound by Heydenreich-v.d. Hofstad-Hulsof (2014) gives exponent
2 for chemical distance.



Critical percolation: dimension 2

In low dimensions, few results are available. We concentrate on a special
case: let d = 2 and Sn be the length of the shortest open crossing of
[−n, n]2.

Expect the existence of an exponent α such that

ESn ∼ nα.

O. Schramm, Conformally invariant scaling limits: an overview and a
collection of problems (2006), Problem 3.3.: “Does not seem accessible
via an SLE analysis”.



Physics predictions

Unlike other critical exponents, there is no exact prediction for α, only
several competing conjectures (some “disproved” by numerics).

Early suggestion (Edwards-Kernstein 1985-1986): α = 1 with logarithmic
correction.

Numerical simulations (Hermann-Stanley 1988, Grassberger 1999,
Zhou-Yang-Deng-Ziff 2012) suggest otherwise:

α ≈ 1.130 . . .



Aizenman-Burchard: “α > 1”

In 1995, Aizenman and Burchard showed how to construct a scaling limit
following Aizenman’s idea of considering the percolation configuration as
a system of random curves.

Theorem (Aizenman, Burchard, 1995)
Critical percolation on 1

nZ
2 ∩ [−1, 1]2, viewed as a measure on the

collection of random curves formed by all paths of open edges, has weak
subsequential limits as n→∞ (in the uniform topology modulo
reparametrization). Any limit is a measure on collections of continuum
curves of Hausdorff dimension 1 < d < 2.



A lower bound on distances

In “pre-scaling limit” terms, the lower bound in Aizenman-Burchard
gives: if A,B ⊂ Z2 ∩ ([−n, n]2) such that

distZ2(A,B) ≥ n/10,

then there is a η > 1 such that for each ε > 0

lim sup
n→∞

P (distchemical(A,B) ≤ C(ε)nη) ≤ ε (1)

Pisztora observed that a block renormalization argument transforms (1)
into an exponential (in n) estimate.



An upper bound: lowest crossing

The lowest open crossing of a rectangle is
the one such that the area of the region
“below” is minimal.

Characterization in terms of arms: two
disjoint open arms to the sides and a closed
dual arm to the bottom.

This implies:

E#(lowest crossing) � n2π3(n)

n ≈ size of the rectangle; π3(n): 3-arm
probability.



Morrow-Zhang

Morrow and Zhang carried out the computation for all moments, and
showed, for the triangular lattice:

Theorem (Morrow-Zhang, 2005)
For each k:

E(Ln)k = Ck(n2π3(n))k = n
4
3k+o(1).

Ln: length of lowest crossing of [−n, n]2.



Kesten-Zhang

Kesten and Zhang (1992) outline an argument to show that, for some
δ > 0

P(0 < Ln ≤ n1+δ) ≤ n−C .

This is weaker than Aizenman-Burchard, but the proof is different.



A question of Kesten and Zhang

In their paper, Kesten and Zhang asked how the shortest crossing
compares to the lowest crossing:

“It is not clear that Sn/Ln → 0 in probability.”

We answer Kesten and Zhang’s question, and give a corresponding result
in expectation. It is instructive to state it in terms of circuits in annuli.
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Circuits in annuli

B(3n)

B(n)

Let B(n) = [−n, n]2.
Consider critical percolation in an annulus
A(n) = B(3n) \B(n).

Russo-Seymour-Welsh: there is an open
circuit around B(n) inside A(n) with
positive probability.

If an open circuit exists, define the
innermost circuit γn: the circuit such that
the interior is minimal.



The innermost circuit

B(3n)

B(n)

3-arm characterization: e ∈ γn if e is on an
open circuit and e∗ is connected to ∂B(n)
by a closed dual path.

In particular:

E#γn � n2π3(n)



The shortest circuit

Let S̃n be the number of edges on the shortest circuit around B(n) inside
A(n), (S̃(n) = 0 if there is none).

Theorem (Damron, Hanson, S., 2015)

ES̃n = o(n2π3(n)).

This shows the “fractal nature” of percolation: shortest circuit is much
shorter than the innermost, even though it encloses a bigger area.

With positive probability, the two circuits come close to each other many
times (abundance of 4-arm points).



An answer to Kesten-Zhang

Using the previous result (adapted to crossing of a square) we obtain:

Theorem (Damron, Hanson, S., 2015)
Let Hn = {there is an open crossing of [−n, n]2}. Then, conditionally on
Hn,

Sn/Ln → 0.

To deduce this from ESn = o(ELn), need that Ln cannot be much
smaller than ELn (unless Ln = 0):

P(0 < Ln < n−εELn)→ 0.

A lower tail bound of this type for another set, the Fourier spectrum of
percolation (related to pivotals), was obtained by Garban-Pete-Schramm.
Our strategy of proof is different.
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Some proof ideas

Obvious approach: try to modify the lowest
path by short detours.

The lowest path is constrained by the
existence of closed arm;
Russo-Seymour-Welsh implies the existence
of a lot of “forks” in the road. Expect some
of them to be shortcuts.



e

detour

detoured part



Difficulties

?

Different shortcuts might conflict. Need to
keep track of the location of endpoints.

It is not clear that you can find really
significant shortcuts by taking “detours”. Is
taking the minimum over a number of
detours given by RSW sufficient?



Some proof ideas: how to make short paths

Quasimultiplicativity and fractal dimension of lowest path imply that thin
paths are short.

This observation is the basis of our proof of the following statement:

Lemma (Fluctuations of the lowest path are O(n2π3(n)))
Let Ln be the length of the lowest crossing of B(n). For every ε > 0:

P(0 < Ln ≤ εELn) ≥ c(ε) > 0.

(M. Aizenman suggested Var(Ln) ∼ (ELn)2.)



Rα

n

αn



Volume of the lowest crossing in the rectangle Rα:

E[Lαn | Cα] ≤ C αn︸︷︷︸
height

× n︸︷︷︸
width

× π3(nα)︸ ︷︷ ︸
3 arms in a small square

.

Aizenman-Burchard (or Kesten-Zhang):

k1+δ ≤ CELk ∼ k2π3(k),

for some δ > 0, so
π3(k) ≥ k−1+δ/C.

From this (using quasimultiplicativity):

π3(αn)

π3(n)
≤Cα−1+δ.



Volume of the lowest crossing in the rectangle Rα:

E[Lαn | Cα︸︷︷︸
existence of crossing

] ≤ Cαn2 π3(αn)

π3(n)
π3(n)

≤ Cαδn2π3(n).

Markov’s inequality:

P(0 < Lnα ≤ f(α)ELn) ≥ c(α),

with
f(α) ↓ 0

as
α→ 0.



How to avoid overcounting: shielded detours

π(e)



Key estimate

The heart of the proof is to show that edges away from the boundary
have short shielded detours with high probability.

π(e): short detour around e, such that #π(e) ≤ ε#(detoured portion).
π(e) = ∅ if there is no detour.

Lemma
Let 0 < C1 < 1. If dist(e, ∂A(n)) ≥ nC1 , there is a constant C2 such
that

P(π(e) = ∅ | e ∈ γn) ≤ n−C2 .



Detour construction

To construct a path σn that is shorter than γn, we choose a maximal
collection of detours, subject to the constraint that the detoured portions
are disjoint.

σn ={maximal collection of detours}
∪ (γ̂n \ {detoured portions of γn})





Estimating ESn

By construction:

#σn ≤ #{e in a maximal collection of short detours}
+ #{e ∈ γ̂n : e has no short detour}+ (boundary contribution).

First term ≤ ε#γn by definition.

Second term is bounded using the key estimate:

E#{e ∈ γ̂n : e has no short detour}

≤
∑

e∈E(A(n))\boundary

P(π(e) = ∅ | e ∈ γn)P(e ∈ γn)

≤n−C2

∑
e

P(e ∈ γn) = n−C2E#γn.



Showing shielded detours exist

We define events Ek(e) depending only on the annulus
B(e, 3k+2) \B(e, 3k), 3k+2 ≤ nC1 such that

Ek(e)⇒ π(e) 6= ∅.

If we could replace P(· | e ∈ γ̂n) with P(·), the Ek are P-independent,
and we would be done. In fact, we need an additional arms separation
argument.

I will explain some features of Ek, and outline why P(Ek) ≥ C, for
k-independent C.



Ek: A sketch



Ek: Shielding circuits

Closed dual circuits with 2 defects around
B(3k) and B(3k−1) isolate the events
inside the annulus from the outside. The
outer circuit acts as the shielding path.

If there is an edge of γn in B(3k−1), the
open arms are forced through the defects.

O(1) probability cost by RSW.



Ek: Short detour path

Open arc in a corridor of size δ3k inside the
outer path. Taking outermost open path,
volume is estimated by ε32kπ3(3k) if δ is
small.

Endpoints are at the defects, so this is a
detour.

O(1) probability cost by RSW. (Constant
depends δ.)



Ek: Lower bound for γn

We connect on the order of C32kπ3(3k)
edges to the defects by open paths, and to
the outer closed circuit.

If γn intersects the inside of B(3k−1), these
lie on γn.

O(1) probability cost (Second moment
method.)



Connecting all the above

To connect the constructions above at the
defects of the outer dual circuits, we use 5
arm points (avoids conditioning on a rough
boundary).

Simpler 3 arm construction at the defects of
the inner dual circuit.

O(1) probability (Universal 5-arm exponent
= 2, and EZ = P(Z > 0).)



Wrapping up

All the above gives P(Ek) ≥ C(δ) > 0.

An easy gluing construction shows

P(Ek | A3(n)) ≥ C > 0,

where n ≥ 3k+2. A3(n): three arms to distance n in a box.

Slightly more elaborate arms separation and gluing shows that

P(Ek(e) | A3(e, n)) � P(Ek(e) | e ∈ γn).



Under P(· | A3(n)) the events are no longer independent. Using an arms
separation argument from Damron-Sapozhnikov (2009), we are still able
to upgrade the estimate

P(Ek | A3(n)) ≥ C > 0

into
P(less than cn of the Ek | A3(n)) ≤ Cn−cC3

for some constant C3.



Thank you for your attention!


