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Menu for this talk:

1 Time constant of first passage percolation.

2 Isoperimetric sets in planar percolation.

3 Shape theorem for random walk weight by its boundary.



First Passage Percolation

Model for the spread of fluid in a porous medium
(Hammersley and Welsh 65).

For every edge e of Zd, associate a travel time t(e) ≥ 0,
t(e) ∼ ν i.i.d.

For a path γ = (e1, e2, . . . , en), let Tν(γ) =
∑n

i=1 t(ei).

∀x, y ∈ Zd let Tν(x, y) = inf{Tν(γ) : γ : x 7→ y}.
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Time constant

HW65 observed that Tν is sub-additive
Tν(x, y) + Tν(y, z) ≥ Tν(x, z).

Used it to prove that if E[tν(e)] <∞ then ∀x ∈ Zd the

limit of Tν(0,nx)
n = µ(x) exists in probability.

Kingman proved a.s and L1 (1968).

If E[tν(e)] =∞ then lim supn→∞
Tν(0,nx)

n =∞.
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Time constant

Theorem 1 (Cerf, Théret 2014)

Let ν be a probability measure on [0,∞], such that
ν([0,∞)) > pc(Zd), then ∀x ∈ Zd,

lim
n→∞

Tν(0̃CM , ñxCM )

n
= µν(x) a.s. and in L1.

Where ν[0,M ] > pc(Zd) and µν(x) > 0 iff ν({0}) < pc(Zd).

Let Bν(t) = {x : Tν(0̃CM , ñxCM ) < t}.

Theorem 2 (Cerf, Théret 2014)

Bν(t)
t −→ {x ∈ Rd : µν(x) ≤ 1} =: Bν in Hausdorff distance a.s.
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Continuity result

Extension of Cox, Kesten 1981.

Theorem 3 (Garet, Marchand , P, Théret 2015)

Let ν∞, νn be probability measures on [0,∞] s.t. for

n ∈ N ∪ {∞}, νn([0,∞)) > pc(Zd). If νn
d→ ν∞, then

lim
n→∞

sup
x∈S1
|µνn(x)− µν∞(x)| = 0.

Corollary 4

limn→∞ dH(Bνn , Bν∞) = 0.

Special example: νp = pδ1 + (1− p)δ∞.
Open problem: Show c(p)Bνp → B‖·‖2 as p ↓ pc(Zd).
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Key step: Study effect of truncation

Define the law of truncated passage times
νK = 1[0,k)ν + ν([K,∞])δK . tνK (e) = min{tν(e),K}.

Theorem 5

Let ν([0,∞)) > pc(Zd). Then ∃A(ν),K0(ν) s.t. ∀K > K0,
∀x ∈ Zd

µνK (x) ≤ µν(x) ≤ µνK (x)

(
1 +

A

K

)
.

One can approximate chemical distance time with finite
passage times.
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Isoperimetric constant (you can join if you lost me already)

For a finite graph G = (V (G), E(G)), the Cheeger constant is
defined as

ϕG = min

{
|∂A|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
,

where ∂A = {e = (x, y) ∈ E(G) : x ∈ A, y /∈ A}.

Figure: bottle neck
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Percolation

Let B(n) =
[
−n

2 + 1, n2
]d ∩ Zd. For p > pc(Zd), w.h.p. there is a

unique connected component in B(n) of size order |B(n)|.
Denote this component by Cd(n).



Let Φn = min
{
|∂A|
|A| : A ⊂ V (Cd(n)), 0 < |A| ≤ |V (Cd(n))|

2

}
denote the Cheeger constant of the giant component.

In several works (Benjamini and Mossel 03, Mathieu and
Remy 04, Berger, Biskup, Hoffman and Kozma 08, Pete
08) it was shown that

Theorem 6

∃c, C > 0, depending on p and d only, such that c < nΦn < C
a.a.s.

This led Itai Benjamini to formulate:

Conjecture

For every p > pc(Zd), the limit limn→∞ nΦn exists a.s.
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Results

Concentration around mean for d ≥ 3:

Theorem 7 (P, Rosenthal 2011)

∃C(p, d) > 0 such that Var(nΦn) ≤ Cn2−d.

Proof of Benjamini’s conjecture for d = 2. Set Φn = ϕC2(n).

Theorem 8 (Biskup, Louidor, P, Rosenthal 2012)

There exists a constant c(p) > 0 such that Pp almost surely,

lim
n→∞

nΦn = c(p).

Question: What is c(p)?
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Shape theorem

For the next statement Ŵp is a fixed convex set that will be
constructed shortly (Wulff shape). Let ÛC2(n) be the set of
Cheeger minimizing subsets of C2(n).

Theorem 9 (Biskup, Louidor, P, Rosenthal 2012)

max
U∈ÛC2(n)

inf
ξ∈R2:

ξ+Ŵp/
√

2⊆B(1)

dH(n−1U , ξ + Ŵp/
√

2) −→
n→∞

0,

hold for Pp almost every realization of ω.

Theorem 10 (Garet, Marchand , P, Théret 2015)

p ∈ (pc(Z2), 1] 7→ Ŵp is Hausdorff continuous.
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Cheeger minimizing subsets of C2(n).

Theorem 9 (Biskup, Louidor, P, Rosenthal 2012)

max
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FPP and the Cheeger continuity?

Construction of the Wulff shape via
weighted paths
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Wulff construction

Let βp be a norm on R2 (p notation for later use).

Let ϕp =
inf
{

lenβp(γ) : γ is a simple curve in R2, Leb(int(γ)) = 1
}

.

The minimizing set is given by the Wulff construction

Wp :=
⋂

n̂ : ‖n̂‖2=1

{
x ∈ R2 : n̂ · x ≤ βp(n̂)

}
,

Ŵp := Wp/
√

Leb(Wp).



Wulff construction

Let βp be a norm on R2 (p notation for later use).

Let ϕp =
inf
{

lenβp(γ) : γ is a simple curve in R2, Leb(int(γ)) = 1
}

.

The minimizing set is given by the Wulff construction

Wp :=
⋂

n̂ : ‖n̂‖2=1

{
x ∈ R2 : n̂ · x ≤ βp(n̂)

}
,
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Wulff construction

A quantitative uniqueness theorem.

Theorem 11 (Dobrushin, Kotecký and Shlosman 92)

For any simple rectifiable curve γ enclosing a region of unit
Lebesgue area,

inf
x∈R2

dH(γ + x, ∂Ŵp) ≤ Cp

√
lenβp(γ)2 − lenβp(∂Ŵp)2

lenβp(∂Ŵp)2
.

If a curve is far from ∂Ŵp then its length is far from the
min.
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Geometry of Z2 envelopes
We wish to define a surface tension (the norm βp) for the Wulff
shape, that holds information on boundary of sets. First we
need to characterize the envelopes of sets in Z2.



Boundary norm

Definition (Right boundary edge)

1 Let γ = (x0, x1, . . . , xn) be a path. An oriented edge (z’,z)
is said to be a right-boundary edge if z′ = xi , and z is a
neighbor of z′ between xi+1 and xi−1 in the clockwise
direction.

2 The right boundary ∂+γ of γ is the set of right-boundary
edges.
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Boundary norm

Definition (Right most path)

1 A nearest neighbor path γ = (x0, x1, . . . , xn) is simple if it
uses every edge at most once in each orientation.

2 A path is right-most if it is simple and it doesn’t contain
right-boundary edges.



Boundary norm (back to percolation)

Definition (Right boundary distance)

1 Let R(x, y) be the set of right-most paths from x to y.

2 For ω ∈ Ω and a rightmost path γ, let
b(γ) = |{e ∈ ∂+γ : ω(e) = 1}|.

3 If x ∼ω y the the rightmost distance between them is

b(x, y) = inf{b(γ) : γ ∈ R(x, y), open}.
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Boundary norm

Theorem 12 (The boundary norm)

For any p > pc(Z2) and any x ∈ R2, the limit

βp(x) := lim
n→∞

b(0̃C∞ , ñxC∞)

n
exists Pp-a.s.

with 0 <
x 6=0

βp(x) <∞. The limit also exists in L1 and the

convergence is uniform on {x ∈ R2 : ‖x‖2 = 1}.
Moreover, βp is a norm on R2.
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Approximating circuits by simple closed curves in R2

Definition (Right-most circuit)

A right-most circuit is a closed right-most path.

It is always possible to find a simple closed curve close to a
right-most circuit.



Approximating circuits by simple closed curves in R2

By first taking a polygonal approximation.



Approximating circuits by simple closed curves in R2

Then “simplifying” it.
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Begin with the a set An giving the Cheeger constant, which
is connected and of size larger than cn2.

Φn = |∂An|
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There exists a closed curve λ, such that:
b(γ) ≥ (1− ε)lenβp(λ), where γ = env(An).

Note that rate of convergence to the norm is needed for
this approximation on long polygonal lines.
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Since |An| ≤ (θp + ε)n2/2, with high probability.

n |∂An||An| ≥
√

2ϕp
θp
− o(1).
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Proof sketch: Upper bound

Begin with the Wulff shape. ϕp = len(∂Ŵp).
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Work in progress (joint with Biskup):

The boys who cried Wulff
(the title is still under debate with Biskup)



The model

{Xt : t ≥ 0} is a continuous time RW on Z2 with law P0.

Define the local time lt(x) =
∫ t

0 1{Xs=x}ds.

Define R(t) = hull{x ∈ Zd : lt(x) > 0}.
For β > 0 consider the Gibbs measure on the path space

Q0
β,t(A) =

1

Z(β, t)
E0
(
1Ae

−β|∂R(t)|
)
.
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History

Berestycki and Yadin (2013) studied a related model
(interaction through entire inner boundary).

Showed that the path is confined (no shape theorem) on
the spatial scale

r(t, β) =

(
t

β

) 1
d+1

.

Squeezed more than diffusive scaling
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History

Bolthausen (1994) studied the interaction proportional to
the cardinality of the range.

Showed that it is squeezed to spatial scale t
1
d+2 .

The limiting shape is the result of the variational problem

inf{λ(U) : U ⊂ Rd open, |U | = 1}.

Euclidean ball by Faber-Krahn
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The modified Berestycki, Yadin Model in Z2

The limiting shape is determined by the variational formula

inf{λ(U) + len‖·‖1(∂U) : U ⊂ Rd open with rectifiable ∂U}.

No volume constraint. An interpolation of the two previous
variational formulas.

We show the variational problem has a unique minimizer,
up to shifts, U0 (convex).

Theorem 13 (Biskup, P 2015)

For every ε > 0, there is β0(ε) <∞ such that for all β > β0(ε),

lim
t→∞

Q0
β,t

(
inf
x∈Rd

distH

(
r(t, β)−1R(t), x+ U0

)
> ε

)
= 0. (1)

In particular, R(t) scaled by r(t, β) tends in probability
under the Hausdorff distance to a shift of U0 in the
limit t→∞ followed by β →∞.
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Why this variational problem?

Q0
t,β

(
R(t) = S

)
=

e−β|∂S|P 0
(
R(t) = S

)∑
S∈S e

−β|∂S|P 0
(
R(t) = S

) . (2)

P 0(R(t) = S) = P 0(R(t) = S|R(t) ⊂ S)P 0(R(t) ⊂ S).

First term ≥ e−|∂R(t)|. Second term equals
P 0(τS > t) ≈ e−tλS .

Open problem: Prove for finite β and d ≥ 3 (weaker
convergence).
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Questions?
Anyone still awake?


