
Random Trees and Surfaces

by Russell Lyons

(Indiana University, visiting Microsoft Research)

1



Uniform Spanning Trees

Algorithm of Aldous (1990) and Broder (1989): if you start a simple random walk at
any vertex of a graph G and draw every edge it traverses except when it would complete
a cycle (i.e., except when it arrives at a previously-visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn is a uniformly chosen
spanning tree of G.
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Maze and Duality
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Distance to Corner
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Conjectures

Known: The maximum height in an n× n square is about n5/4 by a result of Barlow
and Masson (2010), which extends earlier work of Kenyon (2000) and predictions of
Guttmann and Bursill (1990), Duplantier (1992) and Majumdar (1992).

The distance in the UST between lattice neighbors is of order k (i.e., up to a con-
stant multiple) with probability about k−3/5 by results of Masson (2009), following a
prediction of Manna, Dhar, and Majumdar (1992).

Believed: Call an edge (x, y) a cliff if the height difference between x and y is large,
with the height of the cliff equal to that difference.

The highest cliffs should have height around n5/4 and they should have length around
n5/4. More generally, it seems to me that cliffs of height roughly na occur for about
n2−3a/5 edges. Here, 0 ≤ a ≤ 5/4.

In addition, based on another prediction of Manna, Dhar, and Majumdar (1992), I
think that the length of a connected component of cliffs (here, connected means by
using the dual edges to the cliffs) of height roughly na should be at least about na.
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The torus:
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Distance to Cycles
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Distance to Cycles
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duality in Z3
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Determinantal Measures

If E is finite and H ⊆ `2(E) is a subspace, it defines the determinantal measure

∀T ⊆ E with |T | = dim H PH(T ) := det[PH ]T ,T ,

where the subscript T , T indicates the submatrix whose rows and columns belong to
T . This representation has a useful extension, namely,

∀D ⊆ E PH [D ⊆ T ] = det[PH ]D,D .
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Trees, Forests, and Determinants

Let G = (V, E) be a finite graph. Choose one orientation for each edge e ∈ E. Let
F = B1(G) denote the subspace in `2(E) spanned by the stars (coboundaries) and let
♦ = Z1(G) denote the subspace spanned by the cycles. Then `2(E) = F⊕♦.

For a finite graph, Burton and Pemantle (1993) showed that the uniform spanning
tree is the determinantal measure corresponding to orthogonal projection on F = ♦⊥.
(Precursors due to Kirchhoff (1847) and Brooks, Smith, Stone, and Tutte (1940).)
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CW-Complexes

How do we extend the foregoing to higher dimensions? The higher-dimensional ana-
logue of a graph is a CW-complex. A CW-complex is formed by sticking together
cells:

(T. Robb via Mathematica)
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Sándor Kabai and Lajos Szilassi via Mathematica
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From Cayley to Kalai

What is the analogue of a spanning tree?

Cayley (1889) showed that the number of spanning trees in a complete graph on n

vertices is nn−2. Cayley’s theorem was extended to higher dimensions by Kalai (1983),
who showed that a certain enumeration of k-dimensional subcomplexes in a simplex on
n vertices resulted in

n

(
n−2

k

)
.

Kalai did not look at it this way, but we take the defining property of a spanning tree
to be its property as a base of the graphical matroid, i.e., maximal without cycles.
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Chain Groups and Bases for Finite CW-Complexes

Consider each cell of a CW-complex X to be oriented (except the 0-cells). Write ΞkX

for the set of k-cells of X. Identify cells with the corresponding basis elements of the
chain and cochain groups, so that ΞkX forms a basis of Ck(X;R) and Ck(X;R). The
boundary map

∂k : Ck(X;R) → Ck−1(X;R)

has kernel Zk(X;R) and image Bk−1(X;R), while the coboundary map

δk = ∂∗k+1 : Ck(X;R) → Ck+1(X;R)

has kernel Zk(X;R) and image Bk+1(X;R).

Given a finite CW-complex X and a subset T ⊆ ΞkX of its k-cells, write XT for the
subcomplex

XT := T ∪
k−1⋃

j=0

ΞjX

We call T a k-base if it is maximal with Zk(XT ) = 0.
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Lower Matroidal Measures

Let X be a finite CW-complex. The determinantal probability measure Pk on the set
of k-bases defined by orthogonal projection of Ck(X) onto the space of coboundaries
Bk(X) = Zk(X)⊥ is called the kth lower matroidal measure on X. If X is
connected, then P1 is the law of the uniform spanning tree of the 1-skeleton of X. Let
tj(T ) denote the order of the torsion subgroup of Hj(XT ;Z) := Zj(XT ;Z)/Bj(XT ;Z).

Proposition. Let X be a finite CW-complex. For each k, there exists ak such that
for all k-bases T of X,

Pk(T ) = aktk−1(T )2 .

The theorem of Kalai (1983) is that when X is an (n − 1)-dimensional simplex and
1 ≤ k ≤ n− 1,

∑

T

tk−1(T )2 = n

(
n−2

k

)
,

where the sum is over all k-bases of X.
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Example

Simplex on 6 vertices contains the projective plane, whose first homology group is Z2:

The projective plane can be embedded in R4.
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Upper Matroidal Measures

Another natural probability measure Pk on subsets of ΞkX is the determinantal prob-
ability measure corresponding to the subspace of k-cocycles, Zk(X) = Bk(X)⊥. We
call this measure the kth upper matroidal measure on X. Since Bk(X) ⊆ Zk(X),
it follows that the upper measure Pk stochastically dominates the lower measure Pk,
with equality iff Hk(X;R) = 0. As usual, let bk(X) denote the kth Betti number of X,
the dimension of Hk(X;R). One can add bk(X) k-cells to a sample from Pk to get a
sample from Pk.

Topological invariants for X reside in the difference between the measures.
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