Central Limit Theorem for discrete log-gases

Vadim Gorin MIT (Cambridge) and IITP (Moscow)

(based on joint work with Alexei Borodin and Alice Guionnet)

May, 2015

Setup and overview

$$\lambda_1 \le \lambda_2 \le \cdots \le \lambda_N, \qquad \ell_i = \lambda_i + \theta i$$

Probability distributions on discrete N-tuples of the form.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Discrete log-gas.

We go beyond specific integrable weights.

Setup and overview

$$\lambda_1 \le \lambda_2 \le \cdots \le \lambda_N, \qquad \ell_i = \lambda_i + \theta_i$$

Probability distributions on discrete N-tuples of the form.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Discrete log-gas.
We go beyond specific integrable weights.

- Appearance in probabilistic models of statistical mechanics.
- Law of Large Numbers and Central Limit Theorem for global fluctuations as $N \to \infty$ under mild assumptions on w(x; N).
- Our main tool: discrete loop equations.

Appearance of discrete log-gases

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

At $\theta=1$ becomes...

Appearance of discrete log-gases

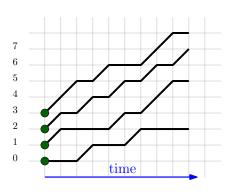
$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

At $\theta = 1$ becomes...

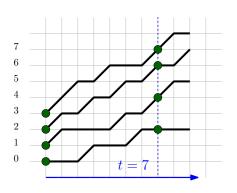
$$\frac{1}{Z}\prod_{1\leq i< j\leq N}(\ell_j-\ell_i)^2\prod_{i=1}^Nw(\ell_i;N),$$

which frequently appears in natural stochastic systems.

E.g.



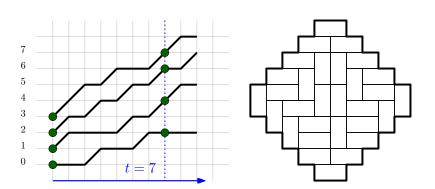
- N independent simple random walks
- probability of jump p
- started at adjacent lattice points
- conditioned never to collide



- N independent simple random walks
- probability of jump p
- started at adjacent lattice points
- conditioned never to collide

Claim. (Konig-O'Connel-Roch) Distribution of N walkers at time t

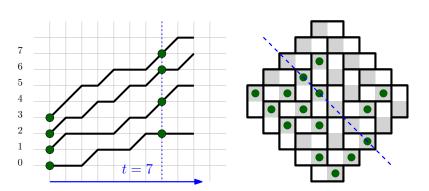
$$\frac{1}{Z} \prod_{1 \leq i \leq N} (\ell_j - \ell_i)^2 \prod_{i=1}^N \left[p^{\ell_i} (1-p)^{M-\ell_i} \binom{M}{\ell_i} \right], \quad M = N + t - 1.$$



Claim. (Konig-O'Connel-Roch) Distribution of N walkers at time t

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} (\ell_j - \ell_i)^2 \prod_{i=1}^N \left[p^{\ell_i} (1-p)^{M-\ell_i} \binom{M}{\ell_i} \right], \quad M = N + t - 1.$$

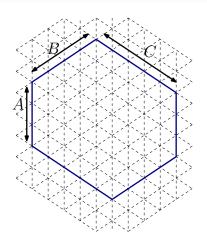
Claim. (Johansson) In random domino tilings of Aztec diamond.



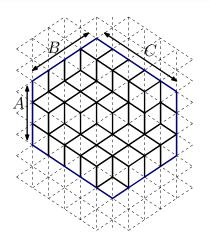
Claim. (Konig-O'Connel-Roch) Distribution of N walkers at time t

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} (\ell_j - \ell_i)^2 \prod_{i=1}^N \left[p^{\ell_i} (1-p)^{M-\ell_i} \binom{M}{\ell_i} \right], \quad M = N + t - 1.$$

Claim. (Johansson) In random domino tilings of Aztec diamond.

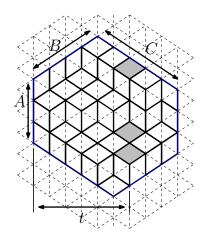


- Regular $A \times B \times C$ hexagon
- 3 types of lozenges

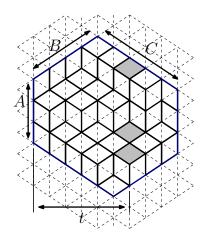


- Regular $A \times B \times C$ hexagon
- 3 types of lozenges

• uniformly random tiling



- Regular $A \times B \times C$ hexagon
- uniformly random tiling
- Distribution of N horizontal lozenges on t-th vertical?

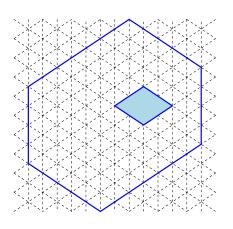


- Regular $A \times B \times C$ hexagon
- uniformly random tiling
- Distribution of N horizontal lozenges on t-th vertical?

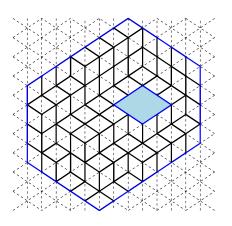
$$N = B + C - t$$
 $t > \max(B, C)$
 $(a)_n = a(a+1)\dots(a+n-1)$

Claim. (Cohn-Larsen-Propp)

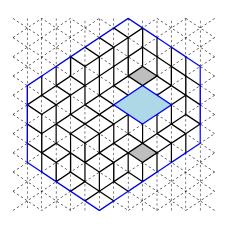
$$\frac{1}{Z} \prod_{i < j} (\ell_i - \ell_j)^2 \prod_{i=1}^{N} \left[(A + B + C + 1 - t - \ell_i)_{t-B} (\ell_i)_{t-C} \right]$$



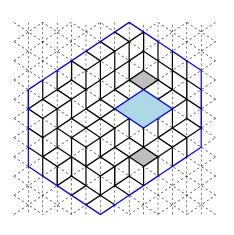
- Regular $A \times B \times C$ hexagon
- Rhombic hole of size D at vertical position H.



- Regular $A \times B \times C$ hexagon
- Rhombic hole of size *D* at vertical position *H*.
- uniformly random tiling



- Regular $A \times B \times C$ hexagon
- Rhombic hole of size D at vertical position H.
- uniformly random tiling
- Distribution of N horizontal lozenges on the vertical going through the axis of the hole?



- Regular $A \times B \times C$ hexagon
- Rhombic hole of size D at vertical position H.
- uniformly random tiling
- Distribution of N horizontal lozenges on the vertical going through the axis of the hole?

Claim. It is: (and similarly for k holes)

$$\prod_{i < j} (\ell_i - \ell_j)^2 \prod_{i=1}^{N} \left[(A + B + C + 1 - t - \ell_i)_{t-B} (\ell_i)_{t-C} (H - \ell_i)_D (H - \ell_i)_D \right]$$

General θ case

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

• $\ell_i = L \cdot x_i$, $L \to \infty$, $\beta = 2\theta$.

$$\frac{1}{Z}\prod_{1\leq i< j\leq N}(x_j-x_i)^{\beta}\prod_{i=1}^N w(\ell_i;N).$$

Eigenvalue ensembles of random matrix theory. $\beta=1,2,4$ corresponds to real/complex/quaternion matrices.

General θ case

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

• $\ell_i = L \cdot x_i$, $L \to \infty$, $\beta = 2\theta$.

$$\frac{1}{Z}\prod_{1\leq i< j\leq N}(x_j-x_i)^{\beta}\prod_{i=1}^N w(\ell_i;N).$$

Eigenvalue ensembles of random matrix theory. $\beta=1,2,4$ corresponds to real/complex/quaternion matrices.

• Another appearance — asymptotic representation theory

(Olshanski: (z,w)-measures).

Factor $\Gamma(\ell_j-\ell_i+1)\Gamma(\ell_j-\ell_i+\theta)$ links to evaluation formulas for

Factor $\frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)}$ links to evaluation formulas for **Jack** symmetric polynomials.

Large N setup

- 1. $w(\cdot; N)$ vanishes at the boundaries of the regions.
- 2. All data regularly depends on $N \to \infty$

Large N setup

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

k regions with prescribed filling fractions

- 1. $w(\cdot; N)$ vanishes at the boundaries of the regions.
- 2. All data regularly depends on $N \to \infty$

$$a_i = \alpha_i N + \dots, \quad b_i = \beta_i N + \dots, \quad n_i = \hat{n}_i N + \dots$$

$$w(x; N) = \exp\left(NV_N\left(\frac{x}{N}\right)\right), \quad NV_N(z) = NV(z) + \dots$$

Potential V(z) should have bounded derivative (except at end-points, where we allow $V(z) \approx c \cdot z \ln(z)$).

Law of Large Numbers

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^N w(\ell_i; N),$$

Theorem. Suppose that all data regularly depends on $N \to \infty$, then the LLN holds: There exists $\mu(x)dx$ with $0 \le \mu(x) \le \theta^{-1}$, such that for any Lipshitz f and any $\varepsilon > 0$

$$\lim_{N\to\infty} N^{1/2-\varepsilon} \left| \frac{1}{N} \sum_{i=1}^{N} f\left(\frac{\ell_i}{N}\right) - \int f(x) \mu(x) dx \right| = 0$$

In fact the difference is O(1/N).

Law of Large Numbers

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Suppose that all data regularly depends on $N \to \infty$, then the LLN holds: There exists $\mu(x)dx$ with $0 \le \mu(x) \le \theta^{-1}$, such that for any Lipshitz f and any $\varepsilon > 0$

$$\lim_{N\to\infty} N^{1/2-\varepsilon} \left| \frac{1}{N} \sum_{i=1}^{N} f\left(\frac{\ell_i}{N}\right) - \int f(x) \mu(x) dx \right| = 0$$

 $\mu(x)dx$ is the unique maximizer of the functional I_V

$$I_V[\rho] = \theta \iint_{x \neq y} \ln|x - y| \rho(dx) \rho(dy) - \int_{-\infty}^{\infty} V(x) \rho(dx).$$

in appropriate class of measures taking into account filling fractions

Law of Large Numbers

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

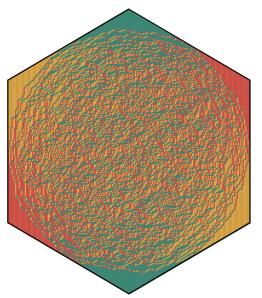
Theorem. Suppose that all data **regularly** depends on $N\to\infty$, then the LLN holds: There exists $\mu(x)dx$ with $0\le \mu(x)\le \theta^{-1}$, such that for any Lipshitz f and any $\varepsilon>0$

$$\lim_{N\to\infty} N^{1/2-\varepsilon} \left| \frac{1}{N} \sum_{i=1}^{N} f\left(\frac{\ell_i}{N}\right) - \int f(x) \mu(x) dx \right| = 0$$

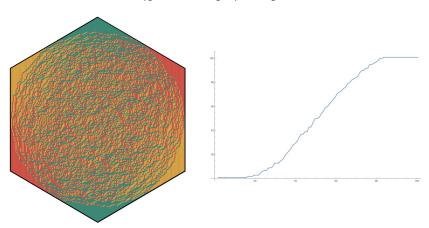
 $\mu(x)dx$ is the unique maximizer of the functional I_V

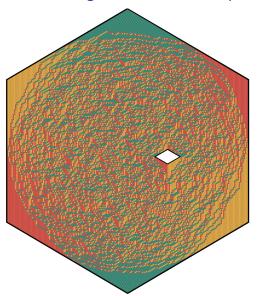
$$I_V[\rho] = \theta \iint_{x \neq y} \ln|x - y| \rho(dx) \rho(dy) - \int_{-\infty}^{\infty} V(x) \rho(dx).$$

This is a very general statement. Lots of analogues.

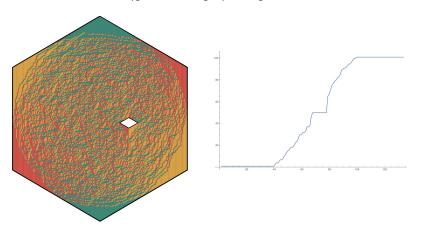


Graph of $\lambda_i = \ell_i - i$ (green lozenges) along the middle vertical



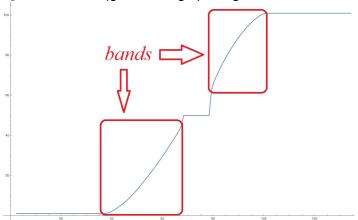


Graph of $\lambda_i = \ell_i - i$ (green lozenges) along the vertical axis of hole



The filling fractions above and below the hole are fixed.

Averaged $\lambda_i = \ell_i - i$ (green lozenges) along the vertical axis of hole



- Frozen region: void. No particles, $\mu(x) = 0$.
- Frozen region: saturation. Dense packing, $\mu(x) = \theta^{-1}$.
- Band.

$$\frac{1}{Z} \prod_{1 \leq i \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Is there a next order, as in CLT?

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f\left(\frac{\ell_i}{N}\right)-\mathbb{E}f\left(\frac{\ell_i}{N}\right)\right] ?$$

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} (x_j - x_i)^{\beta} \prod_{i=1}^{N} \exp(-NV(x_i))$$

Is there a next order, as in CLT?

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f\left(\frac{\ell_i}{N}\right)-\mathbb{E}f\left(\frac{\ell_i}{N}\right)\right] ?$$

• In continuous setting of RMT theory — yes, CLT. (Johansson–1998) one cut/one band, quite general V(x).

. . .

(Borot–Guionnet–2013) generic V(x), fixed filling fractions in each band. If not fixed \Rightarrow discrete component.

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

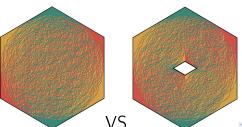
Is there a next order, as in CLT?

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f\left(\frac{\ell_i}{N}\right)-\mathbb{E}f\left(\frac{\ell_i}{N}\right)\right] ?$$

- In continuous setting of RMT theory yes, CLT.
- Discreteness of the model might show up somewhere. E.g. local limits must be different. Also there is rounding in 1/N expansion of $\mathbb{E} \sum f(\ell_i/N)$. Can CLT feel being discrete?

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f\left(\frac{\ell_i}{N}\right)-\mathbb{E}f\left(\frac{\ell_i}{N}\right)\right]\quad?$$

- In continuous setting of RMT theory yes, CLT.
- Discreteness of the model might show up somewhere. E.g. local limits must be different. Also there is rounding in 1/N expansion of $\mathbb{E} \sum f(\ell_i/N)$. Can CLT feel being discrete?
- (Kenyon–2006), (Petrov–2012) CLT (GFF) for tilings of some simply–connected domains. What if there are holes?



$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

$$\lim_{N \to \infty} \sum_{i=1}^{N} \left[f\left(\frac{\ell_i}{N}\right) - \mathbb{E}f\left(\frac{\ell_i}{N}\right) \right] ?$$

- In continuous setting of RMT theory yes, CLT.
- Discreteness of the model might show up somewhere. E.g. local limits must be different. Also there is rounding in 1/N expansion of $\mathbb{E} \sum f(\ell_i/N)$. Can CLT feel being discrete?
- (Kenyon–2006), (Petrov–2012) CLT (GFF) for tilings of some simply–connected domains. What if there are holes?
- Several other discrete CLT's exploit specific integrability.
 Methods not suitable for generic models. Approach of Johansson seems to miss a critical ingredient in discrete world.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

k regions with prescribed filling fractions

Theorem. Assume that $w(\cdot; N)$ and $V(\cdot)$ are analytic $(x \ln(x))$ behavior of V at end-points is ok), all data depends on N regularly, and $\mu(x)dx$ is such that there is **one** band in each region. Then under *technical assumptions*, for analytic $f_1(x), \ldots, f_m(x)$

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f_{j}\left(\frac{\ell_{i}}{N}\right)-\mathbb{E}f_{j}\left(\frac{\ell_{i}}{N}\right)\right],\quad j=1,\ldots,m.$$

are jointly Gaussian with explicit covariance.

Theorem. Assume that all data depends on N regularly, V(x) is analytic (expect for possible $x \ln(x)$ behavior at end-points), and $\mu(x)dx$ is such that there is **one** band in each region. Then under technical assumptions, for analytic $f_1(x), \ldots, f_m(x)$

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f_{j}\left(\frac{\ell_{i}}{N}\right)-\mathbb{E}f_{j}\left(\frac{\ell_{i}}{N}\right)\right],\quad j=1,\ldots,m.$$

are jointly Gaussian with explicit covariance.

• In all the examples shown so far the technical assumption is easy to check. Always holds for convex V(x) with one band.

Central Limit Theorem

Theorem. Assume that all data depends on N regularly, V(x) is analytic (expect for possible $x \ln(x)$ behavior at end-points), and $\mu(x)dx$ is such that there is **one** band in each region. Then under technical assumptions, for analytic $f_1(x), \ldots, f_m(x)$

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f_{j}\left(\frac{\ell_{i}}{N}\right)-\mathbb{E}f_{j}\left(\frac{\ell_{i}}{N}\right)\right],\quad j=1,\ldots,m.$$

are jointly Gaussian with explicit covariance.

- In all the examples shown so far the technical assumption is easy to check. Always holds for convex V(x) with one band.
- Conjecture (work in progress). Technical assumption holds in *generic* case (e.g. a.s. in θ).

Central Limit Theorem

Theorem. Assume that all data depends on N regularly, V(x) is analytic (expect for possible $x \ln(x)$ behavior at end-points), and $\mu(x)dx$ is such that there is **one** band in each region. Then under technical assumptions, for analytic $f_1(x), \ldots, f_m(x)$

$$\lim_{N\to\infty}\sum_{i=1}^{N}\left[f_{j}\left(\frac{\ell_{i}}{N}\right)-\mathbb{E}f_{j}\left(\frac{\ell_{i}}{N}\right)\right],\quad j=1,\ldots,m.$$

are jointly Gaussian with explicit covariance.

- In all the examples shown so far the technical assumption is easy to check. Always holds for convex V(x) with one band.
- Conjecture (work in progress). Technical assumption holds in *generic* case (e.g. a.s. in θ).
- The covariance depends only on end-points of the bands. A log-correlated (generalized) Gaussian field. Section of 2d GFF.
- The result coincides with universal behavior in random matrices / continuous β log-gases. (Johansson),
 (Bonnet-David-Eynard; Scherbina; Borot-Guionnet).

Central Limit Theorem

Theorem. Assume that all data depends on N regularly, V(x) is analytic (expect for possible $x \ln(x)$ behavior at end-points), and $\mu(x)dx$ is such that there is **one** band in each region. Then under technical assumptions, for analytic $f_1(x), \ldots, f_m(x)$

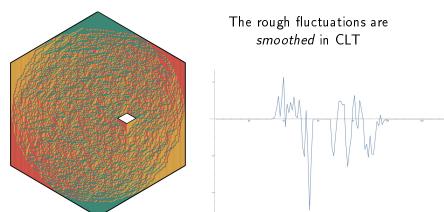
$$\lim_{N\to\infty}\sum_{j=1}^{N}\left[f_{j}\left(\frac{\ell_{i}}{N}\right)-\mathbb{E}f_{j}\left(\frac{\ell_{i}}{N}\right)\right],\quad j=1,\ldots,m.$$

are jointly Gaussian with explicit covariance.

- For a number of particular models the result was established before.
- However this is the first generic results even at $\theta = 1$.

Central Limit Theorem: example

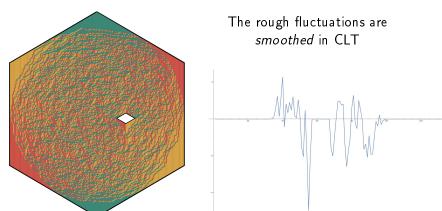
Graph of $\ell_i - \mathbb{E}\ell_i$ (green lozenges) along the vertical axis of hole



- The filling fractions above and below the hole are fixed.

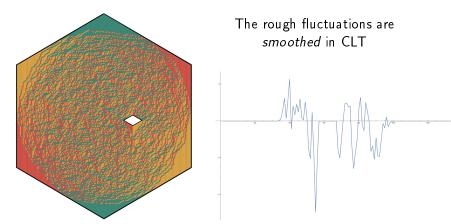
Central Limit Theorem: example

Graph of $\ell_i - \mathbb{E}\ell_i$ (green lozenges) along the vertical axis of hole



• Comparison with RMT predicts that if we do not fix them, then a discrete component would appear. Why?

Central Limit Theorem: example



- Comparison with RMT predicts that if we do not fix them, then a discrete component would appear. Why?
- Jump of one particle through the hole leads to a macroscopic fluctuation of $\sum_{i=1}^N \left[f(\ell_i/N) \mathbb{E} f(\ell_i/N) \right]$

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < j} (\ell_j - \ell_i)^{\beta}$?

$$\frac{1}{Z} \prod_{1 \leq i \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < i} (\ell_i - \ell_i)^{\beta}$?

Recall: Johansson's CLT in RMT is based on loop equation

$$\frac{1}{Z}\prod_{1\leq i< j\leq N}|x_j-x_i|^{\beta}\prod_{i=1}^N\exp(-NV(x_i)).$$

$$G_N(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{z - x_i}.$$

$$\left[\mathbb{E}G_{N}(z)\right]^{2}+rac{2}{\beta}V'(z)\left[\mathbb{E}G_{N}(z)
ight]+\left(ext{analytic}
ight)=rac{1}{N}(\dots)$$

Obtained by clever integration by parts.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < j} (\ell_j - \ell_i)^{\beta}$?

Recall: Johansson's CLT in RMT is based on loop equation

$$G_N(z)^2 + rac{2}{eta}V'(z)G_N(z) + (analytic) = rac{1}{N}(\dots)$$

It also has applications far beyond. E.g. recently in edge universality in RMT (Bourgade–Erdos–Yau), (Bekerman–Figalli–Guionnet)

Discrete CLT was long blocked by absence of a discrete analogue.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < i} (\ell_j - \ell_i)^{eta}$?

Recall: Johansson's CLT in RMT is based on loop equation

$$G_N(z)^2 + rac{2}{eta}V'(z)G_N(z) + (ext{analytic}) = rac{1}{N}(\dots)$$

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

$$\int_{\mathbb{R}^N} \prod_{1 \leq i < j \leq N} |x_j - x_i|^{\beta} \prod_{i=1}^N w(x), \quad w(x) = \begin{cases} x^a (1-x)^b \, \mathbf{1}_{0 < x < 1}, \\ x^a e^{-x} \, \mathbf{1}_{x > 0}, \\ e^{-x^2}. \end{cases}$$

Known explicit formula manifests integrability of β log-gases.

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < i} (\ell_j - \ell_i)^{\beta}$?

Recall: Johansson's CLT in RMT is based on loop equation

$$G_N(z)^2 + rac{2}{eta}V'(z)G_N(z) + (ext{analytic}) = rac{1}{N}(\dots)$$

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

$$\sum_{\mathbb{Z}^N} \prod_{1 \leq i < j \leq N} |x_j - x_i|^{\beta} \prod_{i=1}^N w(x), \quad w(x) = \begin{cases} p^x (1 - p)^{M - x} {M \choose x} \mathbf{1}_{0 \leq x \leq M}, \\ (x)_M q^x \mathbf{1}_{x \geq 0}, \\ c^x / x! \mathbf{1}_{x \geq 0}. \end{cases}$$

Is known only at $\beta=2$, but...

$$\frac{1}{Z} \prod_{1 \leq i \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

What's so special about this measure? Why not $\prod_{i < i} (\ell_j - \ell_i)^{\beta}$?

Recall: Johansson's CLT in RMT is based on loop equation

$$G_N(z)^2 + rac{2}{eta}V'(z)G_N(z) + (analytic) = rac{1}{N}(\dots)$$

Form of discrete measure, for which an analogue could exist?

Can be hinted by discrete Selberg integrals.

$$\ell_i = \lambda_i + (i-1)\theta$$
, $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_N$ — integers

$$\sum \prod_{i \in I} \frac{\Gamma(\ell_j - \ell_i + 1) \Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_i - \ell_i) \Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i = 1}^{N} \frac{c^{\times}}{\Gamma(\ell_i + 1)}.$$

is explicit for all $\theta > 0$ via Jack polynomials (+2 "binomial" w(x)).

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Assume

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

Then

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

is **analytic** in the $\mathcal{D}\subset\mathbb{C}$, where ϕ_N^\pm are.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Assume

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

Then

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

is **analytic** in the $\mathcal{D} \subset \mathbb{C}$, where ϕ_N^{\pm} are.

• This is a modification of (Nekrasov-Pestun), (Nekrasov-Shatashvili), (Nekrasov)

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Assume

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

Then

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

is **analytic** in the $\mathcal{D}\subset\mathbb{C}$, where ϕ_N^\pm are.

- This is a modification of (Nekrasov-Pestun), (Nekrasov-Shatashvili), (Nekrasov)
- Knowing the statement, the proof is elementary.

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Assume

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

Then

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

is **analytic** in the $\mathcal{D}\subset\mathbb{C}$, where ϕ_N^\pm are.

- This is a modification of (Nekrasov-Pestun), (Nekrasov-Shatashvili), (Nekrasov)
- Knowing the statement, the proof is elementary.
- Discrete analogue of loop / Schwinger-Dyson equations.

$$\frac{1}{Z} \prod_{1 \leq i \leq j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

Theorem. Assume

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

Then

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

is analytic in $\mathcal{D} \subset \mathbb{C}$, where ϕ_N^{\pm} are.

How to use this theorem for asymptotic study?

- ϕ^{\pm} small degree polynomials (linear?), then the result is also a polynomial. Find it to get equations.
- As degree grows, not very helpful. Need another approach.

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

$$\frac{w(x; N)}{w(x - 1; N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{for analytic } \phi_N^{\pm}.$$

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

Regularity of data as $N o \infty$ includes and implies

$$\phi_N^{\pm}(Nz) = \phi^{\pm}(z) + \dots, \qquad \qquad \frac{\phi^{+}(z)}{\phi^{-}(z)} = \exp\left(-\frac{\partial}{\partial z}V(z)\right)$$

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

Regularity of data as $N \to \infty$ includes and implies

$$\phi_N^{\pm}(Nz) = \phi^{\pm}(z) + \dots,$$
 $\frac{\phi^{+}(z)}{\phi^{-}(z)} = \exp\left(-\frac{\partial}{\partial z}V(z)\right)$

Then $\xi = Nz$, $N \to \infty$ leads to analyticity of

$$R_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) + \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

 G_{μ} is the **Stieltjes transform** of limiting density.

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx.$$

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N}\left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right].$$

Then $\xi = Nz$, $N \to \infty$ leads to analyticity of

$$R_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) + \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

We also need

$$Q_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) - \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

 G_{μ} is the **Stieltjes transform** of limiting density.

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx.$$

$$G_{\mu}(z) = \int \frac{1}{z - x} \mu(x) dx.$$

$$R_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) + \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

$$Q_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) - \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

$$A_{\mu}(z) = \frac{a_{\mu}}{n_{\mu}} \exp(-\theta G_{\mu}(z)) - \frac{a_{\mu}}{n_{\mu}} \exp(\theta G_{\mu}(z))$$

Key technical assumption: for analytic H(z)

$$Q_{\mu}(z) = H(z) \prod_{i=1}^k \sqrt{(z-u_i)(z-v_i)}, \qquad H(z) \neq 0.$$

• Quadratic singularities: $Q_{\mu}(z)=\sqrt{R_{\mu}(z)^2-4\phi^+(z)\phi^-(z)}$.

$$G_{\mu}(z) = \int \frac{1}{z - x} \mu(x) dx.$$

$$R_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) + \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

$$Q_{\mu}(z) = \phi^{-}(z) \exp(-\theta G_{\mu}(z)) - \phi^{+}(z) \exp(\theta G_{\mu}(z))$$

$$a_{1} \underbrace{\qquad \qquad \qquad }_{n_{1} \text{ particles}} \underbrace{\qquad \qquad \qquad }_{n_{k} \text{ particles}} \underbrace{\qquad \qquad \qquad }_{n_{k} \text{ particles}}$$

Key technical assumption: for analytic H(z)

$$Q_{\mu}(z) = H(z) \prod_{i=1}^{k} \sqrt{(z-u_i)(z-v_i)}, \qquad H(z) \neq 0.$$

- Quadratic singularities: $Q_{\mu}(z) = \sqrt{R_{\mu}(z)^2 4\phi^+(z)\phi^-(z)}$.
- u_i and v_i must be end-points of bands.

$$\begin{split} \phi_N^-(\xi) \cdot \mathbb{E} \left[\prod_{i=1}^N \left(1 - \frac{\theta}{\xi - \ell_i} \right) \right] + \phi_N^+(\xi) \cdot \mathbb{E} \left[\prod_{i=1}^N \left(1 + \frac{\theta}{\xi - \ell_i - 1} \right) \right] \cdot \\ R_\mu(z) &= \phi^-(z) \exp\left(-\theta G_\mu(z) \right) + \phi^+(z) \exp\left(\theta G_\mu(z) \right) \\ Q_\mu(z) &= \phi^-(z) \exp\left(-\theta G_\mu(z) \right) - \phi^+(z) \exp\left(\theta G_\mu(z) \right) \end{split}$$

Second order expansion as $N \to \infty$ gives

$$Q_{\mu}(z) \cdot N\mathbb{E}(G_N(z) - G_{\mu}(z)) = (\mathsf{explicit}) + (\mathsf{analytic}) + (\mathsf{small}).$$

Here
$$G_{\mu}(z)=\int rac{1}{z-x}\mu(x)dx, \quad G_{N}(z)=rac{1}{N}\sum_{i=1}^{N}rac{1}{z-\ell_{i}/N}.$$

(small) requires non-trivial technical work

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

Second order expansion as $N \to \infty$ gives

$$H(z)\prod_{i=1}^k \sqrt{(z-u_i)(z-v_i)}\cdot N\mathbb{E}(G_N(z)-G_\mu(z))$$

= (explicit) + (analytic) + (small).

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

Second order expansion as $N \to \infty$ gives

$$H(z)\prod_{i=1}^{\kappa}\sqrt{(z-u_i)(z-v_i)}\cdot N\mathbb{E}(G_N(z)-G_\mu(z)) = (ext{explicit})+(ext{analytic})+(ext{small}).$$

$$\frac{1}{z-y} \prod_{i=1}^k \sqrt{(z-u_i)(z-v_i)} \cdot N\mathbb{E}(G_N(z) - G_\mu(z))$$

$$= (\text{explicit}) + (\text{analytic}) + (\text{small}).$$

Integrate around $\bigcup_{i=1}^{n} [u_i, v_i]$ to get $\lim_{N \to \infty} N \mathbb{E}(G_N(y) - G_\mu(y))$.

$$\frac{1}{z-y} \prod_{i=1}^{k} \sqrt{(z-u_i)(z-v_i)} \cdot N\mathbb{E}(G_N(z) - G_\mu(z))$$

$$= (\text{explicit}) + (\text{analytic}) + (\text{small}).$$

Integrate around $\bigcup\limits_{i=1}^k [u_i,v_i]$ to get $\lim\limits_{N o \infty} N \mathbb{E}(G_N(y)-G_\mu(y)).$

- We use one band per interval, as otherwise we can not integrate due to singularities of G_N .
- We use fixed filling fractions, to resolve the contribution of the residue at ∞.
- We use $H(z) \neq 0$, as otherwise the unknown (analytic) would contribute.

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

We explicitly found $\lim_{N\to\infty} N\mathbb{E}(G_N(y)-G_\mu(y)).$

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

We explicitly found $\lim_{N\to\infty} N\mathbb{E}(G_N(y) - G_\mu(y)).$

Proposition. Deform the weight by m factors

$$w(x; N) \rightarrow w(x; N) \prod_{a=1}^{m} \left(1 + \frac{t_a}{y_a - x/N}\right).$$

Then $\lim_{N\to\infty}$ of the mixed t_a derivative at 0 of $N\mathbb{E}(G_N(y)-G_\mu(y))$ gives joint cumulants of

$$N\mathbb{E}(G_N(y) - G_\mu(y)), \quad N\mathbb{E}(G_N(y_a) - G_\mu(y_a)), \quad a = 1, \dots m.$$

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

We explicitly found $\lim_{N\to\infty} N\mathbb{E}(G_N(y)-G_\mu(y))$.

Proposition. Deform the weight by m factors

$$w(x; N) \rightarrow w(x; N) \prod_{a=1}^{m} \left(1 + \frac{t_a}{y_a - x/N}\right).$$

Then $\lim_{N\to\infty}$ of the mixed t_a derivative at 0 of $N\mathbb{E}(G_N(y)-G_\mu(y))$ gives joint cumulants of

$$N\mathbb{E}(G_N(y)-G_\mu(y)), \quad N\mathbb{E}(G_N(y_a)-G_\mu(y_a)), \quad a=1,\ldots m.$$

The deformed measure is in the same class. If we justify interchange of derivation and $N \to \infty$ limit, then the cumulants yield asymptotic Gaussianity and the expression for covariance.

$$G_{\mu}(z) = \int \frac{1}{z-x} \mu(x) dx, \quad G_{N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z-\ell_{i}/N}.$$

Proposition. Deform the weight by *m* factors

$$w(x; N) \rightarrow w(x; N) \prod_{a=1}^{m} \left(1 + \frac{t_a}{y_a - x/N}\right).$$

Then $\lim_{N\to\infty}$ of mixed t_a derivative at 0 of $N\mathbb{E}(G_N(y)-G_\mu(y))$ gives joint cumulants of $N\mathbb{E}(G_N(y_a)-G_\mu(y_a))$

Result: $\lim N\mathbb{E}(G_N(y) - \mathbb{E}G_N(y))$ — Gaussian. One band [u, v]:

$$\lim_{N \to \infty} N^2 \mathbb{E} \left[G_N(y) G_N(z) - \mathbb{E} G_N(y) \mathbb{E} G_N(z) \right]$$

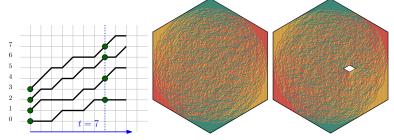
$$= -\frac{1}{2(y-z)^2} \left(1 - \frac{yz - \frac{1}{2}(u+v)(y+z) + u + v}{\sqrt{(y-u)(y-v)}\sqrt{(z-u)(z-v)}} \right),$$

An explicit integral expression for k bands.

Summary

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^N w(\ell_i; N),$$

- 1. Central limit theorem with universal covariance under
 - One band per interval of support.
 - Technical assumption, which holds in many cases, e.g.



(z, w)-measures of asymptotic representation theory $w(x; N) = \exp(NV(x/N))$ with convex VConjecture (work in progress). In generic situation.

Summary

$$\frac{1}{Z} \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_j - \ell_i + 1)\Gamma(\ell_j - \ell_i + \theta)}{\Gamma(\ell_j - \ell_i)\Gamma(\ell_j - \ell_i + 1 - \theta)} \prod_{i=1}^{N} w(\ell_i; N),$$

- 1. Central limit theorem with universal covariance under
 - One band per interval of support.
 - Technical assumption, which holds in many cases.
 Conjecture (work in progress). In generic situation.
- 2. An important ingredient of the proof is Nekrasov equation (discrete loop / Schwinger-Dyson equation)

$$\frac{w(x;N)}{w(x-1;N)} = \frac{\phi_N^+(x)}{\phi_N^-(x)}, \quad \text{ for analytic } \phi_N^\pm.$$

$$\phi_{N}^{-}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 - \frac{\theta}{\xi - \ell_{i}}\right)\right] + \phi_{N}^{+}(\xi) \cdot \mathbb{E}\left[\prod_{i=1}^{N} \left(1 + \frac{\theta}{\xi - \ell_{i} - 1}\right)\right]$$

is analytic in $\mathcal{D} \subset \mathbb{C}$, where ϕ_{N}^{\pm} are.

