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Introduction Proofs

A spacially confined quantum mechanical system can only take certain
discrete values of energy. Uranium-238 :

Quantum mechanics postulates that these values are eigenvalues of a
certain Hermitian matrix (or operator) H, the Hamiltonian of the system.

The matrix elements Hij represent quantum transition rates between
states labelled by i and j.

Wigner’s universality idea (1956). Perhaps I am too
courageous when I try to guess the distribution of the dis-
tances between successive levels. The situation is quite
simple if one attacks the problem in a simpleminded fa-
shion. The question is simply what are the distances of the
characteristic values of a symmetric matrix with random
coefficients.
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Wigner’s model : the Gaussian Orthogonal Ensemble,
(a) Invariance by H 7→ U∗HU , U ∈ O(N).
(b) Independence of the Hi,j ’s, i ≤ j.
The entries are Gaussian and the spectral density is
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with β = 1 (2, 4 for invariance under unitary or symplectic conjugacy).

• Semicircle law as N →∞.

• Smooth statistics are Gaussian
without normalization.
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Fundamental belief in universality : macroscopic statistics depend on
the model, but microscopic statistics only depend on the symmetries.

• GOE : Hamiltonians of systems with time reversal invariance

• GUE : no time reversal symmetry (e.g. application of a magnetic field)

• GSE : time reversal but no rotational symmetry

This is not proved for any realistic Hamiltonian.

The local universality is now known for random matrices. In the
definition of the Gaussian ensembles, either keep :

• the independence of the entries (Wigner ensembles) ;

• or the conjugacy invariance (Invariant ensembles).

This talk is only about Wigner matrices, N ×N matrices such that

E(Xij) = 0,E(X2
ij) =

1

N
, higher moments are finite but arbitrary.

The developed techniques also apply to varrying variances, covariance
matrices, mean-field models of sparse random graphs.
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Some statistics concerning point processes.

• Correlation functions. For a point process χ =
∑N
i=1 δλi :

ρ
(N)
k (x1, . . . , xk) = lim

ε→0
ε−k P (χ(xi, xi + ε) = 1, 1 ≤ i ≤ k) .

Gaudin, Dyson, Mehta (GUE for example) : for any E ∈ (−2, 2),
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.

• Counting numbers.

P
(
|λi − E| ≥

α

Nπ%(E)

)
−→
N→∞

E(0, α).

Jimbo-Miwa-Mori-Sato (GUE for example) :
E(0, α) exists, it is independent of E and
satisfies a Painlevé equation.
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The Wigner-Dyson-Mehta conjecture. Correlation functions of
symmetric Wigner matrices (resp. Hermitian, symplectic) converge to the
limiting GOE (resp. GUE, GSE).

Pointwise convergence of correlation functions cannot hold.

Recently universality was proved under various forms.

Fixed (averaged) energy universality. For any k ≥ 1, smooth F : Rk → R,
for arbitrarily small ε and s = N−1+ε,

lim
N→∞
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k (v) .
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Johansson (2001) Hermitian class, fixed E,
Gaussian divisible entries

Erdős Schlein Péché Ramirez Yau (2009) Hermitian class, fixed E
Entries with density

Tao Vu (2009) Hermitian class, fixed E
Entries with 3rd moment=0

Erdős Schlein Yau (2010) Any class, averaged E

For symmetric matrices, Tao and Vu’s four moments theorem states that
universality holds (including for symmetric matrices) if the Wigner matrix
first four moments are 0,1,0,3.

This does not include Jimbo, Miwa, Mori, Sato relations for gaps in the
spectrum of Bernoulli matrices, for example.

Assume λ1 ≤ · · · ≤ λN and define
∫ γi
−2

d% = i
N .

Key input for all recent results : rigidity of eigenvalues (Erdős Yau
Yin) : |λk − γk| ≤ N−1+ε in the bulk. Is this the optimal rigidity ? Are
fluctuations in the bulk Gaussian ?
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The true size of fluctuations is suggested by the following theorem.

Theorem (Gustavsson, O’Rourke)

Consider GOE/GUE/GSE. Let k0 a bulk index and ki+1 ∼ ki +Nθi ,
0 < θi < 1. Then the normalized eigenvalues fluctuations

Xi =
λki − γki√

logN
N

√
β(4− γ2

ki
)

converge to a Gaussian vector with covariance

Λij = 1−max{θk, i ≤ k < j}.

In particlar, λi − γi has Gaussian fluctuations of size
√

logN
N .

Extension to Wigner matrices hold under the four moment matching
assumption (O’Rourke, Dallaporta, Vu).

Proof : determinantal point processes a la Costin-Lebowitz (GUE) +
decimation relations (GOE, GSE).
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This is a Log-correlated field, as explained below.
The main difficulty proving fixed energy universality is the very slow decay
of correlations :

〈Nλi, Nλj〉 ∼ log

(
N

1 + |i− j|

)
.

Each eigenvalue is localized on a very small window, almost regular
spacing : smooth density and translation invariance are not necessarily
intuitive for Wigner matrices.

Log-correlated random fields appear in the study of random surfaces,
Liouville quantum gravity, models of turbulence. . .

Theorem (with Erdös, Yau, Yin)

Fixed energy universality holds for Wigner matrices from all symmetry
classes. Individual eigenvalues fluctuate as a Log-correlated Gaussian field.
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The Dyson Brownian Motion is an essential in-
terpolation tool in our proof (dHt = dBt√

N
− 1

2Htdt) ,

as in the Erdős Schlein Yau approach to universality,
which can be summarized as follows :

H0

l
H̃0

(DBM)−→ H̃t

(DBM)−→ : for t = N−1+ε, the eigenvaues of H̃t satisfy averaged universality.

l : Density argument. For any t� 1, there exists H̃0 such that H0 and H̃t

have the same statistics on the microscopic scale.

What makes the Hermitian universality easier ? The
(DBM)−→ is replaced by

The Harish-Chandra-Itzykson-Zuber integral formula : correlation
functions of H̃t are explicit only for β = 2.
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A few curiosities about the proof of fixed energy universality.

(i) A game coupling three Dyson Brownian Motions.

(ii) Homogenization allows to obtain microscopic statistics from
mesoscopic ones.

(iii) Need of a higher order type of Hilbert transform. Emergence of new
explicit kernels for any Bernstein-Szegő measure. These include
Wigner, Marchenko-Pastur, Kesten-McKay.

(iv) The relaxing time of DBM depends on the Fourier support of the test

function : the step
(DBM)−→ becomes the following.

F̃ (λ,∆) =

N∑
i1,...,ik=1

F
(
{N(λij − E) + ∆, 1 ≤ j ≤ k}

)
Fact

If suppF̂ ⊂ B(0, 1/
√
τ), then for t = N−τ ,

E F̃ (λt, 0) = E F̃ (λ(GOE), 0).
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First step : coupling two Dyson Brownian Motions. Let x(0) be the

eigenvalues of H̃0 and y(0), z(0) those of two indepndent GOE.

dxi/dyi/dzi =

√
2

N
dBi(t) +

1

N

∑
j 6=i

1

xi/yi/zi − xj/yj/zj
− 1

2
xi/yi/zi

dt

Let δ`(t) = et/2(x`(t)− y`(t)). Then we get the parabolic equation

∂tδ`(t) =
∑
k 6=`

Bk`(t) (δk(t)− δ`(t)) ,Bk`(t) =
1

N(xk(t)− x`(t))(yk(t)− y`(t))
.

By the de Giorgi-Nash-Moser method, Caffarelli-Chan-Vasseur and
Erdős-Yau, this PDE is Hölder-continuous for t > N−1+ε, i.e.
δ`(t) = δ`+1(t) + O(N−1−ε), i.e. gap universality :

x`+1(t)− x`(t) = y`+1(t)− y`(t) + O(N−1−ε).

This is not enough for fixed energy universality.
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Second step : homogenization. The continuum-space analogue of our
parabolic equation is

∂tft(x) = (Kft)(x) :=

∫ 2

−2

ft(y)− ft(x)

(x− y)2
%(y)dy.

K is some type of higher order Hilbert transform.

Fact

Let f0 be a smooth continuous-space extension of δ(0) : f0(γ`) = δ`(0).
Then for any small τ > 0 (t = N−τ ) thre exists ε > 0 such that

δ`(t) =
(
etKf0

)
`

+ O(N−1−ε).

Proof. Rigidity of the eigenvalues and the Duhamel formula.
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Third step : the continuous-space kernel.

1. For the translation invariant equation

∂tgt(x) =

∫
R

gt(y)− gt(x)

(x− y)2
dy,

the fundamental solution is the Poisson kernel pt(x, y) = c t
t2+(x−y)2 .

2. For us, t will be close to 1, so the edge curvture cannot be neglected.
Fortunately, K can be fully diagonalized and (x = 2 cos θ, y = 2 cosφ)

kt(x, y) =
ct

|ei(θ+φ) − e−t/2|2|ei(θ−φ) − e−t/2|2
.

Called the Mehler kernel by Biane in free probability context, not
considered as a higher order Hilbert transform fundamental solution.

3. Explicit kernels can be obtained for all Bernstein-Szego measures,

%(x) =
cα,β(1− x2)1/2

(α2 + (1− β2)) + 2α(1 + β)x+ 4βx2
.
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Fourth step : from mesoscopic to microscopic. Homogenization yields

δ`(t) =

∫
kt(x, y)f0(y)%(y)dy + O(N−1−ε)

The LHS is microscopic-type of statistics, the RHS is mesoscopic. This
yields, up to negligible error,

Nx`(t) = Ny`(t)−Ψt(y0) + Ψt(x0),

where Ψt(x0) =
∑
h(Nτ (xi(0)− E)) for some smooth h. We wanted to

prove
E F̃ (xt, 0) = E F̃ (zt, 0) + o(1).

We reduced it to

E F̃ (yt,−Ψt(y0) + Ψt(x0)) = E F̃ (yt,Ψt(y0) + Ψt(z0)) + o(1).

The observables Ψt(y0), Ψt(x0) and Ψt(z0) are mesoscopic and
independent, while xt and zt are microscopic and dependent.
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Fifth step and conclusion : CLT for GOE beyond the natural
scale. Do Ψt(x0) and Ψt(y0) have the same distribution ? No, their
variance depend on their fourth moment.

A stronger result holds : E F̃ (yt,−Ψt(y0) + c) does not depend on c.

We know that E F̃ (yt,−Ψt(y0) + Ψt(z0) + c) = E F̃ (yt,−Ψt(y0) + Ψt(z0)).

Exercise

Let X be a random variable. If E g(X + c) = 0 for all c, is it true that
g ≡ 0 ?

Not always. But true if X is Gaussian (by Fourier).

Lemma

E
(
eiλΨt(z(0))

)
= e−

λ2

2 τ logN + O(N−1/100).

The proof uses algebraic ideas of Johansson and rigidity of β-ensembles
(with Erdős and Yau).

By Parseval, proof when the support of F̂ has size 1/
√
τ . This is why DBM

needs to be run till time almost 1.
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Homogenization of the Dyson Brownian Motion allows to access
microscopic statistics from mesoscopic ones.

1. Universality at fixed energy.

2. Eigenvalues fluctuate like a Gaussian Log-correlated field.

3. Eigenvectors perturbations in a non-perturbative regime.

Some problems about microscopic statistics of random matrices :

1. Are extreme gaps and extreme deviations universal ?

2. Log-correlated field for β-ensembles ?

A major problem in the field now : beyond the mean-field case, universality
for sparse+geometry-dependent models of random matrices, approaching
random Schrödinger operators.
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