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The notion of tree entropy was introduced by the author as a normalized limit of the

number of spanning trees in finite graphs, but is defined on random infinite rooted graphs.

We give some new expressions for tree entropy; one uses Fuglede–Kadison determinants,

while another uses effective resistance. We use the latter to prove that tree entropy respects

stochastic domination. We also prove that tree entropy is non-negative in the unweighted

case, a special case of which establishes Lück’s Determinant Conjecture for Cayley-graph

Laplacians. We use techniques from the theory of operators affiliated to von Neumann

algebras.

1. Introduction

The enumeration of spanning trees in a finite graph is a classical subject dating to the

mid-nineteenth century. Asymptotics began to play a role over 100 years later, in the

1960s. When a sequence of finite graphs converges in an appropriate, but very general,

sense, Lyons [11] gave a formula for the limit of the numbers of spanning trees in that

sequence of graphs, when normalized appropriately. This limit was called the tree entropy

of the corresponding limit object, which was a probability measure on rooted infinite

graphs.

This new concept of tree entropy allowed Lyons [11] to give simple proofs of known

limits and inequalities, as well as to resolve an open question of McKay [13] and to

easily calculate new limits. Here, we give some new expressions for tree entropy, in part

correcting some mistakes in [11]. Tools we use from the theory of operators affiliated to

von Neumann algebras were not available at the time that [11] was written. The new

tools also enable us to obtain cleaner results with weaker hypotheses. Furthermore, we are
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able to extend an inequality from [11] that compares the tree entropies of two probability

measures when one stochastically dominates the other.

The notion of tree entropy extends to weighted graphs, but the case of unweighted

graphs is, of course, particularly interesting. Using our new representation, we prove that

the tree entropy is non-negative for unweighted graphs, which is not at all obvious from

the definition or from any of its representations. In fact, the special case of Cayley graphs

establishes Lück’s Determinant Conjecture for the graph Laplacian.

We give the details of the results of Lyons [11] referred to above and then some

background on von Neumann algebras and Fuglede–Kadison determinants in Section 2.

We prove that tree entropy is the logarithm of a Fuglede–Kadison determinant in The-

orem 3.1. This is used to represent tree entropy with effective resistances in Theorem 3.3.

Combined with Rayleigh’s monotonicity principle, this representation has the immediate

consequence that stochastic domination implies tree entropy domination, Theorem 3.2.

This consequence is then combined with information about wired uniform spanning

forests to prove in Theorem 3.4 that tree entropy is non-negative for unweighted graphs.

2. Background

In order to define the notion of convergence of finite graphs used by Lyons [11] that

we referred to, we first recall the following definitions. A rooted graph (G, o) is a graph

G with a distinguished vertex o of G, called the root. A rooted isomorphism of rooted

graphs is an isomorphism of the underlying graphs that takes the root of one to the

root of the other. Given a positive integer R, a finite rooted graph H , and a probability

distribution ρ on rooted graphs, let p(R,H, ρ) denote the probability that H is rooted

isomorphic to the ball of radius R about the root of a graph chosen with distribution

ρ. For a finite graph G, let U(G) denote the distribution of rooted graphs obtained by

choosing a uniform random vertex of G as root of G. Suppose that 〈Gn〉 is a sequence of

finite graphs and that ρ is a probability measure on rooted infinite graphs. We say the

random weak limit of 〈Gn〉 is ρ if, for any positive integer R and any finite graph H , we

have limn→∞ p
(
R,H,U(Gn)

)
= p(R,H, ρ). This notion was introduced by Benjamini and

Schramm [2]. More generally, if Gn are random finite graphs, then we say the random

weak limit of 〈Gn〉 is ρ if, for any positive integer R, any finite graph H , and any ε > 0,

we have limn→∞ P
[
|p

(
R,H,U(Gn)

)
− p(R,H, ρ)| > ε

]
= 0. Note that only the component

of the root matters for convergence to ρ. Thus, we may and shall assume that ρ is

concentrated on connected graphs.

Recall from Lyons [11] that the tree entropy of a probability measure ρ on rooted

infinite graphs is

h(ρ) :=

∫ (
log degG(o) −

∑
k�1

1

k
pk(o;G)

)
dρ(G, o), (2.1)

where degG(o) is the degree of o in G and pk(o;G) is the probability that simple random

walk on G started at o is again at o after k steps. One of the main theorems of [11] was

Theorem 3.2, which states the following. Let τ(G) denote the number of spanning trees of

a graph G.
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Theorem 2.1. If Gn are finite connected graphs with bounded average degree whose random

weak limit is a probability measure ρ on infinite rooted graphs, then

lim
n→∞

1

|V(Gn)|
log τ(Gn) = h(ρ).

The same limit holds in probability when Gn are random with bounded expected average

degree.

In the case of regular graphs Gn with girth tending to infinity, the random weak

limit is a rooted regular tree (of the same degree); with additional hypotheses on Gn,

McKay [14] proved what amounts to the same limit as in Theorem 2.1 and asked whether

these additional hypotheses were needed. Theorem 2.1 shows that they are not. (Finer

asymptotics for the maximum number of spanning trees in finite regular graphs were

given by Chung and Yau [3].)

The class of probability measures ρ that arise as random weak limits of finite networks

is contained in the class of unimodular ρ, which we now define. They also include each

ρ that is concentrated on a single Cayley graph with a fixed root. For more details,

see Aldous and Lyons [1]. Since we shall use labelled graphs, i.e., networks, we make a

definition that includes them.

Definition. Let ρ be a probability measure on rooted networks. We call ρ unimodular if∫ ∑
x∈V(G)

f(G, o, x) dρ(G, o) =

∫ ∑
x∈V(G)

f(G, x, o) dρ(G, o),

for all non-negative Borel functions f on locally finite connected networks with an ordered

pair of distinguished vertices that is invariant in the sense that, for any (non-rooted)

network isomorphism γ of G and any x, y ∈ V(G), we have f(γG, γx, γy) = f(G, x, y),

We need the following finite von Neumann algebra from Section 5 of Aldous and

Lyons [1], to which we refer for more details. We also refer to Lyons [11] for more

background and motivation. Suppose that ρ is a unimodular probability measure on

(rooted isomorphism classes of) rooted (connected) networks. Consider the Hilbert space

H :=
∫ ⊕

�2
(
V(G)

)
dρ(G, o), a direct integral. Let T : (G, o) 	→ TG,o be a measurable assign-

ment of bounded linear operators TG,o : �2
(
V(G)

)
→ �2

(
V(G)

)
with finite supremum of

the norms ‖TG,o‖. Then T induces a bounded linear operator T := Tρ :=
∫ ⊕

TG,o dρ(G, o)

on H via

Tρ :

∫ ⊕
fG,o dρ(G, o) 	→

∫ ⊕
TG,ofG,o dρ(G, o).

The norm ‖Tρ‖ of Tρ is the ρ-essential supremum of ‖TG,o‖. Let Alg be the von Neumann

algebra of (ρ-equivalence classes of) such maps T that are equivariant in the sense that,

for all network isomorphisms φ : G1 → G2, all o1, x, y ∈ V(G1) and all o2 ∈ V(G2), we

have (TG1 ,o1
1{x}, 1{y}) = (TG2 ,o2

φ1{x}, φ1{y}). For T ∈ Alg, we have in particular that TG,o

depends on G but not on the root o, so we simplify our notation and write TG in place of

TG,o. Recall that if T is a self-adjoint operator on a Hilbert space H , we write T � 0 if
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(Tu, u) � 0 for all u ∈ H . As shown in Section 5 of Aldous and Lyons [1], the functional

Tr(T ) := Trρ(T ) := E
[
(TG1{o}, 1{o})

]
:=

∫
(TG1{o}, 1{o}) dρ(G, o)

is a trace on Alg, which is obviously finite. Write Alg for the set of closed densely defined

operators affiliated with Alg, i.e., those closed densely defined operators that commute

with all unitary operators that commute with Alg; see, e.g., Kadison and Ringrose [9,

p. 342].

The only networks we consider will be weighted graphs. Let G =
(
V(G),E(G), w

)
be a

graph with a positive weight function w : E(G) → (0,∞). For x �= y ∈ V(G), let ΔG(x, y) :=

−
∑

e w(e), where the sum is over all the edges between x and y, and ΔG(x, x) :=
∑

e w(e),

where the sum is over all non-loop edges incident to x. We assume that ΔG(x, x) < ∞ for

all x. An unweighted graph corresponds to w ≡ 1, in which case ΔG(x, x) is the degree

of x in G (not counting loops). The associated network random walk has the transition

probability from x to y of −ΔG(x, y)/ΔG(x, x); this is simple random walk in the case of

unweighted simple graphs. Let pk(o;G) be the probability that the network random walk

on G started at o is again at o after k steps. The extension from Lyons [11] of (2.1) to

weighted graphs is the following: the tree entropy of a probability measure ρ on rooted

weighted infinite graphs is

h(ρ) :=

∫ (
log ΔG(o, o) −

∑
k�1

1

k
pk(o;G)

)
dρ(G, o) (2.2)

whenever this integral converges (possibly to ±∞).

The (graph) Laplacian ΔG defined in the preceding paragraph determines an operator

f 	→
(
x 	→

∑
y∈V

ΔG(x, y)f(y)

)

on functions f : V(G) → C with finite support. This operator extends by continuity to a

bounded linear operator on all of �2
(
V(G)

)
when supx ΔG(x, x) < ∞. When

ρ- ess sup
(G,o)

sup
x∈V(G)

ΔG(x, x) < ∞, (2.3)

then (G, o) 	→ ΔG defines an operator Δ ∈ Alg(ρ). It is self-adjoint and positive semi-

definite, i.e., Δ � 0. However, if we do not have such a uniform bound as (2.3), we proceed

as follows. Let

D0 := {f ∈ H ; ∀(G, o) |suppfG,o| < ∞}.

The operator Δ is defined on the dense subspace D0, where it is symmetric. Let D be

the diagonal weighted degree operator on D0, i.e., DG(x, x) := ΔG(x, x) and DG(x, y) := 0

for x �= y. Its closure D is easily seen to be self-adjoint and affiliated with Alg. Let P be

the transition operator for the network random walk, which is obviously in Alg. Define

δ := D(I − P ); since D ∈ Alg and I − P ∈ Alg, it follows that δ ∈ Alg. We claim that Δ

is closeable and that δ = Δ. First, an easy calculation shows that δ and Δ agree on D0,

so that δ extends Δ. Since δ is closed, Δ is closeable. Therefore Δ ∈ Alg and, furthermore,

is self-adjoint by Lemma 16.4.1 of Murray and von Neumann [15] (which is the same
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as Exercise 6.9.53 of Kadison and Ringrose [10]). Since Δ ⊆ δ, it follows that Δ = δ by

Lemma 16.4.2 of [15] (or Exercise 6.9.54 of [10]). From now on, we omit the overlines

and write more simply D and Δ for their closures, D and Δ.

Let T ∈ Alg be a self-adjoint operator with spectral resolution ET . We define the Borel

measure μρ,T by

μρ,T (B) := Trρ
(
ET (B)

)
(2.4)

for Borel subsets B ⊆ R. We extend the trace by defining

Trρ(T ) :=

∫ ∞

0

λ dμρ,T (λ)

for positive operators T ∈ Alg and then by linearity to all of Alg when it makes sense.

Write |T | :=
√
T ∗T .

As in Haagerup and Schultz [8] (though with different notation), write DetAlg for the

set of T ∈ Alg for which

Trρ(log+ |T |) =

∫ ∞

0

log+ λ dμρ,|T |(λ) < ∞.

(The equality is justified by the functional calculus; see Theorem 5.6.26 of Kadison and

Ringrose [9].) For T ∈ DetAlg, we define its Fuglede–Kadison determinant by

Det(T ) := Detρ(T ) := exp

∫ ∞

0

log λ dμρ,|T |(λ) ∈ [0,∞). (2.5)

For example, for the diagonal weighted degree operator, D, its Fuglede–Kadison determ-

inant is the geometric-mean weighted degree of the root,

DetρD = exp

∫
logDG(o, o) dρ(G, o), (2.6)

provided this is < ∞; this can be seen either from the definition by using the fact that

μρ,D is the law of DG(o, o), or alternatively by truncation of D and Fubini’s theorem.

3. Tree entropy

We now give two new representations of tree entropy and two consequences. The first

representation is as the logarithm of a Fuglede–Kadison determinant.

Theorem 3.1. If ρ is a unimodular probability measure on rooted weighted connected infinite

graphs with ∫
logDG(o, o) dρ(G, o) ∈ [−∞,∞), (3.1)

then

h(ρ) = log DetρΔ ∈ [−∞,∞). (3.2)
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Proof. The hypothesis is equivalent to D ∈ DetAlg. Since I − P ∈ Alg ⊆ DetAlg, it

follows that Δ = D(I − P ) ∈ DetAlg with

Det Δ = DetD · Det(I − P ) (3.3)

by Proposition 2.5 of Haagerup and Schultz [8] (which extends the fundamental theorem of

Fuglede and Kadison [7] to unbounded operators, as well as to non-invertible operators).

Since ‖P‖ � 1, we have for 0 < c < 1 that log |I − cP | � (log 2)I . Also, |I − cP | →
|I − P | in the strong operator topology as c ↑ 1, whence log |I − cP | → log |I − P | in the

measure topology (for its definition, see Fack and Kosaki [6, §1.5]). Thus,

Det(I − P ) = lim
c↑1

Det(I − cP )

by the Monotone Convergence Theorem; see, e.g., Fack and Kosaki [6, Theorem 3.5(ii)].

On the other hand, for 0 < c < 1,

log Det(I − cP ) = �Tr log(I − cP )

by Theorem 1 (2o) of Fuglede and Kadison [7] (or Theorem I.6.10 of Dixmier [4]) and

log(I − cP ) = −
∑
k�1

ckP k/k

(in the norm topology). Therefore,

log Det(I − cP ) = −
∑
k�1

�Trρc
kP k/k = −

∑
k�1

Trρc
kP k/k,

whose limit as c ↑ 1 is

−
∑
k�1

TrρP
k/k =

∫
−

∑
k�1

1

k
pk(o;G) dρ(G, o) (3.4)

by the Monotone Convergence Theorem. Comparing (2.2) with equations (3.3), (2.6), and

(3.4), we deduce the equality in (3.2).

Remark. The version of this theorem given in Lyons [11] was incorrect even in the case of

unweighted graphs, except when the degrees were bounded. For example, in the notation

used there, whenever the degrees are unbounded, one gets ΔGM
(o, o) = 0 with positive

probability, which means that Detρ(ΔGM
) = 0. However, unbounded-degree graphs are

quite natural, arising, for example, as limits of random finite graphs. In addition to that

mistake, stronger hypotheses were assumed, which we now see to be superfluous, and the

conclusion was less appealing, being expressed as a double limit.

An example of a unimodular probability measure ρ satisfying not only (3.1), but even

the stronger ∫
| logDG(o, o)| dρ(G, o) < ∞, (3.5)

yet with h(ρ) = −∞ is the following. We work on the nearest-neighbour graph of the

integers, Z, rooted at 0. Define the weight to be 1 of every edge of the form (2n, 2n + 1)
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for n ∈ Z. Let X be an integer-valued random variable such that P[X � m] = 1/
√
m for

m � 1. Let Xn be i.i.d. copies of X for n ∈ Z and let the weight be e−Xn of the edge

(2n − 1, 2n). Define ρ to be the resulting measure on rooted weighted graphs. (In fact, ρ

is defined on rooted isomorphism classes of networks, so that one does not notice the

difference between ‘even’ and ‘odd’ edges.) By Theorem 3.2 of Aldous and Lyons [1], ρ is

unimodular. Since ∫
| logDZ(0, 0)| dρ = E[log(1 + e−X)],

(3.5) is clearly satisfied. On the other hand, it is easy to see that there are constants

c1, c2 > 0 such that p2k(0; Z) � c1 for 1 � k � exp min{X0, X1}, whence

∑
k�1

1

k
pk(0; Z) � c2 min{X0, X1}.

Therefore ∫ ∑
k�1

1

k
pk(0; Z) dρ � c2E[min{X0, X1}] = c2

∑
m�1

P[X0 � m]2 = ∞.

A small, but significant, extension of Theorem 4.2 of Lyons [11] is as follows. Let

(G1, o1, w1) and (G2, o2, w2) be two rooted weighted graphs. Say that (G1, o1, w1) dominates

(G2, o2, w2) if there is a graph isomorphism φ from G2 to a subgraph of G1 that takes o2 to

o1, and such that, for all e ∈ E(G2), we have w2(e) � w1

(
φ(e)

)
. This notion is a partial order

on rooted weighted graphs and we use the usual notion of stochastic domination that

corresponds to it. That is, if ρ1 and ρ2 are two probability measures on rooted weighted

graphs, say that ρ1 stochastically dominates ρ2 if there exists a probability measure ν

on pairs ((G1, o1, w1), (G2, o2, w2)) such that the ν-law of (Gi, oi, wi) is ρi for i = 1, 2 and

(G1, o1, w1) dominates (G2, o2, w2) ν-a.s.

Theorem 3.2. If ρ1 �= ρ2 are unimodular probability measures on rooted weighted connected

infinite graphs that both satisfy (3.1) and ρ1 stochastically dominates ρ2, then h(ρ1) > h(ρ2).

The proof of the corresponding result, Theorem 4.2, in [11] was in fact not complete.

We give a more direct proof here based on a different approach. In addition, Theorem 4.2

of [11] assumed (3.5) in place of our hypothesis (3.1) and also assumed a further bound.

The significance of our extension is that Theorem 4.2 of [11] required the two probability

measures ρi to be coupled on the same graphs, differing only in their edge weights. This

makes it impossible to handle naturally occurring stochastic domination situations, such

as those occurring for limits of random finite graphs. Thus, the present result can

answer a question of [11] concerning the giant component in the Erdős–Rényi model of

random graphs, provided one can show stochastic domination of Poisson–Galton–Watson

measures conditioned on survival. Indeed, this domination was proved by Lyons, Peled

and Schramm [12].

To prove Theorem 3.2, we rely on an entirely new representation of tree entropy. Given

a network G, one of its vertices x, and a positive number s, let R(G, x, s) be the effective

resistance between x and infinity in the network Gs formed from G by adding an edge
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of conductance s between every vertex and infinity, where ∞ is also a vertex of Gs. To

be more precise, consider an exhaustion of G by finite subnetworks Gn. Let Hn be the

network formed from G by identifying all vertices outside Gn to a single vertex zn and

then adding an edge of conductance s between each vertex of Gn and zn. For large enough

n, we have that x ∈ V(Gn), so that we may define the effective resistance R(x ↔ zn;Hn)

between x and zn in Hn. These effective resistances have a limit, which we are calling

R(G, x, s).

Our second representation of tree entropy is in terms of electrical resistance.

Theorem 3.3. If ρ is a unimodular probability measure on rooted weighted infinite graphs

that satisfies (3.1), then

h(ρ) =

∫ ∞

0

(
s

1 + s2
−

∫
R(G, o, s) dρ(G, o)

)
ds. (3.6)

Remark. Although one might ask, from comparing (2.2) and (3.6), whether, for every

network (G, o), we have

logDG(o, o) −
∑
k�1

1

k
pk(o;G)

?
=

∫ ∞

0

(
s

1 + s2
− R(G, o, s)

)
ds, (3.7)

this is not true. Thus, Theorem 3.3 depends crucially on the assumption that ρ is

unimodular. One can show, however, that (3.7) does hold for every regular graph G. If

d := DG(o, o), then one can show that R(G, o, s) equals the expected number of visits to o

divided by d + s, which equals
∑

k�0 pk(o;G)dk/(d + s)k+1. This gives that

∫ ∞

0

(
R(G, o, s) − 1/(d + s)

)
ds =

∑
k�1

pk(o;G)/k.

Combining this with (3.8) below gives the result.

Remark. One might also ask whether tree entropy increases under stochastic domination

regardless of the unimodularity of ρ. This is not the case, however. For example, consider

ρ1 to be the measure concentrated on the fixed graph where the root has degree 1, its

neighbour has degree 2, and the neighbour of the root’s neighbour has attached a tree

of very large degree. Let ρ2 be the measure concentrated on the same graph to which

has been adjoined a loop at the root. Then a straightforward calculation shows that

h(ρ1) > h(ρ2), even though ρ2 � ρ1.

Proof of Theorem 3.3. For λ > 0, a well-known identity states that

log λ =

∫ ∞

0

(
s

1 + s2
− 1

λ + s

)
ds. (3.8)

Also, we have the lesser-known identity

1

2
log(1 + λ2) =

∫ ∞

0

(
s

1 + s2
− 1

λ + s

)+

ds. (3.9)
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Since Δ � 0, the fact that h(ρ) < ∞ (by Theorem 3.1) implies that∫ ∞

0

log(1 + λ2) dμρ,Δ(λ) < ∞ (3.10)

by (3.2) and (2.5).

For s > 0, note that (Δ + sI)−1 ∈ Alg since Δ � 0 and define vs :=
(
ΔG + sI

)−1
1{o} on

V(G). We claim that
(
vs, 1{o}

)
= vs(o) = R(G, o, s). Indeed, the invertibility of Δ + sI tells

us that vs is the unique function on V(G) that satisfies (Δ + sI)vs = 1{o}. Since one such

function is the limit of the voltage functions vs,n corresponding to the unit current flows on

Hn from o to zn, it follows that vs = limn→∞ vs,n. Since vs,n(o) = R(o ↔ zn;Hn), we obtain

the claim. Hence

Trρ
(
(Δ + sI)−1

)
=

∫
R(G, o, s) dρ(G, o). (3.11)

On the other hand,

(Δ + sI)−1 =

∫ ∞

0

(λ + s)−1dEΔ(λ),

so that

Trρ
(
(Δ + sI)−1

)
=

∫ ∞

0

(λ + s)−1dμρ,Δ(λ). (3.12)

Therefore, we have

h(ρ) =

∫ ∞

0

log λ dμρ,Δ(λ) =

∫ ∞

0

∫ ∞

0

(
s

1 + s2
− 1

λ + s

)
ds dμρ,Δ(λ)

=

∫ ∞

0

∫ ∞

0

(
s

1 + s2
− 1

λ + s

)
dμρ,Δ(λ) ds

=

∫ ∞

0

(
s

1 + s2
− Trρ(Δ + sI)−1

)
ds

=

∫ ∞

0

(
s

1 + s2
−

∫
R(G, o, s) dρ(G, o)

)
ds;

we have used (3.2) and (2.5) in the first equality; (3.8) in the second; (3.9), (3.10), and the

Fubini–Tonelli theorem in the third; (2.4) and (3.12) in the fourth; and (3.11) in the fifth.

Theorem 3.2 follows immediately by Rayleigh’s monotonicity principle. Indeed, that

principle gives us that when (G1, w1, o1) dominates (G2, w2, o2), then

R(G1, o1, s) � R(G2, o2, s)

for all s > 0, where the edge conductances are understood but not notated in this

inequality.

Theorem 3.4. If ρ is a unimodular probability measure on rooted infinite (unweighted )

graphs that satisfies (3.1), then h(ρ) � 0, with equality if and only if
∫
DG(o, o) dρ(G, o) = 2

if and only if ρ-a.s. G is a locally finite tree with 1 or 2 ends.
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Proof. By Proposition 7.1 of Aldous and Lyons [1], the root in the wired uniform

spanning forest of ρ, denoted WUSF(ρ), has expected degree 2, whence, by Theorem 6.2 of

[1], the unimodular probability measure WUSF(ρ) is concentrated on trees with at most

2 ends. This implies that WUSF(ρ) is amenable by Corollary 8.9 of [1], whence is the

random weak limit of finite trees. Of course, finite trees have average degree less than 2. By

Theorem 3.2 of Lyons [11], this means that h
(
WUSF(ρ)

)
= 0. Since ρ clearly stochastically

dominates WUSF(ρ), it follows by Theorem 3.2 that h(ρ) � 0. The equality condition also

follows from Theorem 3.2 and the above argument, combined with Theorem 6.2 of [1]

again.

Remark. Proposition 4.3 and Theorem 4.4 in Lyons [11] stated the same results as

Theorem 3.4, though with an hypothesis far stronger than (3.1). However, the proofs

relied on a result in a preliminary version of Aldous and Lyons [1], whose proof was

incorrect.

In the special case that ρ is concentrated on a fixed Cayley graph G, then Theorem 3.4

says that Det ΔG � 1. This establishes a special case of Lück’s Determinant Conjecture,

which says that for every group Γ and for every positive self-adjoint finite matrix over the

group ring ZΓ, its Fuglede–Kadison determinant is at least 1; see, e.g., Elek and Szabó [5].

A consequence of Theorem 3.2 is that the set of measures of fixed tree entropy and

satisfying (3.1) form an anti-chain (no two are comparable in the stochastic domination

order). In the special case of tree entropy 0, if we combine this with Theorem 3.4, then

we obtain that the measures on trees with at most 2 ends and satisfying (3.1) form an

anti-chain.

Corollary 3.5. If ρ1 and ρ2 are unimodular probability measures on rooted unweighted

infinite trees with at most two ends, both measures satisfy (3.1), and ρ1 stochastically

dominates ρ2, then ρ1 = ρ2.
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