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ABSTRACT

Let R denote the class of ggmplex Borel measures on
the circle T whose Fourier-Stieltjes coefficients G(n)
tend to 0 as [n} » » . Ju. A. Srefder has defined a
class of subsets of M, called W-sets , using the notion
of asymptotic distribution., Our central result is that a
measure lieg in R if and only if pE = 0 for all
W-sets E . This establishes a claim of Sreider. Rajchman
conjectured that p e R if and only if upuE = 0 for all
H-sets E and Kahane and Salem made a similar conjecture
about non-normal sets. Both of these conjectures are shown
to be false. Similar questions are.investigated for Helson
sets and weak Dirichlet sets.

The characterization of R stated above extends to
locally compact abelian groups. A consequence is that
every measure u may be split uniquely as yp = up + My o

where Mg € R , uy belongs to a class J , and “R'L My .

Any Riesz product on a compact abelian group lies purely
in R or purely in J . Infinite convolutions of discrete
probability measures also have this purity property, which

extends the Jessen-Wintner purity law.
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CHAPTER 1

INTRODUCTION

1. The Question

Let 1R denote the real numbers, 7% the integers, and
T = R/Z the unit circle. The Riemann-Lebesgue lemma
states that the Fourier coefficients

Tn) = [ 72Nt g(y)ay
™
of a Lebesgue-integrable function f tendvto 0 as
|n| + = , On the other hand, Wiener's theorem (Katznelson

[1, p. 42)) implies that if the Fourier-Stieltjes coeffi-

clients

Bn) = [ o72mint gy(¢)
o
of a complex Borel measure yu tend to 0 as |n|] + o ,

then p 1is continuous. If we use the Radon-Nikodym

Theorem, we may restate the Riemann-Lebesgue lemma as

ifollows: if u is absolutely continuous (with respect to

measure), then fi(n) » 0 as Inf + = . We

restate these results once again as

LY

THEOREM 1.1. If u places no mass on the sets of

A
Lebesgue measure zero, then 1(n) + 0 as |n| +

Converseljz if %(n) + 0 as fn] + ©» , then u places

no mass on the countable sets.

Is there some class of sets € such that f(n) +» 0
Af and only if u puts no mass on the sets in € ? Such
a class should be intermediate between the countable sets

and the seta of Lebesgue measure zero. The question of

whether C exists is the central question of this work.

Mensov {1]), in 1916, was the first to construct a
singular measure yu whose Fourier-Stieltjes coefficients
tend to 0 . It follows that we cannot take C to be the
class of Lebesgue-measure-zero sets. 1In 1918, F. Riesz [1]
constructed his "Riesz products" and showed them to be
continuous measures whose Fourler-Stieltjes coefficients
do not necessarily tend to 0

« Thus, C cannot be taken
to be the countable gets.

Let us introduce some notation to facilitate further

discussion.

NOTATION. The set of all (finite) complex Borel measures
on T is denoted M(T) . The subset of ne M(M) for
which ji(n) + 0 aﬁ In| + ® 18 denoted Mo(ﬂﬁ or R ;
such measures are called Rajchman measures. The class of -
all Borel sets E such that WE = 0 for all "pe R will

be denoted U, ; they are called

A U,-sets (see also

Seetion IV.2),




pqguaé seta ébfuin' 'Uo are known as
otation “wRv' 'is aue to Zygmund (1, II,
el . .
1a$cléarwthat if any class C characterizing R
xiatq.vﬁhén € can be taken té be U, . Moreover, we
d. only have to show that if WE =0 for all E @ U,
e ﬁ}.ifﬁOWSVer}:fhis approach to attacking the
questio does not provide & useful starting point since we
_jkndw‘hbthing about U, except the definition., Thus, the
éénjectures that have been made about which classes C
might work are in terms of sets with certain specified
- structure. We begin with a conjecture of Rajchmap himself.
Rajchman realized the importance of R to the study
of sets of uniqueness for Fourier series (Sections III.8
and IV.2). He introduced in 1922 {1]) an important new
class of sets of uniqueness called H-sets (Section I1.2).
He also made the conjecture (see Bari [1, pp. 85-861]) that
C can be taken to be the clgss of H-sets . He showed
that H-sets do belong to ho » but he could not show that,
conversely, if wE =0 for all E €H , then upeRr .
In 1947, §re;der claimed to have proved that Rajchman's
conjecture was correct (see Bari {1, pp. 85-86] and
gre;her {11), but no proof was published. Apparently, he
later changed his mind, because in 1950, he published a

new claim (without mentioning his earlier c¢laim),

In greider [2], he claimed that C€ can be taken to be the
class-of W-sets (Section I1.2). While he gave some
indications of a proof, no full proof ever did appear.

In 1963, Kahane and Salem [1] and Kshane [1} stated
that they had not been able to deg}de whether the class
of W*-gets (Section II.2) belongs to U, - R.C. Baker
[1, p. 32) interpreted this as a conjecture and attempted
to prove it (Baker [1, 2]; see also Section 111.4). It
turns out (Section II.4) that if uE = 0 for all
W*-gets E , then p €eR ., Hence, the Kahane-Salenm
"conjecture" is équivalent to the conjecture that ¢

may be taken to be W .




oy
2. The Answers ) is devoted to this case. We prefer to concentrate on T,
i v v . since it is there that most of the ideas appear and also
Sreider's claim about W-gets 1is correct (Section III.
because it is the most important case.
| 2 hile Rajch ' onjectu H-set d Kahane- ;
% . o © Rajehman's conjecture on ebs an anane A list of some open questions appears in the Appendix.
- Salem's on W#*-sets are incorrect (Sections III.8 and
i . ‘v
i I11.6). Thus Rajchman measures are indeed characterized '

] by their common null sets (i.e. Uo) .

The proofs of these and similar results often involve

some analysis of diophantine inequalities. This stems

from the fact that the classes of sets themselves, H

> W, and W# , are defined using notions from diophantine

approximation, specifically, the notions of asymptotic

distribution. Full definitions of these concepts are given
in Chapter II. i
One consequence of our result is a new direct sum
decomposition of the measure algebra M(W)=R & J
; (Section IV.1). For Riesz products and certain infinite
) ;onvolutiona of measures, we can prove "purity" theorems
"rélated to this decomposition (Sections IV.4 and IV.3).

;For example, a Riessz product'must belong purely to R

Looking beyond the circle to the general case of

s localiy compact abelian.groups, we may ask the same question




3. Basic Notation

We ahail usually think of T as R/Z , but some-
times it is convenient to identify T with the interval
[0,1) (including O but excluding 1 ). 1In Chapter IV,
half the time M will be identified as ®R/Z and the
other half as {z € £: |z] = 1} , where € 1is the set of

- complex numbers. In all cases, m denotes normalized

Lebesgue measure, so that |lm||=1 on R/Z as well as on
{lz] =1}, In the latter case, Fourler-Stieltjes transforns
are defined without the 2n in the exponent:

3(n) =] z " av(z) .
lzl=1
However, this will never appear explieitly. In general,

we will use the 27 and make use of the notation
Z e .

Other notation is as follows: @ denotes the
rational numbers or the rational subset of T . N denotes
the non-negative integers an'd z*t the positive integers.
For a set E , §JE denotes the cardinality of E . The
complement of a set E 1is denoted E® . Often mI 1is
denoted |If if I is an arc of M. We say that p is
concentrated on E if |u|(E) = ||| . If E is the

smallest closed set on which p is concentrated, then

E 1s called the support of u . We could work almost

entirgly with closed sets in all that follows without

significagt change. However, it is unnatural to (io so,

and so we will rarely speak of the "support" of a measure.
The space of continuous complex-valued functions

on a topological space X is d_:anoted C(X) . The space

of continuous functions on R vanishing at infinity

is denoted Co(]R) . For any set E » Xg denotes the

characteristic (indicator) function of E . If pn € M(m),

then u|E denotes the measure

“(ulE) (F) = w(EnF) .




13 167n},see also [2, pp. 158-1591) says only that

ajchman raised the question. She does not say that

CHAPTER II

SETS OF ASYMPTOTIC DISTRIBUTION

1. Asymptotic Distribution .

Consider a sequence of points (xn)? on the circle
T . We wish to say something about the manner in which
(xn) lies in M., One obvious question is whether (xn)
is dense in M . This property depends on the set (xn],
bu£ not on the order in which the points appear. Thus,
to go beyond density, we may enquire about the limiting
behavior of the first N points {xn}%_ ag N + o ,
i.e., the asymptotic behavior of {xnfg_f Here, a
fundamental question is whether the.sequence is distributed

uniformly in T . This means that for any are ICT

13

o §#(n<h|x, eI} =al;

N+

if so, we say {xn)w is uniformly distributed, or

equidistributed (Weyl [1,2]). One way this could fail is

if there is sBome arc I such that

TIm ¢ # (n <N |x €1I)<nl ;

N-hn

then we say {xn} is badly distributed (Kahane and Salem

f11). A special case is if (xn} is Weyl-digtributed
v v .
(Sreider [2]), i.e., there exists a probability: measure

v£#m on T such that for every arc I whose endpoints

10
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are not mass-points of v (we call such arcs admisgible

for v ),

1
ng #(nN |x €I} = vI .

N4+

In general, if {xn} is either uniformly distributed or
Weyl-distributed, we say {xn) has an asymptotic distri-
bution and we write {xn)hlv if v is the limiting

distribution. These four properties of a sequence, namely,

whether it is dense, uniformly distributed, badly distri-
buted, or Weyl distributed, will correspond to the four
types of sets of asymptotic distribution which we will
be investigating. These are, respectively, H-sets ,
non-normal sets (W¥-gets) , abnormal sets (A-sets) ,
and Weyl sets (W-sets) .

Given a point x € M , we may form the sequence
(nx):=1 . If x is‘rational. then clearly {nx} is
Weyl-distributed; the limiting distribution is

q- cLo
% £ &(k/q) , where &(y) is the unit mass at y and
k=0 . ’
x = p/q 1in lowest terms. If x 1is irrational, then
{nx} 1is unifofmlj distributed. As Weyl [1] showed,
this easlly follows from the following criterion for

uniform distribution (Weyl [1]).

THEOREM 1.1 (Weyl's Criterion). Let (xn}; cm .,
The following are equivalent: .

(1) [xn] is uniformly distributed.

12

(ii) For every bounded Riemann-integrable £ on ™,

N
1lim I
N+ n=

=

L f(xn) = / £ dm . .
T )

(iii) For every non-gzero integer k ,
N -

L .
limg | elkx) =0.
N-+oo N n=1 n

Theorem 1.1 is a special case of the following more
general criterion for asymptotic distribution. Although
not proved by Weyl himself, it still goes by his name.

THEOREM 1.2 (Weyl's Criterion). Let (xn};’cn‘ .
The following are equivalent:
(1) {xn)h‘v .
(1i) TFor every bounded function f which is Riemann-
Stielt jes integrable with respect to v o,

N
(1.1) 1md §o£(xy) =/ £ dv .
Moo ¥ nZ1 - .

(iii) For every k € Z ,

lim & '{ ok x.) = $(.K)
Now ¥ n=) n

Furthermore, (xn} has an asymptotic distribution if and
only if

lim 1
N+ n=1

=}
o~

e(k xn)

exiats for every k € Z .,

R
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We are using the following

DEFINITION. Let v € M(T). A step function g on T
is called admissible for v if the points where g is

discontinuous are not mass-points of v . A bounded

function f is said to be Riemann-Stieltjes integrable

with respect to v if for all e > 0 » there exist
admissible step functions g and h . such that

(1) g<f<h,

(11)  f(n-g) dlv] < e .

:It:is not hard to show that f is Riemann-Stielt jes
tégrable with respeet to v if and only if the set of

he sequel, we shall not use the equivalence (ii)
Eriierion.

S0 S PR
owioutline. the pr

oof of this most important theorem.
1 C

at (1) 1 ‘équivaleﬁt to
T T S .
ery arg. I

1Admissible for v

14

I,

step functions f . Hence (1.1) holds for Riemann-Stieltjes
integrable functions £ .

Conversely, i} (ii) holds and I is any admissible
arc for v, then clearly X1 is R}emann—stieltjes
integrable, whence we deduce (iv) (hence (1)).

Now every f € C(M) 1is uniformly approximable by
admissible step functions for a given v . Therefore
continuous functions are Riemann-Stielt jes integrable,
Furﬁhermore, it is easy to see that (ii) holds if and only
if (1.1) holds for all f € G(M) . Therefora, (ii) is

equivalent to

1 N
v) § nzl 6{x ) » v

in the weak# topology of M(T) .. (Recall that M{T)
1s the Banach-space dual of C(Tr) .)

Let us denote

VN-

N~ 22

1
i L 6(xn) .
Since HvNII =fv]} =1, Vy * v weak®* if and only if
V() » (k) for all k . (This follows from (1.1) first
by using f£(t) = e(-kt) and conversely by the fact that
trigonometric polynomials are dense in C(ﬁd .) Thus
(11) <=> (i14). '

The only part of Weyl's eriterion left to show is
that if for all k , ;im GN(k) exists, then there is a

probability measure

v which is the weak* 1imit of {vN} .
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kL But since the unit ball of M(T) is weak* compact, there 2. Exceptional Sets

i * .
8 some weak¥ limit point v of lv“} - Necessarily, We define a number x € T to be pormal with respect

A A :
then, v(k) = lim v,(k d # ’
» (k) 4N( ) Aan v 1s the weak* limit of to the base r > 2 if when x = O.xlxz... is written to
{vy} . 1In particular, ¥(0) =1 . Si
N - P » v(0) nce v > 0 obviously, the base r , every digit 0 < d < r appears equally often:
v 1is a probability measure. This completes the proof. [ -

1
1im-l%-ll{n_<_l‘l|xn=d)=; ;

‘ . N+

every pair of digits dl ’ d2 appears equally often:

1y, -
limﬁ-ll(nﬁlen—d

1
, X =d,} = =5 3
i 17 %41 T 92} =73

every triplet appears equally often; and so on. This is
evidently equivalent to the following: if I is any

kel interval of the form [—EE ’ 5%) , then
T T
1 N n-1
(2.1) lin & ) X1 (r x)=mnl.
N-oo n=1

Now if I 1s any interval, let A , B be finite unions
o ‘ of intervals of the form [-& , -';’-'J'—l ‘such that
rk k

ACICB and m(I\NA) < e, m(B\I) < e . From (2.1),
it follows that for large N

. ; 1N n-1
K . ml - 2 <mA-e<fIx (r'"x)
: 1

N

1
SFLx
NlI

N
(rn-l x)f_% E XB (rn-l x)

: _ : ' <mB+ e < mIt 2 .
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n other words, (2.1)'holds for any 1 , so that' x is
ormal to the base ‘r- if and only if’ {rn_lx}' is:
uniformly distributed.

Borel [1] showed that almost every number (in the

x x‘.'i For

sense._ of Lebesgue measure) is normal to the base r

Let {nkIU be ény atrictly increasing sequence
Then for almost all x [m] , the

L&t w w o, ‘.'_ M H AL
' means’ nk“istrictly'increaaes to infinity.

B e I B O B T

is not unifornly d;stributed.

B

,,A’eﬁ‘lx:_\fy}.,¢ (;:.;

have rational endpoints.

18

DEFINITION (Kahane [1]). A Borel set ECT is an

abnormal set, or A-set , If there exists ny 4+ © guch

that for all x €E , {nx} 1is badly diepributed.

(V)
DEFINITION. (Sreider [ 2]).
W-sef y if there exists

all x eE , {nkx]

set, or

ny 4+ » guch that for

is Weyl-distributed.

DEFINITION (Rajchman (1, 21).
Haréx-Litfleﬁood-steinhaus set, or Hlééi*ﬂk

a non-empty open arec I and nk + © ‘such that for ail
x€E, mx ¢1I.

NOTATION. An H-set is also called a set of type H 3

1ikewiae for the other types of sets. A countable ‘union

of sets of a given type. such as

Ho » Or an Ho—aet .

-

'»‘Ai

Suppose that for all «x e E ’ [nkx} is not denﬂe in

A Borel set ECT is a xl

i
Y

if there is ™4

M

‘A';:Borel };ét ‘Ecw 4s a P

H , 18 called of type "7 ¢

4

T . Then for each x there.is an open interval I such'.*

that for all k , mx €I . Clearly I ;may be taken'to

number of rational 1ntervala. it follows that E 15 of

type Ho . We now see how the four possible properties o
of a sequence in T mentioned in Section 1 give rise to

four kinds of "gets of aaymptotic distribution.”

'

Since there are only a countable
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3. Examples and Elementary Properties.

It is evident that every A-set is a W*-get .

We write this as A C W* , Likewise, it is evident that

HCA and WCA .,

THEOREM 3.1. Every countable set is a W-gset .

PROOF. Let {xj);<:ﬂ? be any countable set. We shall

show by an easy diagonal argument thatvthere exists {mk}

such that By > uj for some Thus

ay .
{m,x,}” ~6(a,) 1is Weyl-distributed for each x, .
L gy ] 3

The details follow.

Since T 1is compact, {nxllm has a convergent
T n=}

subsequence nl((l)x1 ray . Likewise (nil)xz) has a
convergent subsequence (2) In general, let

n X,* a, .
k 2 2
[n£j+1)] be a subsequence of {n(j)] such that
k=1 k

+1
a{342)

xj+1-» aj+1-vfor sone uj+1 « Let m = nék) .

Then meXy vy . a '
Along similar lines, we may exhibit a W-set of

cardinality c ; Note that every x € T has a unique

reprosentation in thé form

= a (x)

Zz—n[- »

n=

X =

20

where a (x) 1is an integer, 0 < a(x) <n-1, and

there is no ng for which an(x) =n -1 forall n2n, .

Let
E = (x [ an(x) = o(n)} .
Certainly E has cardinaiity e . Furthermore,
E=1(x| (n-1)tx+ 0} .

(Recall that (n-1)!x=x + ,.. + x 1is defined in
T=R/2%Z.) ?Thus to show that E 1is a W-set , it

remains only to show that E is a Borel set.. This follows

from the following proposition.

PROPOSITION 3.2. If {fn} are Borel-measurable functions

and z €L , then ({x: fn(x) + 2} .18 a Borel set.
PROOF. The set in question equals

{x:¥e >0 AN Vn3> N I£,(x)-2] < e} =

O A £ g -al< %)) . 0
k=1 N=1 n=N

Similar propositions which we will use follow.

COROLLARY 3.3. 1If ng 4 o and

E = {t: (nkt} is not uniformly distributed)

then E 1is Borel. E 1is called the maximal W¥*-get

corresponding to the sequence {nk) sy denoted B = W*([nk}).
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22
PROOF. Let S o PROPOSITION 3.6. If n, + = and
K e :
f(@) (t) = 4 I e(mn,t) . ’ E = {t: {n,t} is badly distributed) ,
S SIS ) k) - L
, k=1
R . then

L o W — 1K

E=(t:amf£0 fl((m) (t) # 0) | E = {t: I rational arc I such that Iis Kkzlxl(nkt)mn

. L<J<v {t: fl(() (+) 0 .0
~o< p<oo

and E is Borel. E = A({nkl) is the maximal A-set of
w#0

{nk) .

. If [fn}. are Borel-measurable functions,

PROOF. Given an arec I , let fI be the Borel function
converges) is a Borel set. -

. ’ K
o - £(t) =Tim & ] xp(ngt) .
ROOF. The set in question is~ o K+ & k=1
- : Then
{x: .t‘n(x) is Cauchy} ={x: ye > 0 4N vyn,m >N
) E = {t: 91 fI(t) < mI} .
e -£ ) (x)<e) - .

. o T If f£;(t) < nI , then there exists a rational arc JC I
AU N (o) 12 <)) .0

with fI(t) < mJ] . Since fJ(t) < fI(t) , it follows that

OROLLARY 3;5-r Ifs(nk;f;Qn‘and> . ‘ i B E = {t:(% rational . I) fI(t) < ml)

e, - ’ . ! ) - -1
E = (t: {n,t) 1is Weyl-distribuvted} , —mt\i{nal £r7(0, m1I))

B 1BE§°r°1f We call E = H({nk)) the maximal is Borel. [J

Note that the maximal H-set correspondirg to a

ot ingyffém);Aﬁe aslaﬁgfé; ;Q have R given sequence and a given open arc ig obviously closed.
C et o v We may now generalize the above example of a W-get

(k) | (m) ‘ :
fg. (4), converges and . gm #.0 £ (1) A 0) Note that if ({xJ~v and y, » 0, then (x *+y )~y .
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L]
a,(x)
Hence if

Ny, then {((n-1)! x}~ v . Thus
n=1

a (x)
E = {x: " is Weyl-distributed}
) 1

is a W-get sihce E = W([(n-l)l)) .

In Section 2, we showed that the set E = (t: (nkt]

is not dense} is ap Hc-set - We shall call E the maximal

Ho-set corresponding to {nk} . It is obvious that every

maximal Ho—set » hence every maximal A- or Wr-get ,

contains the rationals 1]

The standard Cantor middle~thirds set
v n
E={t: t = n£1 c, 37, e, = 0,2}
is the same as the maximal H-set corresponding to the
sequence (Bk]: and 'the interval % .%) » Let u be

the Cantor-Lebesgue measure supported on E : if

¢: @ +E is the map
v -ny _ ¥} -n
¢(§ 427" = ; (24 )37" ,

then uwF = m(6"1(F)) . Now (")2~m  if and only ir
{Bk ¢(t)): ~u . By Theorem 2.2, it follows that

(Bkt)Alu for almost e&ery t{u)] . In particular, p is
concentrated on a W-set. We shall later see that this is
a general phenomenon: any measure supported on an H-get

is concentrated on a W-get .
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4. The Relation to Rajchman Measures . )

We discover some simple relations of W-sets and
W¥-gets to Rajchman measures when we 1nteérate Weyl's
eriterion with respect to some measure. The meaning of
this statement will become clearer in the proof of

Theorem 4.2. TFirst we prove the following well-known

facts.

THEOREM 4.1. Let pe M(T), v <<y . We have

(é) ue R'>veR,
(b) 1im 2(n) = 0 » lim P(-n) = 0 .
n

+c0 n-+oo

(¢) veRe|ufenr.

NOTE. For complex measures u,v » DY Vv <<p we mean that
for all Borel sets E , |u| E=0 = |v| E =0 . By the
polar decomposition theorem for complex measures (Rudin
[2, p. 133]1), the Radon—Nikbdym Theorem continues to hold
for this sense of absolute continuity: 1if v <<y , then

Af e Ll(lul) such that dv = fdp. We shall use pwmvy

~

to mean u<<v <<y .

K
PROOF. Trigonometric polynomials P(t) =] ake(kt) are
-K

dense in C(T) in the uniform norm and C(T) is dense
in Ll(lul) in the Llonorm . Therefore trigonometric

polynomials are dense in Ll(lul) in the Ll-norm .

i
‘
B
)
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Let v <<y and dv = fde, £e L1(|y]) . Given

S K -
_.s >0, let ||r—P||L1”u|) <e, P(t) -_l% a,e(kt) a

trigonometric polynomisl. If dg = Pdy , then

Mool gy = Ne - P L] <€+ Also
N i K
5 = e((k-n)t) du(t
‘o(n) ’ ]_])2 f‘kf’“ n)t) u(»?
K .
= . -k ’
Fetonn

whencé‘ € R if pe R . Since [V¥(n) - S(n)l < Jv-oll<e,
:follows that 1im Ic(n)l <e . As € is arbitrary,

Lo In|+e o o

RV This establishes (a).

In fact, the afgument shows that if v < <u and

0, then 1im $(n) = 0 and likewise if

n-+oo

o~
=

~
1]

Now u® |ul and |ul 1s real, so that
T:} (n): . Therefore

1lim fn) = 0 :-nmﬁ (n) =0
Nt n+om

"

.

2> 1im f:}(-n) = 0 = 1lim ﬁ(-n)= 0,
n-+o n+w

)’foiloyg from part (a) and the fact: that .
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The simplest relation between W*-gets and R 1is
expressed in the following theorem. Note that
Iﬁ(n)l < llull , so that if ¢ R, then (fi(n)} has =

non~zero limit point.

THEOREM 4.2. If uE = 0 for all W#*-gets E , then
ueRrR. 1In fact, if nte or -n t o and ﬁ(nk) + o,
then the maximal W¥-set E of the sequence (Inkll has

ful -measure > Jaf .

PROOF. Note that for t ¢ E ,

K
I e(-nt) » 0,

ARl

Therefore

B L]

[1im

K 1 K
fal L {ﬁ(nk)|=llimj K ; e(-nyt) du(t)|

T

1A

.
lim / 1 alul(t) + |11mf %; e(-n.t) du(t)]
E T\E

lule . [

In Chapter II1, we shall see that the converse does
not hold: it is not true that ueR=>»>pykE=0 for all

W*-gets E . However, we do have

THEOREM 4.3. If u €R, then uE = 0 for all W-sets E
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PROOF. Let p eRr + E be a W-set , and

K
lim % I o(mn,t) , teE
K+ 1
e, (t) =
o, t¢E.

Let F be any Borel subset of E and let
v = u|F , the restriction of y to F . By Theorem 4.1(a),
ve R . Therefore for m # 0 R

/cm(t) du(t) =[ ey dv =f c  dv
F F n

K+

K
1lim l % { e(mnkt) dv(t)
- :

K
1o a
lim g ; v(-mnk)v= 0.

Since F is arbitrary, c.{t) =0 for |u]-almost

all t e E . But by definition, if t e g » then
cm(t) # 0 for gome m £ 0 . Hence |Ju] E =0 .[J

The converse of Theorew 4.3 does hold, as shown in

Chapter III. Thus R 1is characterized by W-sets,
but not by W¥-gets .

Let us introduce the following notation (Rajchman {31).

DEFINITION. The deviation (dcart in French) of a measure

v is 1lim |a(n)| and is denoted R(y) .
In|+m
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Thus, p @ R if and only if R(p) = 0 . Also, from

Theorem 4.2, we immediately obtain

COROLLARY 4.4. For wu"€ M(T) , there exists a W#-set F
such that |u|(E) > R(n) .

Since yu = Hy - ou, + iu3 - iu4 for some non-negative
measures My it follows that |[uF| > % R(u) for some
subset F of E . Note that F 1is a W#-set . The next

proposition allows us to establish a somewhat better result

PROPOSITION 4.5. Let p e M{(T) and let E be any Borel
subset of M. There exists F € E such that ‘
|uF| > % lul(E) . The constant % is best possible.

PROOF. Let du(t) = e(¢(t)) aluj(t) . Let

Fg = (t € E: ¢(t)e(e-%.e+l)}

Then

/luFe' de 2 | [e(-0) uFy do|
o g1

and

Jot-0) uFy 0 = fo(-0) [ alo(4)) alul(t) ao

b g b Fe

s(t)+d
= oot [ "o o) a0 alul(e)
E o(t)-%
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%jdlul(t) =% lul & .,
4 o

Hence for some ¢ , luFel > % lul E.

5

;;To éhov that % is best possible, consider

~éu(t)'?,e(t) dt and E = 7

+ For any ¥ ,

Re[e(-8) uF] =/ Re e(t -8) dt
F

<
~ {teT: Re e(t-8)>0)

= Re]J e(s) ds = 7 -

~1/4

Re e(t -0) dt

: 1
IwFl > = R(y) .

4 € M(T) , there exists a W.get F
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5. Notes

Much material on asymptotic distribution and normal

numbers and many references to other work are found in
Kuipers and Niederreiter [1] ang Kok&na and Kuipers [1] .

A proof of the most important parts of Weyl's

criterion (Theorem 1.2) is also given in Zygmund (1,
P. 1421. The case when v

I,
is continuous is proved in

Brown and Duncan [1] with full details. Theorem 1.1 is

treated in Kuipers and Niederreiter [1, pp. 1-3, 7-8].

Treatments similar to ours of the general case of weak#*
convergence of probability measures may be found in

Billingsley [1, pp. 7-15, 501 and Lodve [1, pp. 190-191} ,

In the literature, the term "normal get" refers to

the sets of the form
E = {xe R: <Anx>n=l~m}

for some sequence [An}C:BI, where <u> denotes the

fractional part of y « It is not required that An + @

See Rauzy [1] for a characterization of normal sets,
Rajchman [1,2) naned ‘H-eets after Hardy, Littlewood
and Steinhaus because.of the following theorem of theirs

(see Zygmund {1, I, pp. 318-3191),

PROPOSITION 5.1, Given real numbers a, b,

n
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lim sup Ian ¢0s 2mnt + b_ sin 2nnt]
n+o n

1/2
= 2 2
1lim sup (an + bn)

n+o

for all t

Some results generalizing Theorem 4.1 appear in

Graham and McGehee [1, PpP. 27-29].

except those belonging to a set of type Ho

CHAPTER III !

CHARACTERIZATIONS -OF RAJCHMAN MEASURES

1. Characterizations Other Than Through Null Sets

»

The oldest characterization of R is due to Rajchman
and Milicer-Grusewska (Milicer-Gruzewska [ 21, Zygmund

'[1. II, pp. 144-1451). We shall present an easier proof

and some generalizations.

THEOREM 1.1 (Rajchman-Milicer-Gruzewska Criterion).
For a measure u € M(W) , the following conditions are
equivalent:

(1) uer.

(11) For every arec ICT,

| lei.n_[xl(nx) du(x) = |1} - f(0) .
n|{-»e

(1i1) For every f € c¢(m),

(1.1) lim ff(nx) au(x) = £(0) - 2(0) .
fn]+e

The equivalence (1) <> (11) is the moat important
for us. Let us first indicate heuristically why (i) = (ii).
If we could write X1 as its Fourier series, integrate

term by term, and take the limit term by term, then for

u € R, we would have

32
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C 1im l XI(nx) du(x) - | lim‘[ E Ql(k) e(knx) dp{x)

‘n‘-}no nl+w k=-w
©

= e ] ;\(I(k) u(-kn) = %:(0) W(0) = |1[ -+ (o) .

ln'-m: k==

e now give a rigorous proof of the theorem.

ROOF. (1) =(111) . Clearly the set of £ € G(T) for
hich (1.1) holds is a closed linear subspace of C(T) .

y (1), we see that (1.1) holds when £(x) = e{kx) for

: k € Z. Since the closed linear span of the exponen-
ials ;s a}l of C(nﬂ ?=it follows thgt (iii) holds.

(111) = (1). Take f(x) = ef(-x) .

1) & (1i1) » (41). Let I be a given arc. For
» choose f , g 8 C(T) so that |f - XI' < g and

<€ . Then

< [ glnx) dlul(x) + € - [8(0)] .

@R, also |u| € R, whence the 1imit of the

Voteriatic'functiona of intervals, and since the

1f (2 - xp(na)) Al + 180) - §,(0)1+ 10 |
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span of such functions in the sup norm includes C(m),
it follows that (1.1) holds for f € c(m). [J

What does the Rajchman-Milicer-Gruzewska criterion
tell us about Rajchman measures? In other words, what

e

intuition can be gained from it? If I is any arc, let
E ={x: nx eI} ;

En is a union of n equally spaced arcs of length

%III . If A 1is any other arc, then for Lebesgue measure,

it is clear that-
m(AﬂEn) + JI] + mA

83 n + = ., We now see that the same happens for any

ve R . Indeed, if A 1is any Borel set, not merely an

arc, let v = ylA . Then XI(nx) = Xg (x) and veR,
n

whence

WANE) = v(EB) =[ xp (x) dv(x)
n o

(1.2) A
+ |1] v(0) = J1| + wa .
Furthermore, (i.2) holds oinly when ue R .

As en illustration, consider the Cantor—Lébesgue

weasure y . It 1s supported on the Cantor middle-thirds

hod

sot A ={) ES , where I - (%"%) . Since
k=1 3

u(Af\EBk) =p(P) = 0, (1.2) fails to hold, whence ueR.,
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Let us now show that in Theorem 1.1, (1) follows
from much weaker assumptions than (1i) or (iii). We
denote the translate of a set by

E-+t={x-t: xe E)
and the translate of a function by
f{x) = £f(x - t) .

THEOREM 1.2, Let .p e M(T) . Then u € R if either of
the following conditions hold:
(1) For some arc I with 0 < IZ] < 1, we have
(1.3) lim l Xg-¢ (nx) du(x)
n+w ,
™

exists for almost all t([m] and for some +t , (1.3)
equals |I] - n(0) .-

A
(11) For some f € C(M) with £(-1) # 0 , we have
1.4)° 1lim fl(nx) du(x)
(1.4) nm/ L uix
. n
exists for almost all ¢ [m] and for some t such that
A A
£(t) # £(0) , (1.4) equals £(0) - f(0) .

PROOF. Assume (1). Let g(t) be equal to the limit
(1.3) when it exists. Then

36

£(-1) =lg(t) e(t) dm(t)
n

=frjti: '[)(I_t(nx) du(x) e(t) dm(t) .

By the bounded convergence theorem and Fubini's theorem,

this

= 1im /[xl(nx + t) e(t) dm(t) du(x) .

oo

Setting a = nx + t yields

g(-1)

lim‘[]'xl(s) e(s) dm(s) e(-nx) du(x)

= limf QI(-I) e(-nx) du(x)

1m X (-1) (n) .

A : '
Since x7(-1) # 0, 1im ﬁ(n) exista. Let the limit be
n-o .

@ . By application of Theorem II.,.1(b) to the measure

u - a8(0) , we see that 1im ﬁ(-n) = a , whence
n-+oo

u - aé(0)e R . Theorem 1.1 now allows us to compute
g(t) :

t) = 1lim -
g(t) Lin ]’xl-t (nx) a(u - a6(0))(x)

11
+ n*:‘[ X1-¢ (nx) d(as(0))(x)

ﬁ|m-numf(m+axﬂw

1T 600) + alx (¢) - |1]) .




37

If g(t) = [I| R(O) for some » then clearly o = 0

The proof that (ii) »uy e R is virtually identical.
£, g(-t) denotes the limit (1.4), then we find that
(-1) = 1in £(-2) §(n) . It a = 1in $(n) , then we £ind

n-wo n-+oo

A A A
g(t) = £(0) u(0) + a(£(t) - £(0)) .

A
£ glt) = %(0) N(0) and £(t) # £(0) for some +t ,
hen o« = 0 , i.ec,wer.d

A useful consequence is the following immediate

COROLLARY 1.3, If u ¢ R, then for any arc I with
< |1] <1, there exists t for which

ke

[ xg2gnx)- au(x) + 111 B(0)

LY A
“In| » ®» . Also, for any f € C(T) with £(-1) # 0
reo exists t for whieh

o [0 anto—- R0 Bo)
n| + o,

The heart of the proof of Theorem 1.2 was calculating
our;ér coefficient of (1.3). Consideration of all the

eorem 1,1,
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THEOREM 1.4. Let u e M(TM) and £ e L3(m) . Define
I [
ent) = [ £,n0) au(x) - f(0) o) ,
™
where f, denotes the function ft(x) = f(x - t) .

Then gn(t) exists for m-almost 811 t and

A
[£(1) {R(u) < ?i‘i’ +s:pl|gnllL2(m) <

£-£(0) R(u) .
“ ”Lz(m) M

PROOF. Since Lz(m)C Ll(m) s the Fubini-Tonelli theorem
shows that gn(t) exists a.e. [m}. Furthermore,

A
gn(O) = 0 and

£,00 = T(-x) fem) , k40 .

Hence
A2 A A
e 12 = g 2 " b 1700 Bl
Therefore
—_ A A A
Linflg Ml > 1im|£(2) W(-n)| = |£(1) |R(n)
and

A

Tinllell < (] 120012 R(u)?2)2/2
k#0

le-£) , R . O
L%(m)

A useful case of Theoren 1.4 is
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COROLLARY 1.5. Let u eM(T), I be an arc of T, and 2. Weyl Sets

gn(t) =j.x . (nx) du(x) - |1| G(O) n We now prove that é}erder's claim is correct. This
I+

is our central result.
Then

1 1/2 THEOREM 2.1. A measure u }e in R if and only if
wlein slID) RGu) < Tim g ll , < (112 Ry
|n|+e L(m

) UE = 0 for all W-sets E .
An i diate consequenc f co i
PROOF. We have only to observe that n lmmediate consequence, of course, is
A IN . COEOLLARY 2.2. A measure y is in R if and only if
x;(0) = |1], xI(l) = % sin w |1} , and y

BE = 0 for all Uo-seta E . That is, R 1is characterized
||XI'|I| Il 2( ) = ((1-|I|2)|I| + |I|2 (1 -|I|))1/2 by its class of common null sets, v, -
L%(m

We shall in fact prove the stronger
= (1) 11°p*2 . 0
PROPOSITION 2.3. TFor any u € M(T), there exists a

W-set E such that [u|(E) > R(u) . - There exists a

Another characterization of R , due to Goldberg

W-set F such that [uF| > % R(n) .
and Simon [1], we merely mention without proof.

A A REMARK. It follows that R is also characterized by the
THEOREM 1.6. p € R 'if and only if llut - ult 0 as
2

class of closed Uo-sets and by the class of closed

b * 0 where u s the translate of wu: w(E) = u(E-t) . W-sets . For if u ¢ R, then there is a W-set E with
JulE # 0 . Since W is regular, there is a closed subset
FCE with |ulF #0 . Also, F is a W-set since

every Borel subset of a W-set is a W-set .

We have already proved the easy half of Theorem 2.1
(see Theorem II. 4.3). The difficulty in proving the
converse direction is found on examination of the proof

of Theorem II.4.2 (that if yu € R , then there is a W¥-get

E for which |u}jE > 0) . Namely, we cannot assert the
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g :

: For teF, (£,(t)},_; 1is bounded. Hence
existence of ’ o : ) .
. . Fo= ) (t: (vn) £ (¢)] < M) .
M=1
lim % I e(-nkt)
K+ ™ k=1

For some M , one of these sets, call it E , has
for |u|-almost all t ¢ W({nk]) » whereas we can for all

positive measure. get -
t ¢ Wx ({n )) . Remarkably, however, we will be able

£(t)/1£(t)] vt €k
in such a way that the above 1imit does

(t)=
g 0 ,t &8,
xist for lul-almost ail t! The proof orf Theorem 2.1

o choose {nk}

hgn %ecomea straightforward.
In order to obtain the a.e,

1mit.

Then the bounded convergence theorem yields
~existence of the above

[iel au
We shall need to adopt the viewpoint that E
(nt) € 12(lul) .

;im[ £ du = 1im[fn§ du
E

Let us show how this viewpoint could

uaed to reword the proof of Theorem I1.4.3. Recall
e.following

linm (£ ,g)=0 . O

We now give the reworded
DEFINITION. Let v be a measure on any measurable space.

PROOF OF THEOREM IT.4.3. Recall that by Theorem 1.4 ,.1(e),
et ' E is called an atom of u if |u|(E) # 0 ang if

it suffices to consider only positive
Hhenever

W. Let 0<pyenr.,
or uF = uE .. We wish to show that for any n t e, if

FCE is measurable, eitﬁer uF =

LEMMA 2.4. Let u be any positive measure without atoms

= Wlin)) = (t: for al) m, 14g 2
1n£inite measure. Let f

K .
) e(mnkt) exists
+ 0 weakly in Lz(u) 3

K+ k=1
for all g e 12(y) , (£ .g) = l} Edu+0 as no»w . and, fo? some m # 0, is not 0) ,
hen for almost all ttuy, if 11” £ (t) exlsts and then uE = 0 . In other words, we wish to show that for
finite, it equals 0 .

. K

all m # 0 and for u-almost all ¢ , if % I e(mnkt)
k=1

F is a set of positive measure on which has a limit as K + » , then that limit is 0

1o £ (t) exists and is finite,.

claim that e(nt) » @ weakly in L2(u)
2
F  to have finite measure. For if g€ L7(w) , then

. Now we
Since u has no atoms

a8 |n| + o ,

, = o1
lffinfinite measure, we may take & €L7(u) , so that

Edu << dy and €dr €R by Theorem I1.4.1(a):
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(e(nt), g(t)) =fe(nt) 2(t) au(t) » 0 .

This is precisely what was claimed.

It follows that for all m # 0 ,

K
1 e(mnkt)+ 0 weakly in Lz(u)

b [

as K + o , whence the result follows from Lemma 2.j. []

As mentioned above, the converse depends on the

remarkable

LEMMA 2.5. Given u @ M(T) and {n,)] €Z, there

exists a subsequence {ni)c:{nk} such that {nit) has
an asymptotic distribution for almost all ¢ Hull .
Furthermore, {nﬁ) can be chosen so that if {nit]nlv(t)
for |u]-almost all t , then for any further subsequence

{ni'JC{"l':} and for Ihl-almost all % , {ni‘(t}Nv(t) .

The second part of the lemma is not necessary to the
proof of Proposition 2.3. Before demonstrating Lemma 2.5,

we present the
DEDUCTION OF PROPOSITION 2.3 FROM LEMMA 2.5. Let n¢ R
and let n, t+ » be such that ﬁ(nk) +a#0. Let {n}}
K
be as in Lemma 2.5, let £ (t) = & I e(-nlt) , and let
k Lot

E be the set of t for which [nit) has an asymptotic
distribution and 1im fp(t) # 0. Since 1im £, exists
K-Hn

a.e. {[|ull , we have

4h

fnmedu =/11medu=limfdeu \
E - T 01y .

1 e~ 2
=>
—
=S

=
e
]
R
.

= 1
= lim X

Since |1lim fKI <1, it follows that the W-set E has

lul-measure > |a .

This proves the first assertion of Proposition 2.3.
The second assertion follows from Proposition II.4.5. []

Lemma 2.5 is a special case of Corollary 2.9 below.
That corollary allows us to extract from a bounded sequence
in L2(|u|) 8 pointwise Ceshro-convergent subseqqence.
Corollary 2.9 in turn depends on a couple of facts about

Hilbert spaces and an interpolation argument. We begin with

LEMMA 2.6. Let H be a Hilbert space and let x_ =+ y f§
weakly in H . Then there exists a subsequence (xA}CZIXn}

such that for every subsequence (xg}C[xﬁ} ,

N
% I X0 + Yy in norm at the following rate:

N
2
llﬂxg - yli*= o .

PROOF. Without loss of generality, let y=0. We
define x; = Xi(n) inductively. Let r(1l) = 1, so

that xi Xy » Given r(1),...,r(n) , choose

r(ntl) > r{n) so that

I(xr(“)'xr(n+l))‘ < (nt1)"? for 1 <m<n.
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o By the principle of uniform boundedness, the x, are

N N
1 2 1 : 2
”_ x" " < = (x" , x") + =% z | (x» , x") |
N nzl n N2 §_ n n N2 1<m<n<N m n’ ! .
2 - 2
C 2 -3 .6 2 -2
< E b 5 1 n’ <+ +5 ] n
- ¥ N? 1<m<n<N N N2 1<n<N
1 , = 0(}]“) " D

OROLLARY 2.7. Let H be a Hilbert space. Suppose that

for each m e zt ,y X +y weakly as n + » . Then
m,n m

here exists a sequence n, + o such that for every

‘pubsequence (n}'(}c:(nk} and each fixed R

K
1
Iz § *n,nt ‘_lef =o0(x) .

ROOF. This is an easy diagonal argument. By Lemma 2.6,
re existe (n{!)) such that (2.1) holds for m = 1 and
ry tn]'c)cinl((l)} « Let (’nl({z)) C(nf{l)) be such that

1) holds for m = 2 and every {n]':]C{nl(:z)} .

osn(fl;inuing in this way for all m , we let n = n]((k) O

‘LEMMA 2.8. Let pu be a positive measure and let cm
]

constants for m € zt . Suppose f ' B €L2(u)

co m,n m

L6

(i) [fm.n(t)l _<_Crn a.e. [u}) ,

(i1) for each m , fm'n + g, weakly as n +

Then there exists ny t+ = such that for every subsequence

{nl'c}C{"k) and every m , h

(2.2) L)

2.2 lim 5 f = a.e. uy .
K-mK k=1 m,nl'{ Enm [u]

PROOF. Without loss of generality, let g, =0 . By
Corollary 2.7, there exist n, + © such that .
K
1 2
g 2 fangl® o
B £%(u)

)

b

~ for every {nl'(}C{nk} and each m , Therefore

2 2

1 ¥ 2

P b famll, <=
L%(u)

© K
1 2
Il I ¢ | du =
[K=1 K2 k=1 Deny

it~ §

8o that the integrand is finite a.e. [ul, whence

K2
1 .
ﬁé § fm'"ﬁ +0 a.e. [u} .

Having shown that (2.2) holds as X + » along the square
integers, we shall now employ an interpolation argument
used by Weyl [2,57] to show that (2.2) holds as K » w
along ali the integers.

Given N , let K% < N < (K + 1)2 . Then



2 2
N N K K
1 1 1 1
Iﬁ kgl fm.ni' S'IW % fm,nl'{ "N g fm,nﬁ'i—'i { fm.nl'(l
2
= %I m,nt | ;2 |'25 § fm n!l
k%k<N K L.
2

K

‘Since this tends to 0 a.e. [pu] as N+ o, (2.2)
follows. []

COROLLARY 2.9. Let p be a positive measure and let Cm
be constants for me z' . Suppose that fon€ Lz(u)
satisfy

(1) |fm’n(t)l £ G, a.e. [ul,

(11) Neg ot . <,
L2(y)

Then there exists -3 e Lz(u) and n, + @ guch that for
every subsequence (ni)Cﬁ{nk} and every m , (2.2) holds.

PROOF. For each =® , the functioms {fm,n)n=1 lie in the

ball of L%(u) of radius C, - Since the ball is weakly
sequentlally compact (Hutson and Pym [1, p. 1601), there
is a subsequence of [rm.n) » call it again {f.,n) .
such that fu,n * 8y veakly for some gy, © L2 . By

a diagonal argument, we can choose the subsequence so that

this happens for all n simultaneously.
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Lemma 2.8 now finishes the proof. ()

REMARK 1. The abstract theorem that the unit ball in
Hilbert space is weakly sequentially compacét is not
necessary for the proof. That is, a complete orthonormal
basis of Lz(ﬁﬂlul) is countable, so that we could directly
extract a weakly cohvargent subsequence of (e(mnkt)):=l.
(Indeed, the same method of proof can be modified to prove

sequential compactness in the general casa.)

REMARK 2. Just as Lemma 2.8 is reformulated as Corollary
2.9, so could we reformulate Lemma 2.6 and Corollary 2.7
through using boundedness in norm rather than weak

convergence.

PROOF OF LEMMA 2.5. If Corollary 2.9 is applied to the
measure Ju| and the functions £ k(t) = e(mnkt) with
»

constants G = max(1,|Julf) , then we obtain functions
g, @nd a subsequence {nﬁ)c:{nk} such that for every
{nf}C{n}t} and for every m ,

1 K

4 % e(mnit)+ gm(t) a.e. [fu]l .

By Weyl's criterion, this .is exactly what.we wanted..
to prove. O
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Abnormal Sets.

«From the results in the previous section, we may

ea8ily show

T§VOREM 3:1. For any measure u , pu € R if and only if
WE = 0 for all A-sets E .

‘PROOF.. By Theorem II.4.1l{(c), we may assume u > 0 in

. —_— l K
E = {x: 1im 4 kzl xI(nkx) < |1}y .

& A K-+eo

1 [ 1 K A
Ki: X { XI(nkx) dv(x) = !II v(0) = |1] vE .

K

1
Th ?gfore Fatou's lemma applied to 1 - x § xI(nkx) and

: K
1 t
?jll vE = 1lim é.i E xI‘nkx) dv(x)

-1
w L flim £ L xp(nx) av(x) < |1I] vE .
1

‘ince equality holds in the last step, the definition of E
ﬁé}w;wthét VE = 0, i.e., uE = 0 . But all A-sets

»onﬁhined in countablé unions of sets of the form E

Fiyae . : :
Froposition I1.3.6), whence all A-sets have null
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y-mneasure.
The converse follows trivially from Theorem 2.1 since

all W-sets are A-sets.[]

The converse can also be proved directly from the
Rajchman-Milicer-Gruzewska criterivn and Corollary 2.9.
The proof follows the outlines of thét of Lemma 2.5
and yields the following refinement of Theorem 3.1.

THEOREM 3.2. Given p ¢ R and any vy e (0,1) , there
existe an arc I of length y or 1 -y and n, t
such that

K
1

!

(i) 1lim i

XI(nkx) exists a.e. [lull
K+ k=1

and 1 K
(ii) the A-set {x: lim gl XI(nkx) < |11}
1 .

has positive |u|-measure.

PROOF. By replacing p with |u]l 3if necessary, we may
agssume that u > 0 . By Corollary 1.3, there exists an

arc J of length vy and n t e such that

]xJ(nkx) du(x) > o # |J] .

By Corollary 2.9, {nk} has a subsequence, call it again
{nk) , such that for some f ,

1 K
g L oxinx) >t el qu) .
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Note that ff(x) du(x) = a , so that

E = {x: £f(x) £ 3]}
has positive y-measure. Let

E

1 = (x: f£f(x) < |3y, E2 = {x: £(x) > |J|} .

Since E = E1UE2 » we have uE1 >0 or uE2 >0 . In
the firet case, I =J is the desired are and El the

desired A-set. In the second case, I =J% ig the

desired arc and
1 K c
E2 = {x: 1lim £ ; ch (nkx) < 13"

the desired A-se£ . []
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4. Non-normal Sets. . t

In this section we prove that W¥*-gsets have p-measure
zero for certain p € R . In Section 6, we show that this
does not hold for all u € R , thus showing that the converse
to Theorem II.4.2 is false. hSection 5 is needed to establish

some technical details in preparation for Section 6.

All the results of this section stem from the appli-
gﬁtion of one idea. Before we formalize it in Theorem 4.1,
let us give the motivation. In order to prove that for
some measure ﬁ >0, all W*-gets have u-measure O,

it is necessary and sufficient to eatablish that

1 N
(4.1) § kgl e(nkx) + 0 a.e. [u)

for all sequences ny t o, If we let’

. 1 N
(4.2) £y(x) = ¥ ; e(n,x) ,

then (4.1) does not follow from fy + 0 in L) .
However, if, say, "fN||22( ) = 0(%) » then the inter-
L™(u

polation argument in the proof of Lemma 2.8 gives f 2+ 0
N
a.e. and then f, + 0 a.e. Since |Ir |F is easy to
N N Lz(u)

compute in terms of ﬁ » certain conditions on a will
allow us to show (4.1) for certain (nk) . The inter-~

polation argument will also work in less restrictive

situations than IIfNII2 = 0(%) + We present this formally
as
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THEOREM 4.1. 1Ir p >0 and

18

TR
T

N=1 k

¥ 2
El e(nkx)lle(u) <o
then

1 N
§ ; e(nkx) +0 a.e. [u].

Davenport, Erdos and LeVeque [ 1] established an almost
identical theorem. However, they were concerned with
Lebesgue measure on the real line and used real-valued
functions Ek(x) instead of nx . Mendds France [ 1, p.
31] also states a very similar theorem. The proofs of all
three theorems are the same and depend on a refinement
(Lemma 4.3) of the principle of Cauchy condensation.

Since we shall later need the latter principle as well,
we include it here. .Recall that a sequence {nk)mk=lC1Z+
is said to be lacunary if there exists q > 1 such that

nk+1/nk >2q for all k .,

PROPOSITION 4.2 (Cauchy coﬁdensation). Suppose that

{xn]m is a weakly decreasing sequence of positive
n=1

numbers: for some constant C , n fm<2n » x, £ an

-

=

-]
(i) 1¢ 7? < @, then for all lacunary
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(ii) If for some {nk}:—l with 1 < nk+1/nk £Q < o,

we have ] x_ < = , then

X
IR
k=1 "k , n=1l ® :

He-2 8

1

PROOF. (i) Let Xxn/n < «» and let ,nk+1/nk >2q>1.

By adding terms to the sequence (nk} if necessary, we may
) C

assume that nk+1/nk £Q for some Q<w , Let r e Z

be such that 2¥ > Q and let ©, = ¢* . Then n < m<Qn

1l
implies
xm_<_01xn B
so that
@ X <« n -n -
L2-0 1 - 2§ letfen,
n=l ®  x=1 n<n<ng k=1 Mkl ki1
<1y -1 %
>{(1-qH ¢ T x .
= oy Ty
L o
Therefore ) X, <o
k=1 k

(ii) Let 1 < n/n £Q <= and let an <ew,

k
ir Cl is as above, then
o« X © X Lol n -
N R T T A
n=1 P k=1 nk_<.n<nk+l kfl # X

0

-1 ¢
@-v 1k£1x“k

in

o

Therefore | /n<wo ., []
n=l n




EXAMPLE. If n, = 25 and x, + 0, then

"
o X ©

): - < o & E X < .o .
= k=1 2K

The lemma we need to prove Theorem 4.l is

LEMMA 4.3 (Davenport, Erdds and LeVeque [1}). If x, 20
L3

and J xn/n < ®» , then there exists n, t = such that
n=1 : :

o«
n,./n, +1 and § x <o
k+1l’ Tk k=1 Py

PROOF. We may assume that x, > 0 for infinitely many n

Let An + » be any sequence of real numbers such that
o«

n£1 X, An/n <= . (For example, if Ry Engn xn/n .

then A, = (R:l/2 + R;{i)_l will do: aince R .+ 0, we

have An + ©» and

x A/'( R -R
LA - Doty - 182 - wf
e Rn Rn+1 .
Rilz <w,)
Let {nk): 1 be the sequence of positive integers defined

inductively by By = 1 and
An

k
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where [u] indicates the integer part of u . Let ¢
n € (mk,mk+1 1= I, be such Fhat

x = min x .
Ny neIk

Then ”

<

1 Drtl n
x '<- n - xn -m -m —IT
ny k+1""k n€I, k4177 I

Sinée
—EL_ o,
k+1 k B
it follows that
x A )
x < §J AR
n, - n
k Ik

Summing both sides over k gives J x, <o . Since
: ® K

lk+1/lk + 1 » we also have “k+1/nk -1 .0

DEFINITION. A aeqnenée {nk)w czt is said to be of
. k=1

legs-than-exponential growth if ii: nk+1/nk =1,

PROOF OF THEOREM 4.1. Define fy 88 in (4.2). From the
hypotheais

et g

§ lled? <=




57

and Lemma 4.3, there exists a sequence {Nr} of less-

than-exponential growth such that

2
): ”fN ” < o .
r

That 1is,

/):IfN lzdu<°° ’
r

whence f, + 0 a.e. [p]l . We now interpolate. Given

M, let Nr <M< Nrfl . Then

Nr Nr
]fM(x)I < IfM(x) - % § e(nkx)I-+]% ; e(nkx)l

N
=3 T elnx)| + L |£, (x)]
MNr<k_<_M k MO

N_,. -N
+1
= ¢ ey ()1 .
Tr r

A

Since this last term + 0 a.e. [p] 48 M +

fylx) . a

» 80 does

Note that interpolation works exactly for those

sequences {Nr) of 1ess-than9exponentialvgrowth.

Our first application of Theorem 4.1 is a slight
generalization of a result of Baker [21.
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THEOREM 4.4. Suppose that ¢(n) 1is a non-increasing

function on the non-negative integers such that

(4.3) o) ..

8

Then for any positive measure u with
[W(n)| < o(inl) ,

the up-measure of every W¥#-set is 0.
PROOF. Let u be as indicated and let n, 4+ o , -Then

2 iy N
o) Neghl® = 5[ T olompm) T e(ngx) dux)

L%(u) =
1 A 15 A
= = (ny-n,) = = ry(m) u(m) ,
W2 il WOeng) =5 Ly .
where
(4.5) ry(m) = #{(k,2)] 1<k<N, 1 <2

IAa
o=

ey T ®

Note that rN(m) < N since for each k , there can be at

most one & such that ny - n, =m . By hypothesis,

1% A 2 v A
=5 (m) u(m) < 5 (w) |u(m) |
Nzgw?u"‘“‘“iuzgru“‘l““‘

2 © : N
=5 () ¢(m) .
2 Loyl et
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Now the sum of N° numbers chosen from {¢(m)}; , where
each ¢(m) may be chosen at most XN times, is greatest
when the N 1largest numbers are each chosen N times.
Hence the last quantity above is

N-1
I ¢(n) .
=1

A
=

n

It now follows that

© « N-1
TfllegP 2] L 75 o(m)
1 1N 0

=27 on) L 2T o) T gdor s 0
% " nZl N2 - § " ngl N(N-I} 4elo)

=2 ? Qiﬁl + 4 ¢(0) < »

Theorem 4.1 applies to conclude the proof ., (]

REMARK, The same method of proof shows the following
atropgeé theorem: Let '{lﬁl*(n)):=0 denote the decreasing

- A

rearrangement of (Iu(n)l):=0 . Then for any positive measure

u  such that

the y-measure of every W¥-gset is 0 . We have stated
Theorem 4., in the weaker form using ¢(n) so that it
is parallel to Theorem 4.5. The latter theorem probably

does not extend in the same way to |fi]*(n) .
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If E is a W¥-set corresponding to a lacunary

sequence, we shall call E a lacunary W¥*-set . These
are the most important W#-sets , as they include the
original notion of non-normal numbers base q ; in this
case, ny = qk'l » 4 an integer *> 1 . A weaker hypo-
thesis on the function ¢ in Theorem 4.3 will be enough to

force all lacunary W¥-sets to have measure O :

THEOREM 4.5. Suppose that ¢(n) 1is a non-increasing
function on the non-negative integers such that

o0

(4.6) n§2 ﬁ.—)——nlnogn < @ .

Then for any positive measure u with IG(“)' < ¢(In]) ,

the up-measure of every lacunary W¥*-gset is 0 .

PROOF. Extend ¢ to be a non-increasing function on
{0,=) . We have

| "lelzz - % ' i%‘Rel<£<k<N ﬁ(nk ) nl)
L%(u) , ==
= % ' i% 1§£<k§N |G(nk ) nl)' ’
Now
n - ng > qk'l ng - ny > qk'l -1,
whence




Therefore

2 1 2
Negll® <5+ % I N¢(qr-1).

1<r<
so that
@ 2 © ’
1 2 n ¢ 1 r
e < +2 )Y %5 I é(q"-1)
Nzl wllell™ <% N=1 N% l<reN
2 L
1
=3+ 0 o(qF -1) I =5
3 rzl N>n N2
2 [ r
—<—ﬂ6_+2):ﬂﬂ—;]i'

By the principle of Cauchy condensation (use x, = ¢(n)/logn

k-1

and n, = [q ] in Proposition 4.2) and (4.6), this last

sum is finite. []

REMARK. This type of argument shows that given any fixed
condition on how sloﬁly ﬁ may approach 0 , such as
(4.3) or (4.6), there will be a corresponding condition on
how rapidly ny must tend to « , such as lacunarity,

so that the u-measure of '‘every W¥-set corresponding to
such A sequence (nk] be 0.. Conversely, if ‘the rate of
growth of ny is fixed, there will be a corresponding

condition on the rate of decay of ﬁ .

In Section 6, we shall see that Theorem 4.5 is best
possible; it is not possible to weaken the hypothesis on
¢ without destroying the conclusion.

What other conditions might force every W¥*-get to

be v-null for some measure v ? For example, if every

Wi-set is p-null and |9 < IB] ., then is every W¥-get
v-null? The answer is "no". Indeed, we.know that every
W#-set has Lebesgue measure O . Let v be any measure in
R . There exists f € L'(m) such that |§| 2 ;0|
(Katznelson [1, pp. 22, 26]). BEvery W¥-gset 1is f dm-null,
so if the question above had an affirmative answer, every
W#-set would be v-null , hence R~-null . But as we

said, this will prove to be untrue. However, as we shall
see below in Corollary 4.7, if f e LP(m) , p > 1, and

if ] < IFI for a positive measure yu , then every

W¥-get is p-null .
We begin with a result (Baker [ 1)) which, unlike

Theorems 4.4 and 4.5, does not depend on a decreasing

ma jorant of IGI .

PROPOSITION 4.6. If p 48 a positive measure and

ﬁ e 29 for some q < © , then every W#-get is p-null

PROOF. Without loss of generality, we may assume that
q > 1 . Keeping to the notation of (4.2) and (4.5), we

have

1 '

- 1 1
nfﬂn2=;‘1—2 I ry(m) fi(n) 5N—12-(z‘rn<m)P)P (L1fi(n)[9)2
n=~-oo

by H8lder's inequality, where % + = =1, Recall that

ey

- Iry(e) = W% L ) <. K
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Therefore
I ry(mP < §P-1 I ry(m) = NP1
N - N
and so
1
1+ =
-]_/q
2 N P A A
=N .
el < B b AT

The conclusion follows from Theorem 4.1. []

COROLLARY 4.7. If feLP(m) ,p>1, and pu is a

A .
positive measure with |}| < If] , then every W*-get is

u-null .

PROOF. Without loss of generality, we may assume p < 2

The Hausdorff-Young theorem says that 3 e 29 | where

% + % =1 , Therero}e ﬁ e 29 and the result follows

from the proposition. O

- The argument of Proposition 4.6 can be modified through
khe introduction of weights for ﬁ . However, the result
may be a different type of theorem, since the hypothesis

may no longer imply we R . An example of this type is

FPROPOSITION 4. 8 (Salem [3]). If u > 0,

@ jA(ey12
Pl ..,
1

n
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1- %’< o<1, (n)] ere distinct, n, = O(kP) , then

the maximal W¥-gset of (nk) is penull .
We comﬁlete the section by proving the following

generalization of Lemma 4.3.

n
PROPOSITION 4.9. Let x >0 ,a >0, S(n) = J 8 -
n= n k=1
Assume that

<«
(1) g a ==,
-]
(11) { ax <=,
and that

(1141) a1 =0 (s(n)) .
Then there exists ny such that
o
(iv) ] 8(n) x < =
1K oy
and.

(v) 8(nygy)/s(ny) » 1 .

NOTE. Lemma 4.3 (with the notation Yn in place of x,
there) is the special case a =1, x, = yn/n . If we put

a = 1/n and X, = ynllog n , then we get the following
result: If y > 0 and

s ¥
] =B
3 nlogn

< o ,

PP P TN T2
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then there exists (nk) such that

n < o and log nk+l/}og n, > 1.,

PROOF. We may assume that a; > 0 . Choose any sequence

Xn + o guch that
I ax A <=

(1f X, = 0 for all large n , take An =n . Otherwise,

we may choose

1/2 1/2y-1
n * Rn+l)

An = (R
vhere RN = § ax +» 88 in the proof of Lemma 4.3.)
nSN Bn
Define (mk] inductively so that L is the least =m
for which

.
o1 Sl .
K

S(n) >

It follows immediately that

(4:8) g (S(agyy) - S(m)) 2 S(my,q) .

Now we claim that

S(m )
(4.9) §TE§§l— + 1.,

Certainly the ratio is larger than 1 for all k . Also,

by definition of LIV
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A

k
Slmgyy = 1) < 37—y Slmy) o
m
k
Therefore, adding a to bothbsidee, we have
m
ktl
A a
Smgyy) M My
S(mk) = A =1 S(mk) :

Py

Since A+ o , the first term A /(X -1) tends to 1 .
n m " Ty

Since an+l/S(n) + 0 , the second term tends to O

a ) a
My Pen | S(my, 1)
S(mk) S(mk+l-1) S(mk)
a A
m m
Kkl k
< . + 0.
= Slmg,y-1) Yo, 7L

Thus (4.9) is established.

Let n, € (mk » Dy 2 I be such that

S(nk) xnk = min{S(n)xn :ne Ik} .

Then for n € Ik ’

1

X_A

pta = S(n)x s(m)7t A,

Iv

-1
S(nk)xnk S(mk+l) Amk ,

whence

.
H
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-1
2 x A > S(n. )x_ S(m ) A I a
neIk n"n"n k ny k+1 my neIk n

Stny)x,  Slmyyy) 7 A, (8(o41) - S(my))

v

S{n,)x
k ny
by (4.8). Therefore

kzl S(nk)x“k S Gk

From (4.9) and Mme <y < my .y follows (v). []

~ -]
u =>+f B, . Furthermore, it is intuively expected that
. 1

68

5. Infinite Product Measures and Infinite Convolutions

Some very interesting examples of measures can be most
easily presented as infinite convolutions. Infinite con~
volutions may be defined as weak* limits of finite convol-
utions or as "projections" of infinite product measures.
Since useful properties can be obtained from both points of
view, our main task in this section is to establish the
equivalence of the two definitions in certain cases of
interest. Our secondary goal is to acquaint the reader
with examples which pertain to Rajchman measures.

We begin with a familiar measure, the Cantor-Lebesgue
measure u . It is supported on the Cantor middle-thirds
set E . The set E consists of those points x ¢ {0,11
which have a base 3 representation using only the digits
0 and 2 . Viewing p as a probability measure, we recall
that for any n > 1, the probability that the n-th digit is
0 or 2 is

Nl

in each case and that the values of the

digits form independent random variables.

Now consider a random walk on [0,») beginning at 0

For n > 1, the n-th step is 0 with probability % or

2:3™™ yith probability % . Let Xn be the amount of
X
n

oo
the n-th step and X = & + The distribution measure of
1

X, is wu_ =26(0) + 16(2:3™ . From probability theory,
the distribution of X ought to be the infinite convolution
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+ These are the ideas which we seek to clarify in
the technicalities which follow.

Let [rn}m be a sequence of positive real numbers such
1

that J Ty, €= . We denote the infinite direct product of

S =%zgjl—rn.rJ .

» we define a metric as follows: if

y = (yn] , then

[—rn.rnl by

On 8 X = {xn} »

Aay) = Ixoyl = 1 Ix -y | .

g

LEMMA 5.1. The metric topology on S coincides with the

Product topology.

The proof is virtually identical to that of Theorem 1}

in Kelley [1, p. 1221, so we omit it. We shall use the
consequence that S is compact.

Let ¢: S + R be the map

¢({xn}) = Z‘xn .

Then clearly

[$(x) - o(y)| ; lx~y|

so that ¢ is continuous.

Let M be any probability measure on [-rn.rn] .
Then

W) BT REe 5
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N w
= (O ) (?g 5(0)) ,
o=

n=1

are probability measures on S (Zaanen {1, pp. 98-991 or
Hewitt and Stromberg [1, Section 221).
N

)( M, 1s defined by the Riessz Tepresentation theorem to

Recall that

n=1

be the unique Borel measure satisfying

N N
/ £ x,) d(>1<un) (3300 00y)
N
>1< [-rporyl

N
= [e)alKuy (1)
R 1

for f g CO(BU » This is equivalent to

(5.1) [r-¢ dvy = fr "()Y(“n) .
s R .

Note that the continuity of ¢ ensures that fo.¢ is

continuous when f is.

It also ensures that . defined by
u(E) =

v(¢'l_[E]) is a Borel measure. Thus

(5.2) jfw dv=]f du
s i
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for characteristic functions £ » hence for all r e Ll(u)
(ef. Royden [1, p. 318]). Note that c(m)enl(y) .

Now by definition of v (Zaanen [1, pp. 98-991), ir
g€ 1s a simple function on § » then

(5.3) fg va +] g dv

as N + o ., We clainm (5.3) holds also for all g e ¢(8) .

For let g ecC(s) , e > 0 » and h a simple function such

that Ilg-hllc(s) <€/3 . Such an h exists by compactness
of S, If N is such that

l[hdv lhdv|<e/3 .

then
l]g dvy —jg dvlg[lg-hl dvy +l]h dvy -/ h dv]
+]ih—gl dv
< % + % + % =e

Thus (5.3) holds for g €C(5) . 1In other words, Vg v
weak* ., From (5.1), (5.2), and.(5.3), it follows that

>% M, o weak*.. That is, the two Possible definitions
of infinite convolution coincide,

Given a funetion f e Ll(v) + 1.e,4 a random variable
with finite expectation, we would like to find a. function
€ € L1(y) such that for all Borel ECR,
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(5.4). [g du =f £dv . : \
E

s LE]

To this end, set
o(E) =[ £fdv .
o~ LiE) ”

It is easily checked that o is a complex Borel measure,

Furthermore, if uE = 0 , then v(6™} [E]) = 0 by definition

of .u » whence oE = 0 . That i, o < <p . Now the
Radon-Nikodym theorem supplies the sought-for g .
Note that by (5.2),

[gdu_] god¢ dv .

¢~ L(E)

Comparing this with (5.4), we mightAexpect that in certain
cases f = god a.e.[v}) . Let us call ¢ neasure-copre-
Berving if for all Borel FCS,we have wu(¢[F]) = vF ;
note that for Borel F , thé set ¢[F) is p-measureable
since it ds analytic (Arveson {1, pp. 64-671). (In the
standard terminology, our ¢ 1is already measure-preserving
since v(o_llE]) = uk ,)

We shall need the fact that if E 1is u-measurable,
then 0-1[E } is v-measurable. For by definition
(Arveson [1, p. 67]1), there exist Borel sets E
that E1CEC.E2 and u(E2\E ) =0 . Since

TEj 1€ 1[Elc¢»'1(E ) and, by definition of 1y ,
v(s” [E21\¢'1 E)1) < v(o T ENE) D) = u(ENE) = 0, 1t
follows that ¢°1[E] is v-measurable.

1 E2 such

:
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PROPOSITION 5.2, 1If ¢ is measure-copreserving, then
f=god a.e.[v].

PROOF. For Borel FCS , let F = ¢ l(¢(F]] . Then, as

Vo
noted above, ¢[F] is u~-measurable and P 'is v-measurable.

Thus ¢ is measure-copreserving if and only if w(f\F) = o

for all Borel F ., 1In this case,

Ifdv =Lfdv =/ gdu=£go¢ dv
F F

${F]

’ =/go¢dv.
: F

Since F is arbitrary, the result follows. LJ

Recall that f, , £, € L1(v)

2 are said to be independent

if for all Borel set; Dl N D2(:E N
j(x1 ° £1)(xy 0 £,) dv

= xgoty a)(fxyety av)

vhere Xy denotes the characteristic function of Di .

PROPOSITION 5.3. Suppose that ¢ is measure-copreserving.
Let £3 £, e Ll(v) be independent and let £, = g;°¢

a.e. [v]) (i =1,2) . Then gy and g, are independent.

T4
PROOF. With the previous notation, we have
/(xlo g8y) (x50 g,) du =j((x1°gl)(x2° gy)le ¢ dv

=/(Xl° g1° ¢)(X2° 82° ¢) dv =/(Xl° fl)(xz" f2) dv

S xge £y a)(fxzo £, av)
= (fxgo ey (e, aw) . O

Of course, the samé holds for any collection {fi} of

independent random variables with finite expectation.
If for somé Borel set ECS , the restriction ¢|E

18 1 -1, ¢[EINGIE®) =6, and vE = 1, we call ¢

almost 1 - 1 . Note that if there exists a measurable

such set E , then there exists a Borel one.

THEOREM 5.4. The map ¢ 18 almost 31 - 1 1if and only if

¢ is measure-copreserving. 1In this cage, if

E,=({xe8: yy838 ¢(x)# $(y)} , then E, 1is Borel
and on =1,

PROOF. Suppose that ¢ 1s almost 1 - 1 . Let ¢|E be
1 -1 with GIE)NGIE®] = § and  vE =1 . Let FCS be-
any Borel set. Then ¢'l[¢[Ff\Ecl]C:E? , whence

(¢ IFNE®)) = ¢
Since ¢'1[¢[Ff\E]] = PNE , we also have

u(elFNEL = v(FNE) .
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Hence

w(elF)) = u(slFNEI U ¢[FNED)

1t

u(¢[FNE)) = w(FNE)

Vv({FNE)U (FNE®%)) = vF .

Therefore ¢ is measure-copreserving.
Conversely, suppose that ¢ is measure-copreserving.

Let E_ be as in th = g
o n e theorem and Fo Eo « Then Fo

is an Fo—set » hence Borel (Federer and Morse [1, Lemma 3.21).

By Theorem 5.1 of Federer and Morse [1], there exists a
Borel set BCS gsuch that /B is 1 -1 and ¢[§] = ¢[s8] .
If G = FJ\B » then ¢1[G) = ¢(F°] and ¢[F°\G] = ¢[F°] .

Hence
VG = u(elG]) =u(elF 1) = 28
since ¢ is measure-copreserving and, likewise,
v(Fo\g) = VvF_ .

Addition of the last two eqﬁations and use of the relation

Fo = G U(F \G) yields VF, = 2vF , i.e., VF =0,
Therei.‘ore VE, =1 . It is evident that ¢|E° is 1 -1

and that ¢[E°]ﬂ GIEg] =@ , so the proof is complete. []

REMARK : Whgn Eg is countable, which is the only case we

shall encounter, the theorem is elementary,
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t

We are now ready to apply this theory to the example

of the Cantor-Lebesgue measure. Let u = % §(0) + % §(2.371y,
To construct a measure v on the space S “previously
described, we should view u, eas being supported in

(-2:37", 2.3 "], However, we may just as well view

as being supported in {0,2.3"™] or even {0,2.377) .

Making the last choice, we define

S = >'°<(0.2-3’“} .
n=1

Then ¢ isa 1 -1 mapof S imto (0,11 . If f_ is
the characteristic function of the set

(x €8s x =237,

then {fn} are clearly independent, hence so are the

corresponding (gn} . The g, @re half the value of the
n-th ternary digit of t+ € {0,1} , whereas the fn
correspond to the Xn of the random walk described earlier.

Since the probability that gy = 0 is

I(l-gn) ay = [(l-fn) v =1 ,
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our new description of the Cantor-Lebesgue measure u as
l o0
voeg” or as X(un is indeed correct. Gonsequently,
1

identifying T with' [0,1) , we can immediately calculate

Wx) = 1 [+ % e(-2k-3"My ]

n=1 1 n=1

since the Fourier-Stieltjes coefficient of a convolution
is the product of the individual Fourier-Stieltjes coeffi-
cients.

In a similar manner, the Cantbr-Lebesgue measure on
the Cantor set with dissection ratio 6% <% (Zygmund [1,
I, pp. 194-1951) may be represented as

(5.5) g - SiEl[%c(o) +36(6 - 1) 071,
n=

It is well-known that . Mg is a Rajchman measure if and
only if 8 is not a Pisot-Vijayaraghavan (B-V) number
(Zygnund (1, II,pp. 147-1521).

In this example, if e|= 2 , then ¢ 1is no longer

o«
l-1 a3 a map from 8 = ;X((o,z-n} to [0,1] because
n=1

of the fact that there are countably many numbers having two
binary representations. However, it is clear that v is
continuous, so that ¢ is almost 1 - 1 » hence measure-

w~

copreserving. Since p = m , we have

m = )11<l-21-6(0) + 3527
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By changing the probabilities that the n-th binary digit
is 0 or 1 +to P, and a, respectively, where

p, t q =1, we obtain a different useful class of measures:

@

(5.6) w=2K tp, 6(0) + q, 6(27)} .

=1
PROPOSITION 5.5. Let S = 251{0.2"‘} »let . p +gq =1,
pn y qn >0, let

v = Xl i, 8(0) + q_ 6(27™)],

n= "

and let u be as in (5.6). Then ¢:(S,v) + (R,u). is

measure-copreserving if and only if
L= L
(5.7) I p =w=]
n=1 =

PROOF. Let Eo be the set of x 6 8 ha;ing infinitely
many coordinates equal to 0 and infinitely many not equal
to 0 . If ¢ is measure-copreserving, then by Theorem 5.4,
on =1, Since P, is the v-probability that the n-th
coordinate of a point is 0 and a, is the probability
that it is not O , the Borel-Cantelli lemma immediately
implies (5.7).

Conversely, suppose (5.7) holds. Then by the Borel-
Cantelli lemma, vE =1 . Since ¢|E° is 1 -1 and
¢LE 1N ¢[Eg] = ¢ , it follows by Proposition 5.4 that ¢

is measure-copreserving, O
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6. Non- 1 Set onti d
For u as in (5.6), Blum and Epstein [1] showed °? nornea ots (continued)

that u e R if and only if P, * i .

2 Using a slight extension of the ideas of Section 5,

we novw show that not 'all Rajchman measures put zero mass

on W#-sets and that, in fact, Theorem 4.5 is best possible.

THEOREM 6.1. There exists a Rajchmgn measure supported in

the set of non-normal numbers base 2 .

We prove Theorem 6.1 by using the following construction.

THEOREM 6.2. Let {Ki}m be any strictly increasing
1
sequence of integers and let K, =1 . Let (ei]°° be any
’ 1

sequence of real numbers such that
0
0<e;<1, % gy = .

Let y be the probability measure

(6.1) u =>r<l{eié(0) +(1-ey) A< (36(0) + 2627991 .
i=

Ki_l<k5Ki
K -1 K.-1
' Then for 2 *"1 7 ¢ qcn i
(K _,-K, ,)
A i- -2
(6.2) [u(n)] < €s€5.1 Y g ey g + 2 171
" and u is concentrated on the set of x for which
1 K k-1 1 ,-1
(6.3) 1lim sup I x (2% >1- 5Q°,
K+ k=1 [0,%)

where Q = lim inf X

ir1/%5 -
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+

If we take € 0 and Ki - Ki-l + @ in Theorem 6.2

then (6.2) implies €R . If {Ki} is lacunary, then

H
Q>1, whence 1 - % Q_l > % « In this case, (6.3)
implies that y 1is concentrated on the set of non-normal
numbers base 2 . Therefore, if e; 0 .and Q > 1 , then
b is a Rajchman measure concentrated on the set of non-
normal numbers base 2 . A Rajchman measure v supported
in the set E of non-normal numbers bage 2 may be
obtained from the given p as follows. By regularity of
M , there exists a closed set FCE such that uF > 0
Let v = yu|F .

Note that if [Ki] is hyperlacunary, i.e.,
Ki+l/Ki + » , then by (6.3),

. K
(6.4) ITmgz ¥

Zk'lx)
K+ k=1 [0,3)

=i

=1 a.e.[yp] .

Before proving Theorem 6.2, we demonstrate that
Theorem 4.5 is best possible (Corollary 6.4).
This requires a simple

+

PROPOSITION 6.3. Let X, 20, ¥po20, 1 X, =, and
I Yo <@ . Then there exists a subsequence Nc:ﬂ* such

that néN Xp == and y <x  for neN.

PROOF. It is trivial to check that

satisfies the desired conclusion. []
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EOROLLARY 6.4. If ¢(n) 1is any non-increasing sequence such
that

©

(6.5) & j e

n=2 n logn

then there exists a positive Rajchman measure p  concentrat-

ed on the set of non-normal numbers base 2 with

(6.6) [(n)| < o(In]) .

PROOF. We may assume that ¢(0) = 1 . TLet {K;} be any
lacunary sequence such that T1im Ki+1/Ki <o , From two
uses of the principle of Cauchy condensation and from

(6.5), we, conclude that

K
(6.7) Fe(2) =w |

By Proposition 6.3, there exists a subsequence of {Ki) ,
call it again [Ki) » such that (6.7) holds and

-(k K
2

i-1" 1—2)

K
<zt
1 K
Let €, = % 6(2 ) in (6.1). Then (6.2) rgduces to

(6.6) since €4€5.1 S €5y - a

For the proof of Theorem 6.2, we shall use the
following estimate.

LEMMA 6.5. Let ne Z', let 0 < § < % , and let

K = L(% - 8)n], where [u] denotes the integer part of

u . Then
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2
-2né 2
n K n -262n . ’ I <e 1 < e—2n6
2 )_: (k) <e . .
k=0
since 61 > 6. O
PROOF. For 0 < x < 1, we have
PROOF OF THEOREM 6.2 We begin by describing some properties
n K - :
(14 x)" = ) (n) xK > <k ) (n) , of uw . The measure u is not as simple an infinite con-
k=0 \K/ T =T ook
volution as the Cantor-Lebesgue measure of Sectjion 5. There,
when.ce each binary digit was independent. Here, only blocks of
L n _-K digits are independent (cf. (6.8) below), where the i-th
I k] £ (L+x)7 x .
k=0 block consists of the k-th digits for Ki g < k<K, .
Choosing x = K/(n-K) , we obtain Let us denote the k-th digit of «x by
£ k-
e PRy TS L SRR
" k=0 k] - n-K K [%'1)
Define &, so that K = (3 - 6;)n . Then n - K = (3+6)n . Thus
Also define © -k
x = 7 r (x) 2 .
: ; k=1
£{x) = (L+x) log (1+x) + (1-x) log(1-x) :
Let
for |[x| <1 . Then
Tl =1 - () = x (2Rl
. k k 1
%+6 N 1,7-n 10,5
- 1 1 2771
I<2"8(5+ 6,) (5 - 6;) = {k: =
2t 8 z- 8 By = ke By < k<K Wby =Ky =K,
= n -
= exp(-2 f(261)) . Rl(x) = bil z rk(x) ,
keB,
i
Now
and

™ 2n
2
£(x) = nzl ;(’é—n_—ly 2%, Ri(x) =1 - Ry (x)

i
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Using the random-walk interpretation of u , say, from

Section 5, we see that u may be alternatively described as

the (continuous) probability measure satisfying (6.8)-(6.10):

(6.8) Given any a, = 0,1 (x e Bi) ,
bj=0.1(3e131,).1;€1' , the
events

{x: rk(x) =a. ., ke Bi) ,

n

{x: rj(x) bj » § €By,)

are independent.
-bi
(6.9) ni{xs R, = 0} = gy + (1 - ei) 2 .

(6.10) Given a = 0,1.(k € Bi) not all 0 ,

-by
“ulx: rk(x) = ?k , ke Bi} = (1 - ei) 2 .

Now by (6.8) and (6.9), the events {x: Ri(x) = 0}
are independent and the sum of their probabilities is
infinite. Thus, the Borel-Cantelli lemma yields

u(limisup(x: Ri(x) =0)) =1,

Hence

(6.11) lim sup ﬁi(x).= 1 a,s.

{00

It follows that

86
X '
1 i :
lim sup 7—%—— | F (x) >1 a.s.,
K.-K k -

i+ i 7i-1 k=1

-

whence

K
1 i -1
lim sup = ] T {x) >1 -4 a.s,
i+ i k=1
If Q > 2 , then we see already that p is concentrated on
H*({2k°1]) + The argument which follows is necessary only
to prove the better estimate (6.3), which ylelds such a
result for all Q > 1 .

We now claim that

(6.12) © liminf R (x) >
i+00

LS
o
w

For let 0 < § < 1/2+ and define

Fyo= {x: Ry <2 - 6y .

Then
-b b
. 1 1)
WFy = (1 - e,) 2 {1 (m .
mﬁ(-i-G)bi
By Lewna 6.5,

2
-26 bi

uF1 < (1 - ei) e - .
whence ):uFi < ® . By the Borel-Cantelli lemma, this implies

u(lim sup Fi) =0,
i .
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whence

. - 1
lim inf Ri(x) 25 -6 a.s.

i+

Since this is true for every & > 0 , we deduce (6.12).

Therefore
! bR (x)
R
L5 L byRyle)
(6.13) 1im inf 3 ] T,(x) = lim inf 25 a.s.
X k i
jre B3 k=1 ire I b
=1 3
Consider
K K
i K i-1 KK, - _
1 - i-1f 1 - 17841
= Fo(x) = =z==[=—— ] T (x)]+—==R.(x) .
Ky kzl k Ky (Ki-l k=1 K LY

Let x be any point for which (6.11) and (6.13) hold.
Given & > 0 , take i 8o large that Ei(x) >1 -6 and

- 1
rk(x) > 3- [

Then

K K
i-1 (1 i-1
—— (2 - 8) + (1 - —===) (1 - &)
Ty(x) 2 Ky v Ky

K

z ] - l _i:l Y 0(5) .
2 Ki

Letting 1 + » and & + 0 , we conclude that (6.3)

holds for this x . Since (6.11) and (6.13) hold almost

surely, so does (6.3).
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Before turning to the proof of (6.2), we indicate why,
if £y 0 , we should expect from heuristic considerations

that uw € R . Note that for any dyadic interval

akz‘k + 27K

1 »

N
1
=
-
it ~15R

)

we have
IxI(ij) du(x) = vlx: rj+k(x) = a, for 1<k<Kk)

» 2K 1] as jo e

That is, the Rajchman-Milicer-GruZewska criterion is
satisfied for dyadic intervals and the sequence (23) .
Heuristically, this is all that should matter in determining
for this measure whether the criterion is satisfied in full,
In other words, it should follow that u € R .

We now demonstrate (6.2). First, it is clear that

(6.14) P(n) =

j =5
n= 8
[=

{e; + (1-e.) 1 (2 + 1 c(n2ky)y
i i’ yep, 2 27"

-K.
If we multiply n (1*e(—n2‘k)) by (1l-e(-n2 1))
k€B
i
and use the fact that

(1 - e(u)) (1 + e(u)) =1 - e(2u)

repeatedly, we find that the product telescopes:




89

1 (l+e(-n2-k)) = ke_(_i.?_j;il

-K.
kGBi l-e(-n2 %)
-X.
: i-1
- e(-nYi) sin wn2 . ,
sin nn2 *

where vy = 2 -2 1 . Substitution of this into

(6.14) yields

B(n) =
(6.15) = ~(Ky K, ) i
iTi-l sin mwn2
i'[ gi-l-(]_..gi) 2 e('nYi) -——-——___K.;.__ .

sin mwn2

Since the modulus of the i-th factor is at most 1 by
(6.14), we may estimate |a(n)| by the product of the i-th
and (i-1)-th factors only. Doing this, and noting that
the second term of the i-th factor also has modulus <1 by

(6.14), we see that

A
Ju(n)} < €i€5.1 Y €5 t e

i-1
(6.16) , : K
+2'(Ki'Ki-2) sin gn2 1-2
sin mn2 i

K -1 K,-1

For 2 1717 < p i
K -K,-1 -X

n2 -l < mn2 ig % .

Therefore

for example, let Jr be the integer part of (log r)l/2
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-K K., ,-K.-1 K., .-
(6.17) sin wn2 1 > sin w2 i-1 74 > 2 i-17

Here we have used the well-known fact that sin 76 > 20
for 6 € [0,3) . Substituting (6.17) into (6.16) and

estimating the sine in the numerator by . 1 , we obtain

(6.2).

We remark that the notion of infinite convolution
could, if desired, be avoided by defining u viav(6.8)-(6.10).
However, we would then be led to a rather ugly proof of
(6.14). This would follow the lines of the calculation of
the Fourier-Stieltjes coefficients of the Cantor-Lebesgue
measure appearing, for example, in Zygmund {1, I, p. 195].

In Section IV.3, we shall see that a measure of the
form (5.6) would not suffice for Theorem 6.1. This is
why the more complicated measure (6.1) was used.

It is interesting that (6.4) can be achieved for any
lacunary (Ki) 'by a sultable choice of [Ei} + To see this,

let ir + o and €y 7 0 be sequences such that

r
1r+l e G and
® i -1
z i‘:11‘1‘1 ro_ o ;
r=1 T
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Define

€, E vee € = ’
17441 i -1

r=1 r+l

so that the sum of the probabilities of the independent

events

{x: Ry (x) =R

N 21(x) = 0}

x) = ... =R
ir+1 ir+1

is infinite. As in the proof of (6.11), it follows that

K
’ T
lim sup T, (x) =1 a.s.
Ky o™ i k=K k

9o i
P r+l r ir

L

Sinee K, /l(i + 0 , we deduce (6.4).
L A r+l
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7. Helson Sets and Weak Dirichlet Sets '

We shall not be concerned with sets of asymptotic
distribution in this section. Instead, we shall consider
some types of‘sets whose definitions are.very natural
from the perspective of our subject matter. These types
of sets also arise in other important areas of harmonic
analyasis, where they are usually given a different, though
equivalent, definition. In Section 8, the sssential results
of this section will be used again in discussing H-sets .
Other intimate connections to H-sets will be exposed

in Chapter 1IV.

NOTATION., Let E CT be a Borel set. We denote the
set of meagures u € M(M) which are concentrated on E
(1.e., lul{E) = Jlull) by M(E) . The subset of poaitive

measures on E 1is denoted H+(E) .

This definition is slightly non-standard. One usually
defines M(E) anda M'(E) only for closed sets E , in
which case one can say that p € M(E) is supported on E ,
not merely concentrated on E . However, in our context,

it is unnatural to restrict attention to the closed sets.

DEFIRITION. Given a Borel set E € T, the number

8(E) = inf {:‘T‘[‘d&ﬂ- : 04 n eu(z)}
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is called the Helson constant of E . If s(E) =s > 0 , A Borel set E 4is a weak Dirichlet set if for all 4 e M+(E)
then E is said to be a Helson set or, if we wish to specify and all e > 0 , there exists E1CZE which is a Dirichlet ‘
the constant, a Helson-s set. set with u(E\El) < g .

This definition is not the ordinary one. Again, it is Again, it is customary in these definitions to require
usual to consider only closed sets. In that case, our E to be closed (Lindahl and Poulsen (1, pp. 1, 1481),
definition of Helson set is equivalent to the usual one but this is unnecessary.

(Lindahl and Poulsen {1, p. 161), although the Helson Note that since |e(nx)| = 1, each of the following
constant is different. Kdrner (see, e.g., {1, p. 2251) conditions is equivalent to E being a Dirichlet set:

also prefers our definition. Since we shall have no need

(1) lim inf ||1 - cos 2wnx|]
for the classical definition of Helson sets, we shall not lnl F ®

L™(E)
: t .

; present it here (i1)  lim inf |lainganx|| _  =0.
t Inl + oo L (E)

DEFINITION. For a Borel subset EcT, let

Appropriate use of the following lemma is key to our

+ . R + Ty
st(E) = ing {T[{ﬁ} 0 4pen (E§ ) proof that E is weak Dirichlet if and only if s'(E) = 1 .
) LEMMA 7.1. If u is a probabilit
Clearly s(E) < s*(E) , so that Helson sets are included A prone Y measure and 6, 1s
defined b H(n)} = e(8. ) Mn th
among the class of sets for which s+(E) >0 . In particular, v ! n Hin) on

+
the class of sets for which s (E) = 1 includes the Helson- '
~ ; (7.1) Rele(s,-6.) {(n-m)) > 2(1f(n)| + |1B(mn2 - 1
1 sets. We shall now show that the sets E with s (E) = 1
are precisely the weak Dirichlet sets, which are defined as for a11 n , n .

follows. ’
PROOF. The arithmetic-quadratic mean inequality (or the

—mamal o DY

DEFINITION. A Borel sef’ ECT is called a Dirichlet set if Cauchy -Buniakowski-Schwarsz inequality) yields

bn it fletm) 1l w0 )|+ 1B 2 - | [(el6,) o(-nt) +a(o,) o(-at)) an(t))?
nj+eo .

if|(°“”2 du(t) = 2(1+Refe(6 -6 ) fi(n-m)}) . [J
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REMARK. For an improved inequality to (7.1), see
Section IV.7. .

We shall use the following corollary of {7.1).

PROPOSITION 7.2. If u eM'(®) and R(u) = ||u|| . then

there exists n, + « such that ﬁ(nk) + lull .

.PROOF. We may assume that |lu]] =1 . Let Ia(mk)l +1,
A
motw . If |u(mQ| = e(ek) ﬁ(mk) » then we may assume,
by taking a subsequence if necessary, that 8, converges
and that (mk+l - mk) t+ » . From (7.1), we have
1im Re{e(o - 0,) ﬁ(m -m))} =1 .
. ktl " Ok ktl T M)l

Since e(ek+l - Gk) + ; » it follows that

1im Re Q(m
k+oo

kel " M) =1
Let My = Mygq - My ..CJ

PROPOSITION 7.3. 1If E 4s a Dirichlet set, then
st(g) = 1. ‘ ' ‘

PROOF. Let u € M+(E) and € > 0 , Choose n such that

o

lle(nx)-1 | < € . Then
L (E)

12(n) = flull | = lf(e(-nx) - 1) du|

< flotm) - 1] @ < e - full
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Therefore R(u) = |ju]] and s+(E) =1.0

THEOREM 7.4. Let ECT be Borel. The following are

equivalent,

(1) s*(m)y =1.

y

(ii) E 1is weak Dirichlet.

PROOF. Assume (i) and let u € M+(E) . For convenience,
take Jlull =1 . Let £,(x) =1 - cos 2unx . Then

]]fn| dp =[]:fn du | =|Re[ (l-e(-nx)) dp(x)|

< 1 Qeetonn)) auG) ) =11 - fin)] .

By Proposition 7.2, there exists n, + @ such that

ﬁ(nk) + 1 . By the above inequality, we conclude

fn + 0 in Ll(u) . Hence, there exists a subsequence
k

f + 0 a.e. [u} . By Egorov's theorem, £ +0

nl
k . .
uniformly except on a set of arbitrarily small measure.
Therefore E is a weak Dirichlet set.
+

Conversely, assume (ii). Let p € M (E) , € > 0 ,
and EICIE be a Dirichlet set with u(E\El) < e .
Set v = u[El . By Proposition 7.3, R(v) = ||v]] .

Since | [lull-lvll | < e and |R(u) - R(V)} < ¢,
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it follows that |[R(u) - Jlull | < 2¢ . Therefore
R(u) = llu}]l and (i) holds. [J

Additional information on weak Dirichlet sets and on
sets with s'(E) > 0 is given in Section IV.5.

We now show that if s+(E) >0, then EE€ Uo .
On the other hand, we shall also show that given s > 0 ,

there exists u @ R such that BE = 0 for all E with
st(®)

iv

8 . Thus, if € is the class of sets E with
s+(E) 2 8 , it follows that € is contained in Uo , but
C does not characterize R . The same is therefore true
of Helson sets of constant 2 8 and of weak Dirichlet sets,
since these are but particular subclasses.

We remark that countable sets are weak Dirichlet sets.
This follows from the fact that finite sets are Dirichlet
sets (Lindahl and Poulsen [1, p.31). That countable sets
are weak Dirichlet sets also follows from the following two
facts: countable sets are so-called N-sets (Zygmund
{1, I, p. 2361) and N-sets are weak Dirichlet sets (Theoremn
IV.5.20). Although countable sets are not necessarily
Helson sets (Graham and McGehee [1, p. 340]1), clearly

singletons (and finite sets) are Helson sets.

PROPOSITION 7.5. If s+(E) 20 and y eR, then uE = 0

PROOF. If p€ R and pE £ 0, let v = J(u|E)| . Then
veR and 0#v eM (E) . It follows that s'(E) = 0 . [J

98

NOTATION. For u e M(T), we denote - . 3
. A . A
= IRl , = sup lii(n)] .
0l = UL - sup B0

THEOREM 7.6. Let p be the Riesz product

o

(7.2) du =1 (1+uk cos 2n(nkx + ¢k)) dm
k=1

with -1 < o <1 and

(7.3) Pr/m 29> 3

Then for all v << u ,

(7.4) R(v) = RGu) 151, -
In particular, if v > 0 , then
(7.5) RGO = RO VI

Furthermore, if 0 < v << p and {ni) is any sequence for
which Iﬁ(ni)l +R(u) , then lc(ni)|.+ R(v) and (n}} is a e

subsequence of {nk) .

Background material on Riesz products is presented in
Katznelson [1, Section 5.1.3, pp. 106-107} and Zygmund
[1, I, Chap. V, 57, pp. 208-209). Recall that Riesz products

are probability measures.

«OROLLARY 7.7. If u 1is as in Theorem 7.6 with

lim sup lukl =8>0, then p ¢ R yet uE = 0 for all E
ko

with s¥(E) > s/2 . !
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PROOF. The hypotheses imply that R(pn) = s/2 . 1r
ME > 0, let v = y|E . Then by (7.5), RMW)/|IvIl = s/2 ,
whence s+(E) < s8/2 . (W]

Note that Corollary 7.7 leaves open the possibility
that if uE = 0 for all E with s+(E) > 0 , then
beR. Inparticular, the class of Helson sets could
characterize R .,

Before presenting the proof of Theorem 7.6, we give a
sketeh of the proof., It will suffice to consider v of the
form dv = P dy , where P 1is a trigonometric polynomial.

If N is the degree of P , we easily calculate

S(m) = % Ber) f(r + m) .
jr{<n

Now ﬁ(r+m) =0 unless r + m has the form

kO

r+m= kzl €40y €, = -1, 0,1,

vhere € # 0 and k, depends on r + m . For suffi-
o

ciently large m , the leading term is + n, . Furthermore,
: o

we shall show that for large m , the index ko of the
leading term is the same for all r e [-N,N) such that
r + m has the form above. This is due to (7.3) and is
the key observation, since it will lead to

A Fa A : 5
= - ) 3
ul{rt+m) u(nko) ul{r+m nko
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for |r} SN and large m . From the previous calculation

of G(m) » we shall conclude that

S(m) = fny ) S(m - m ),
o] o]

A
whence R(v) < R(p) i, . On the other hand, by using

m =mn , we shall see that

whence

Sny) = B(ny) $(0) ,

R(v) > R(u)IG(O)I - Substituting e{mt) dv(t) for

dv(t) yields (7.4).

We now turn to the details.

LEMMA 7.8.

Let u be as in Theorenm 7.6. Define n_p = ong

for k e Z+ and define n, = 0 . There exist functions

o]

K: NxZ+Z and Mot ™ >N  having the following

properties:

(1)

(7.6)

(i1)

(7.7

If P is a trigonometric polynomial of
degree at most N , if du = p dy , and
if  fm| > M (N) , then

e )

B(m) = Bnge ) S(m -
(o] o]

where Ko = KO(N,m) . If K, =10, then

S(n) s 0.

For each N ,

lim KO(N,m) = o ,

m +> @

KO(N,m)#O
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(111) For k> 1 and all N , ‘ We claim that if |m| > M (N) ", Jr| ¢ N, and K, = K (N,m) ,
then ’
(7.8) Ko(N’nk) =x . (iv) if r + me £ , then ko(r+m) =K, 3

i (v) we have
PROOF. Fix N . Let I be the set of m € 2 having

the form ’ (7.13) N(r+n) = ﬁ(nK ) ﬁ(r+m-_nK ).
o o
k (m) Given these claims, we nay easily deduce (i), TFor let
o X ’

(7.9) m = Zlek(m) n s ek(m) =-1,0,1 ; €y (m)(m) 0. P,v,and m be as in (1). Then

k= o

R A ( _

It is well-known that because of (7.3), any mn has at most v(m) = ].P(t) e(-nt) Qu(t)

one representation of the form (7.9). Given m , let r be

[ I Bler) e(-rt) e(-mt) au(t)

an integer with least absolute value satisfying r + me ¢ . Iri<N i
Let | A
A
. = I P(-r) ulrtm) .
olr+m) it |r| <N, fr]<N S
KO(N.m) = :
0 it frl >N . By (7.13), this
A A 'A
Note that = u(nK ) I P(-r) u(r+m-nK )
[} ll‘l<N o
(7.10) Ko(Nuom) = K _(N,m) . ~
: Tlng ) ¢ )
N = n m -
That (7.7 and (7.8) are satisfied is clear. Now if O<m € I, u K, nKo ,
= . . m = o . i
then €y (m)(m =1 . Also, we have Lin k (w) vhich is (7.6). If K_ =0, then f[(r+m) = 0 for . -
Hence, choose MO(N) sufficiently large that if n > MO(N) , . Ir] < N, whence S(m) =0, Thué (1) is provéd. ,
frl <N, r+mnex, and k, = ko(r+m) , then Now if (iv) were not true, then there would exist ,
r‘e [-N,N] ﬁith r'+ m€ . and K = (rt+m : k (r+tm) ..
(7.11) e (r +m) =1, ’ o o ) # k (r+n) .
° Let k0 = max(ko(r+m) , KO} . For some Gk € 2,21, we
may write
(7.12) "k, 2 ANlq - 1) /(q - 3) . g

B aanc JE R T Procens e
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20 > |r - r'| = [(r+m) - (r'+m)]

+

n .7 &.n
o l1gker KK

Iv

n, -27Y n_ .
ko 1_k<ko k

k -k

By (7.3), n 2q ° n, for k< k  , whence the above is

o}

5 k-ko

n - 2 n q

= ke 1<k<k ko

>y (=27 q7) = n (q-3)/(q-1) .
[ I=1 [

This contradicts (7.12), establishing (iv).
Now (v) is clear if KO = 0 . Suppose Ko F0 .
Since y 18 a Riesz product, ﬁ is multiplicative on ¥

in the sense that if n , n' € § and ek(n) . ek(n') =0

- for all k , then ﬁ(n+n') = ﬁ(n) ﬁ(n') . If r+meg

then by (7.11) and (iv), r + m - ne €%, vhence (7.13)
°
follows from multiplicativity of fi . 1If r+mg 1y and

T+ m - ng 2 £ , then both sides of (7.13) are zero. The
o .
final case to consider in proving (v) is if K, #0

r+mgZL ,and r+nm - nKb €I . We claim that this is
impossible, however. For since r + m @ I but

r+tm- nKo € L , it follows that k = ko(r+m-nKb) 2 K
Now
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Since K, # 0, there exists r' @ [-N,N] such that

' +m=n + ] e (r'+tm) n, .
Ko o agkek ¥ k

Subtraction of these two equations yields
2§ > n,  (q-3)/(q-1)
o

as in the proof of (iv), contradicting (7.12). [

PROOF OF THEOREM 7.6. First consider the case dv = P 4y ,
where P 1is a trigonometriec polynomial. Let N be the
degree of P . Let Ko ’ Mo be as in Lemma 7.8.» If

im] > Mo (N) , then

1' A
gleg T« v, » Kk, #0,
'G(m)l S 2 KO L4 o

0 L, K. =0,

by Lemma 7.8(1). Letting |[m| + «» and using (7.7), we
A

infer R(v) < R{u) - vl , . Purthermore, if

|a(nﬁ)l + R(u) , then clearily {n}} 1is a subsequence of

{n,} , say, {n, }° . By (7.8), X (N,n, ) = k. , whence
k ki i=1 o ki i

(7.6) reduces to
I} A A
vin, ) = u(n, ) v(0) .
ki ki

A i A
Therefore |\)(nk I+ R(u)Jv(0)} and
i

(7.14) R(v) > R |S(0)) .
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8. H-sets.
Substitute e(-nt) dv{t) for dvw(t) in (7.14):
A Recall that E is an . H-set if there is a non-empty
R(v) > R(u)[V(m)| . -
open are I and a sequence mj t @ such that
S » . . i «
i?ce this holds for all n (7.4) followg Since ECA E; . where
Ivil, = v(o) = vll for v> o0, (7.5) also follows. j=1 h]

Thus, the theoren is proved for the case where dv = P du . Em = {x: nx €1} ,

In general, if v <<y , let dv = fdy, f e Ll(u) .

If u is a Rajchman measure, then the Rajchman-Milicer-
Let & > 0 and 1et P be a trigonometric polynomial such
Gruzewska criterion in the form (1.2) gives
that ||f - p| 1 < e . Let v, = P dp . Then
u
A N
lvl(m) - G(m)l <€ for all m . Lemma 7.8 applied to IT] uE = 1in u(EN Emj) =0,

V1 gives for Iml 2 M°(N) ' i,y uE = 0 , We have shown

L IS - fiitng ) S(neng )| |
o .

° THEOREM 8.1, 1If u €R , then uk = 0 for all H-sets E .
A A A . :
; [vy(m) - u(nKo) vl(m-nxo)' ¥ Our aim is to prove that the converse (Rajchman's
AL A A A A conjecture) fails. Pirst we indicate heuristically why
* )0y (@) [+ g )1 13(0)-S(neny ) | '
o 0 one might already expect this in view of our earlier
< 2 . methods. Let 0 <y e€R . In order to find an H-set
‘ of positive -measure we must find a sequence m, 4 «
Letting |m| + © and then ¢ » o » we deduce the same P " ’ : 4 3
’ ) and a non-empty open arc I such that (m,x) =0 for
results as in the first case. [] Pty op Xpt?y )

X Dbelonging to a set of positive yu-measure , i.e., for

REMARK. Instead of (7.3), it is evidently sufficient to M-many x , Suppose we begin, as in the proof of Theorem

assume only that « 3.2, by taking an arc I with 0 < |I|‘< 1 and a
sequence m, * ® guch that
(7.15) lim fny,, -2 . J njl=ew | q j
leroo 1<j<k

Jxalng) autx) » 0 #q1)



107

In proving Theorem 3.2, we found that our methods enabled
us to find a subsequence {ms)c:{mj} such that
K

1
K le xp(nj x)

tended to a limit a.e.{u) which, fofk y-many x ,

was not equal to |I| . This gave us an A-set with
positive u-measure., However, to get such an H-set ,

we need a subsequence [ms such that XI(mi x) = 0 for
u-many x . Now, if we suspect that our methods are
somehow "best possible," then we would not expect even

to find u-many x for which

K
K L xalepn) o

Indeed, we shall verify this expectation as well later
in the section when we discuss agsymptotic H-sets,

We shall disprove Rajchman's conjecture by finding
a8 Riesz product u € R which annihilates all H-sets .
The method we shall use for proving that H-sets have
u-measure 0 is an elaboration of the standard method for
showing that H-sets have Lebesgue measure 0 (see

Zygmund [1, I, p. 318) for such a standard proof),

LEMMA 8.2. Let EJC'H‘ be Borel sets. Let
- :

E=0N Ej and u be any finite positive Borel measure.
1

If there exists a constant d < 1 such that for any open

arc A

’
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(8.1) 1lim u(Af\Ej) <£d - uA,

Jrow

then uE = 0 .,

Note that Theorem 8.1 is a corollary of Lemma 8,2

and (1.2); d can be taken to be |I°| with

EJ = {x: mjx e1%) . We shall only use Lemma 8.2 in

the case, such as this one, that E is a finite union

J

of arcs, but the general statement is not essentially

more difficult to prove.

PROOF. We only have to show that (8.1) holds for all

Borel sets A . For if so, simply put A = E

Now if (8.1) holds for open arcs, it certainly holds

for finite unions of arcs. Let B be any Borel set.

Let €% 0 . By regularity of u (Rudin [2, pp. 49-501),

there is a finite union of arcs, A , such that
u(B A A) <€, where B A A = (BN\A)YU(ANB) .
(8.1) holds for A , it follows that

lim u(BNE,) < d(uB + ¢) + ¢ .
j+m J

Therefore (8.1) holds for B , as desired. L]

THEOREM 8.3. Let u be the Riesz product

(8.2) dp = (1 + a,cos 2n(nkx + ¢k)) dm,

=8

k=1

Since




109

with -1 < a

Ia

X 1, @y 4+ 0 , and

(8.3)

+ @

Nyyq /oy :

Then uw @ R, yet u puts no mass on any H-set

PROOF. Since nk+1/nk < 4 for at most finitely many X ,
it suffices to assume nk+l/nk > 4 for all k . Let

be an arbitrary H-set given by

o
EC N E,
1 3

Ej = {x: m X e1® ,

where I 1is a non-empty open arc and mj t o . Ve

shall establish (8.1), which implies that ulk

"

0 . We

shall make the necessary calculations of the yp-measures
of intervals in terms of ﬁ . To make things simpler,
however, we shall avoid the characteristic functions of
the intervals and use approximating trigonometric
‘polynomials instead.

Note that |§I(z)| < |I] for all 2 #0 . Since
Xi(#) » 0 as & > e, it follows that if

8. § = |1 - (0],
(8.4) i1} sup IXg ()1

then 6 > 0 . “
Let A be any arca Let € > 0 . Since u is

continuous (Zygmund [1 , I, p. 209]1), there exists a
trigonometric polynomial P(x) satisfying

110

P(x) > xA(k) . /‘P du < pA + e .

Likewise, there exists a trigonometric polynomial Q(x)

such that

C2x .o faamg | ve.

1° .

Let N ©be the maximum of the degrees of P and Q . Then

(AN Ej) =fo(x) xIc(mjx) dp(x)

i[P(x) Q(mJX) du(x)

A A A
(8.5) = I NP(-r) Q(-2) u(r+mJ£) .

|1"§_<.N [l
Ve claim that for all sufficiently large J » there

is at most one value of § € [1,N] such that for some

r € [-N,N], we have ﬁ(r + mjk) # 0 . For note that if

Y(n) #0,n>0, then n “has the form

n + L tn » k. < k.
ky kg i 1

Therefore, if h(r + mjl) #0 and f(r' + mjk') #0

we may write
r+ m =

j ny + I+

r' + m A =

J
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and say, k! < k, . For large j , n is large and we
1-=-" k]

have the asymptotic relations

+
™
i+

n
L ~s r'+mk = kl L
[ rt o+ ijT n, t It

=
=
=
=
[

|

-

=
[

=
=
e

vSince /8 <N, it follows that ki = k1 for sufficiently

large Jj , whence & = 8! , ag desired.
Let j be so large that there is at most one value
of 2 as above. If it exists, let it be 20 + Then

(8.5) becomes

u(ANE,) = ; B(-r) §(0) B(r)
|r<n
A A A ) A A A
+|r§£NP(-r) Q(-lo)u(r+mjko)+IglsNP(-r) Qe ) u(r-mjio)

A A
- [Q dm-fP du +|r%<N P(-r) §(-2,) ﬁ(r+mjzo)

A A A
P —r-
o) +|r§5N (r) Q(2) u(-r mjlo)

A A A
= ]'Q dm-/.P dp + 2 Relr%<NP(-r) Q(-lo) u(r+mjzo)

since P , Q , u are real. Since L, £ 0,

As) = - - (o .

*

But,
1(1-Q) - x;] = lQ-xIcl .
so0 that
N A e
110" -2 =15, (-2,)] sle-xIcldm
= /(Q—x c)dm <€
I
by choice of Q . By definition of & ,
A
IRp (-2 )1 < 111 - 5,
whence finally
A
(-2 )] < j1f -8 + ¢ .

- A
(The idea here was to approximate IQ(—£0)| not by the

A
more obvious |Q c(-lo)l < |1%}  but by IxI(-2°)|<|II
I

Therefore from (8.6), for all large j§ ,
(8.7) u(an Ej) < (1% + €) (uA + ¢) +

+ 2 (|I|-6+e)|'r§SN$(-r)ﬁ(r+mjzo)| R

° e
and it remains to estimate the last sum. The easy

estimate of

]fP(x)e(—mJ.R,ox) du(x)|_<_/P dp < pA + g

)




113

is insufficient by a factor of 2

there exists l(o such that for all sufficiently large

IrfsN

A N\ ’
Since u(nK ) = % ay e(¢K ) and |Pay| < j-Pdu < uA t g,
o o o

it follows that for large n ,
A
| P(-r) ﬁ(r+n)l 5% (pd + )
Ir]<N

Hence

. But by Lenmma 7.8(1),

2N\
Bler) §(rtn) = Fan(n) = Hng ) Fab(n - o
(o]

W(ANE;) < (nI%e)(uhte) + 2(nI-ste) 1 (uate)

= (1-6+2¢) (ph+e)

for all large j . (Note that if J is such that 2,
does not exist, then this inequality still holds.)

1-6 .0

Now from Theorem 3.1, we know that the converse to

Letting e + 0 , we arrive at (8.1) with 4

Theorem 8.1 becomes true if we weaken the definition of

H-sets to a set of the form

J
= . 1
E {x: }}2 3 jﬁl xI(me) < |1} .

That is, if # R, then<there is a set E of this
form such that wE # 0 . Suppose, then, that we do not

weaken it quite so far.
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DEFINITION. A Borel set ECT is called an asymptotic
H-set if there is a non-empty open arec I and a sequence

mj t @ such that for all x € E

13
}i: I 'Zl xI(mjx) =0,
J

Asymptotic H—séts are, of course, A-sets , hence
Uo-sets « If uw gR, is there an asymptotic H-set E
such that uE # 0 7 As suggested in the introduction
to this section,'the answer ig "no," 1In fact, the Riesz
product in Theorem 8,3 is an example of a non-Rajchman
measure which annihilates all asymptotic ~H-sets,

This follows from Proposition 8.5 below.

LEMMA 8.4. Let p be a positive measure on a measurable
space X . Suppose that yu has no atoms of infinite measure,
Let (En) be measurable sets and X the characteristic

function of En . Let

: N
E = (t: lin & L xp(t) = 1) .
n=

N-+oo

(This is the set of t which are in "almost all" the

En .) Then

(-]
(8.8) ME < sup w N E_ ,

{(n} k=1 My
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where the sup runs over all infinite sequences ny 4 « .

-]
In particular, if pNE =0 for all (nk) , then

1 %
wE = 0 ,

PROPOSITION 8.5. If uE = 0 for all H-sets E s then

uE = 0 for all asymptotic H-sets E .

PROOF. Let E be an asymptotic H-set

J
EC {x: lim 31- ; xp(mx) = 0) .

J o0
Let
EJ = {x: myx g Iy .
o .
Since M EJ is an H-set for every subsequence
£=1 Y2

{jg']:.__1 » it has uy-measure 0 ., Since
1 J
Ec{x: 1lim 5 | x. (x) =1} ,
J i EJ

the conclusion follows from the lemma. a

This establishes, as claimed, that asymptotic H-sets

do not characterize R , subject to the

PROOR OF LEMMA 8.4. By restricting uy to a subset of
E of finite measure, if necesgsary, it suffices to

assume that p is a finite measure. Let € >0 .,
2i-l -1
)

Set a; = (1 +e for i > 1 . We construct sets

* g
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Fj and integers Nj inductively. Begin with Fo =k

and N° = 0 . Suppose we have constructed Fo’Fl’ ""Fj—l
and No""'Nj-l in such a manner that
F 2 F1.? tee D Fj-l + N < N1 < el < Nj-l » and, for
l<i<j-1, -
(8.9) WPy > g wFy o
and
F. = (t@ F, ,: —2k ) (t) > .}
i i-1° NN 7 Xattl 2 e
N, .<n<N,
1-1="="3
Then since F CE ,

j-1

u(FJ_i\jt: N—Nl

(t) > o.})
i-1 Nj§1<n§h'l it 2%y

tends to 0 as N + o , Thus, there exists N = Nj
such that if we get

F. = ({te F, : ——1 ( ’
T SEE I PR NJ_EWENJX" ) 2 ay)

then Fj c Fj-l and uFJ > uj qu-l « This completes

the construction of {Fj} and (NJ) .

(-
Let F = N 1-*J . Then by (8.9) ,
1
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T L g Xn(8) ] du(t)
-1

3.-[... 2uF a2 (1-e)? g .
F

But also the integral on the left-hand side of (8.10) is
equal to

Cote

—1 AR

* n
i (Ni"Ni 1) No<n1_<_N1 Nj-1<n35Nj k=1 k
i=1 -

i
which is the average of the terums ;1{1 E, over
k= k

n e (Nk-l'"k] - Hence one of the terms is at least the
average: for some nl(j)....,nj(j) with

n(j) e (Nk-l'Nk] » We have
] 2
(8.11) ué:E Enk(j) 2 (1 - e)* uE .

Among ‘the sequence (nl(j): J 21} , there must be some
number n, e (NO.Nll which occurs infinitely often.
Likewise, among {nz(J): iz2=2, nl(j) = n;} there must
be one number n, e (NlﬁNzl occuring infinitely often.
Gontinuing in this way yields a sequence fnk}; such
that for all K s+ there is sgome J 2 K such that

n (§) = n for 1<k <K . Therefore
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This establishes the lemma. []

REMARK. The hypothesis that U has no atoms of infinite
measure is necessary. For example, if y is the measure

on W which assigns 0 to finite sets and o to infinite
«©

sets, and if E =100,nl, then yN E, =0 for all
1

k
{nk} » while E = N, whence uE = « .

H-pets find their greatest significance as examples

of sets of uniqueness, whose definition follows.
DEFINITION. A set ECT is called a set of uniqueness,
or U-set , if the only trigonometric geries

- ,
)] cne(nt) which converges to 0 for all teg E is
o . .

the O-series: e,

0.

Rajehman [1,2] was the first to show that H-sets
are U-gets and he conjectured that U-sets and Ho-sets
were the same. Thig question stood unanswered until thé
paper [1] of Pjateckif-ghpiro (see also Bari [ 2, 11,
Ghapter XIV, 8515,161). He showed that Rajchman's

conjecture was false by 1ntroducihg.f0r each integer
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m>1, a generalization of H-sets called H(m)-sets.

For m = 1 , these are the same as H-sets , but H(m)-seté
cannot always be written as a countable union of
H(m'l)—sets . Pjateckii-éapiro showed that, nevertheless,
-sets are U-sets (see also Zygmund [ 1, I, p. 346]).
In a parallel fashion, we shall now show that H(m)-sets

do not characterize R for any m . We begin with a

prveliminary definition.

DEFINITION. Let me Z'. A sequence (V)] c(z*)" of

m-tuples of positive integers is called quasi-independent

if for each fixed .A A » A not the O-vector , we have

oo
Ve = al =1 L n ™ 4l +o as k»w,
i=1

where V, = (n}({l),....n]((m)) and A = (11,....£m) .

Note that if we take 4 = (0,0,...,0,1,0,...,0) ,
then by the definition, nl((i) * o ag k + o , An example
of a quasi-independent sequence is given by any Vk with
n}((l)-r o and i/l Lo for 1< 1< w., but this
is not the only kind of example.

DEFINITION. A Borel set ECT is called an H\"™ _get
if there is a quasi-independent sequence (Vk}‘i’ and a
non-empty open set BCT" such that for all x € E and
all k ,

Vx = (n}({l)x....,nf(m)x) ¢ B .
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We first show that H(m)C U0 by using the following
generalization of the Rajchman-Milicer-Gruzewska Criterion.
(That H(m)CUO also follows from the well-known but
subtler facts that H(m)c UcU ;5 ef. the notes to this

“»

chapter.)

NOTATION. For (nj,ny,...,n ) € Z" and x€ ™ ,

denote

(8.12) (nl......nm)x = (nlx,....nmx) en™.

THEOREM 8.6. Let yu € M(TM) and m € Z' . The

following are equivalent:

(i) peRr.

(ii) For every open set BCT" and every quasi-
independent sequence {Vk}‘;C(Z+)m ,
lim / XB(ka) du(x) = mB-ﬁ(O) ,
ke
. iy
where mB 1is the m-dimensional normalized

Lebesgue measure of B ,

(iii) For every function f € ¢(m™™) and every
quasi-independent sequence -(Vk}‘; C(ZJI)m ,

(8.13) lim fi‘(ka) du(x) = ?(o,o,...,o)ﬁ(o) .

k+

gy
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PROOF., (i) = (iii). Given (Vi.} , the set of r e ¢(m")

for which (8.13) holds is a closed linear subspace of
C(E™) . If Ae Z" and £(t) = o(A + t) is the
corresponding trigonometric polynomial on T", then
since IVk-Al *® for A # 0, (i) implies that (8.13)
holds for this f . Since the trigonometric polynomials
span  C(T") , it follows that (iii) holds.

(1i1) = (i), Take V. = (k,k%,...,k™ and
£ltysenint, ) = e(-t;) .

The proofs that (i) & (iii) = (ii) and (i1) = (iii)

are parallel to those for Theorem l.l.[]

PROPOSITION 8.7. If u @R » then uE = 0 for all
H(m)-sets E .

PROOF. Let E < {x: ka 2 B} be an H(m)—set . Let

v = u|E € R . Then by the preceding theorem,
mBsyE = 1im (V.x) dv(x) = 0
k+oo [ XB k

since for x eE , XB(ka) =0 . That is, yE =0 . [
As we mentioned, the converse to Proposition 8.7

fails. This is proved by

THEOREM 8.8. Let m bera positive integer and let u
be the Riesz product (8.2). Assume (8.3) and

2
(8.14) la, | < .
k 3" -
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Then u puts no mass on any H(m)-set.

REMARK, This theorem leaves open the (unlikely)
possibility that if uE = 0 for every 8™ et & for
all m, then u @R ; i.e., that the union of the
classes H(m) characterizes R .

Our method of proof of Theorenm 8.8 is the same
ag that of Theorem 8.3. The difficult part of the

proof is contained in the next two lemmas.

. (j) mt+l " n ‘
LEMMA 8.9, Let d > 0 andg let (A }j=1c[-d,d] nNz" .

There is a linear dependence relation

1
(8.15) m{ e, Al =g
j=1 9

With ;€ Z not all 0 and o |< a”- an/2

PROOF. Let a(J) - (zﬁj),....xgj)) . Since we have
m+ 1 vectors A(j) in an m-dimensional vector apace
mm. one of the vectors, say A(m+l) » is linearly

dependent on the others:

(8.16) 1 by a1 o (1)

j=1
By Cramer's rule, bJ can be written as the quotient of
determinants with entries kgj). Let cj be the
determinant in the numerator of bj and let -c.+1 be
the common determinant of the denominators. Hadamard's

inequality,




123

2y 1/2
fdet(a, ‘| <1 (] {a, . |%) ,
13 A § 13
now gives the result when (8.16) is multiplied through by

=€ 41 » since Ilgj)l <a.d

LEMMA 8.10. Let {vj}‘i’c(z*)"‘ be quasi-independent,
lgt (nk}:=1 be hyperlacunary (i.e., nk”_/nk + @) , let
L ezt » and let A be a finite subset of Z containing
0 . Denote the cardinality of A by |a| and let D

be any finite subset of Z". Then for all sufficiently

large j , the number of solutions A to

@

[V, * A~ en} <L,
j ko1 Kk

(8.17) ANeD,e €4,

€ = 0 for all but finitely many k

is at most [A|™ . As a function of | l]al and m ,

this upper bound is best possible,

Note that this lemma does not bound the number of
solutions (A +{e,}) to (8.17), but only the number
of different A among such solutions. 1In proving

Theorem 8.8, we shall use the case A = {-1,0,1) .

PROOF. We begin by showing that |A|™ is the best
- possible bound. Let vy = (n1+3.n2+j....,nm+j) and

choose L > max{]e|: € €8} . Then for every j ,
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there are at least |A|m solutions, namely: take
€i+j to be arbitrary elements of A for 1 <i<m,
€, = 0 for all other k , and A = (el+j’€2+j""'€m+j) .
We now prove the rest of the lemma by showing that

in some sense the example just giverr is typical; we show

that there exist kl""'km such that ekl,....ekm

determine the solution (ek)z to such an extent that
(ek): in turn uniquely determines A .

Let M = max{|e|: ¢ € 4} and fix j . Let 4 be
the maximum absolute value of the coordinates of A over

all A eD . Consider any m + 1 solutions
(=), {el({r)};) ,1<r<m+1,

to (8.17). Let CpreserC iy be as 4n Lemma 8.9. Define

n(t) . Vj .z z eﬁr)nk ,

so that |h(r)| <L . Then

m+l ( m+ 1 © mt+l
r) . (r) (r)
; e h = Vj % o A - § (nk % € )
o
= - § nka ,
mtl
where 6§, = 1 crsir) . From our bounds on L h(r)
1
)

and eﬁr y we see that

. ——— o o o e o an
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@ +1
1T nkék] = |mz crh(r)l < (m+ 1) Ldmmm/2
1 1
(8.18)
+1
tey | = |m§ cr€§r)l < (n+ 1) Ma"a"/2

But since nk+l/nk + o , (8.18) implies £hat there
exists some ko= ko(L.M,d,m) (ko does not depend

on j ) such that dk =0 for all k > ko . That 1is,
the vectors

[
N
o
in
e}
In
£
+
(=]

are linearly dependent.

We have thus demonstrated that for fixed i
{f€k1:0= [ek]T is a solution of (8.17)}

belongs to an m-dimenqional space. There are therefore
m coordinates €, ,...,e (k; > kX } which determine
kl km i~"0
all e, , k > k, . Since there are only {a}  choices
for each Ep. there are at most IAIm solutions
i N

{ey )} to (8.17). But we claim that for large j ,
[o}

each such solution corresponds to exactly one solution

A . For let

N = max{|"] e.n |: €, €4} .
k<kok k k

By quasi-independence of [Vj] » there exists J, such

that for each j > jo s We have
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inf{lvj-A[: 0O#A€D-D) >N+ 2L,

where D - D = (Al - Ay Ay » A, €D} . Now suppose that
(A(l),(sk}; ) s (A(2). [ek}: ) are two solutions of (8.17)
o o

for some j > jo . Then
(1) (2)
V.e(A - ATy - e,n | <2L ,

since A1) L p(R) g p g 4 definition of j_ implies
that A(l) - A(2) = 0 . This establishes the clain and
finishes the proof. []

PROOF OF THEOREM 8.8; As in the proof of Theorenm 8.3,

we may assume that nk”_/nk 24 . Let ECM E, be

j=1
an arbitrary H(m)-set given by Ej = {x: ij 2 B} ,

vhere (Vj) is quasi-independent and B 1is a non-empty
open set in M"., To show that uE = 0 , we again
establish (8.1).

Define

(8.19) 6 = mB - sup{|%z(M)]|: 0 # he 7™ .

Then 8§ > 0. Let A be any arc, € > 0 , and P(x)
be a trigonometric polynomial such that

P(x) > Xa(x) ‘f Pdy < yA + ¢
T
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Let L be the degree of P . Let Q be a trigonometric A
| PCr) e+ Vyem | < 1m0 [ paw
polynomial on M" guch that » |r§<L i = LN

A
@ixp s Q0,0,...,0) > mB - e . By the hypothesis (8.14) and choice of P , this is

e et s o e o e o L

A v

Let D= (A €z™ q(n) # 0} be the spectrum of Q . Then < 1 (uh + )
- m .
37-1

u(ANE,) = X, (x) (1 - xg(V.x)) du(x)
! fT[‘ A B Furthermore, by (8.19), if 4 # 0 ,then

£ JPO0 (- avp0) aute RN < 1 R5Cm 1+ [ Ixg - of am
m
A s
= ([ra) (1 - §(o,...,00)
<mB - $§+ e,
0 - B-x) QC-n) Ber + v,n)
Irff_L ) o e J ) Therefore for all sufficiently large j , (8.20) yields
0#neD
o u(AnEj) {1 - mB+¢e) (ua + €)
If (r + VJ.-I\) # 0, then

+

(3m-l)(mB-6+e)-ml—(uA+e)
371

SRS (1 -6+ 2e) (A +¢) .

for gsome ¢, = -1, o 1, whence
k o Letting € > 0, we arrive at (8.1) with d =1 - 5 .[]

«©
IVJ-A - ]Z. eknkl <L.

'By Lemma 8.10, there are at most 3" guch 4 €D for
all sufficiéntly large j , ohe of those A being A =0,
But for each such A # ¢ , IVj-Al + ® , so that, ag in
tﬁt; proof of Theorem 8.3, there exists Ko such that

.for large j ,
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9. Summary . its answer is sure to shed more light on the mysteries of

U-sets . Another problen, especially interesting to those

The followi tation i ient. ‘ ’
Wing notation is convenient in the field of diophantine approximation, is to determine

A

NOTATION. If ¢ is a class of sets, ct denotes (W*)" . Related to this is the question of whether

the set of u e M(T) for which [U]E = 0 for all E ec Theorem 4., is best possible.

0

These results give us some information on how big sets
We have shown: . i '
are of tlie various given types. Since H ? R , H-sets

R =W ) are rather small. On the other hand, W¥-sets are rather
R =yt large, while W-sets are "just right.
=0,
R =t
L
R 2,

R g (E: s+(E) > s)t for all s > 0 ,

R?H"' ,

]

gy por a1y g >1.

We have not determined whether

it

(: s (g) > oyt

or

e

R 2 (Oulmy*
1

The most interesting question is whether

)

R {Borel U~aets)L ;
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10. Notes

Dunkl and Ramirez [1) give characterizations in the form
of Theorem 1.6 of certain subclasses of the measure algebra
on a locally compact group,

Lemma 2.6 generalizes, at least in part, to any

uniformly convex Banach space:

THEOREM 10.1 (Kakutani [1]). If B is a uniformly convex

Banach space and X, € B converge weakly to y , then there

such that 1 L xé + y

]
exists a subsequence {xn}<:{xn} NI

in norm.

Examples of uniformly convex Banach spaces are LP(y)

for p> 1. The theorem fails for B = L1[0,1]

(Banach
and Saks [1]) and for B = C{0,1] (Schreier [11).

The proof that A-sets belong to Uo is given in
Kahane and Salem [11. ’

Baker [2) demonstrated Theorem 4.4 in the case
$(n) = (log n)'l"E , some € > 0 , and Theoren 4.5 in
the case ¢(n) = (log log n)-l-e .

. Additional material on infinite convolutions,
including those of the form {(5.6), and on infinite
product measures is collected in Sections 4=T7 of

Chapter 6 in Graham and McGehee [1].

Corollary 7.7 also follows immediately from the

following deep theorem of Korner [2, Theorem 1, p. 278]:
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THEOREM 10.2. For 0 < s < 1, there exists a Helson-s

set E and a measure y € M+(E) such that for every Borel

subset B of E ,

R(u|B) = s u(B) .

Theorem 8.1 has been well-known since Rajchman (see
Milicer-Gruzewska {3, p. 177]). Several other proofs are
known. For example, it follows immediately from the more

important fact that H-sets are U-sets (Zygmund [1, I,
P. 3451) and that U-sets are Uo-séts (Section IV.2).
Of course, it is also a corollary of Theorem 3.1. Our

notion of "quagi-independent" is more commonly known

as "normal" in English. However, the Russian word used
by Pjateckiz-ggpiro, who introduced_the concept, means

Yindependent."
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CHAPTER TV yhere Mg << m , Mg is discrete, Hp € R and is singular,

My €J and is continuous, and Mg By» Mpe My are all
SUPPLEMENTARY RESULTS mutually singular.

He have.already shown (Theoren I1.4.1) that R is a
1. The Class J

band, i.e., if v << W€R, then v eR . 1t is evident
Given a measure let that J 1s a band as well. Also note that R is a closed
, .

ideal of the Banach algebra M(M), while J is a closed
= : B .
¢ sup[luIE ¢ € Uo} subspace. That J 1is not closed under convolution, hence

We claim the supremum is attained. For let E €U with not a subalgebra, follows from Proposition 4.9 to come.
n <}
[ulE. » ¢ . Then evidently E £|j E belongs to U_ and M(T) /R 1is a Banach algebra with the quotient norm.
n n o
1

The norm is easily evaluated, since as a Banach space M/R
lujE = ¢ . Thus, if the supremum is attained for the Uo-set

is clearly isomorphic to J ., Thus
E ., let v= ulEo and 6 = p -v . Then oF = 0 for all

E e Uo » whence o € R . Since v is concentrated on a ““IIM/R = Hu - RIM/R =”uJ||= max{|u|E: E € Uo] .
U, -set , also o .Lv .

From Proposition I1I.2.3, we have
DEFINITION. A Borel measure u is said to belong to the

class J if u is concentrated on a U -set . (1.1) I[uIIM/R > R{u) .

[ v
This definition is essentially due to Sreider [21, While R(u) is a norm on M/R , it is not complete. For -

who noted that given Corollhry IIT.2.2, we have, as by the open mapping theorem and (1.1), if R(+) were complete,

proved above, then it would have to be equivalent to el M/R - But if

i THEOREM 1.1. Given any ue M(T), there exist uﬁique ¥ 1s a Riesz produect not in R s then, as we shall see in
; neasures g €R and u €J such that W= g + uy - ’ Theorem 4.4, y € J . Since R(u) ecan be made arbitrar;ly
y For any My €R , uy €7 , we have Myl oy . small while I'“"M/R = ”uJII = Jlull =1, 1t follows that

the norms are not equivalent. (On the other hand, if E
If we combine this theorem with the standard Lebesgue

is a Helson set, then the norms are equivalent when restricted

to u e M(E) ;.

decomposition, we see that any measure u may be written as

u=ua*ud+uR+uJ.
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where

R(u) > s(E)+|lul] = s(E)

s(E)
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IIU”M/R ’

is as defined in Section III.7.)
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2. Sets of Uniqueness in the Wide Sense

Uo—sets are also known as "sets of uniqueness in the
wide sense" because of an alternative definition (Theorem
2.1 below).. While various authors have chosen one or the
other definition as they prefeg;ed, it appears that an
explicit theorem fully stating the equivalence of the two
definitions has not been set down except in the case of
closed sets (Zygmund [ 1, I, Chap. IX, (6.11), p. 3481).
Theorem 2.1 gathers the facts together for this purpose.

Our original definition of "Uo—set" is now the standard.

THEOREM 2.1. A Borel set E is a Uo—set if and only if

0
the only Fourier-Stieltjes series £ {i(n) e(nt) converging

.00

to 0 for all t ¢ E is the O-series : y = 0

PROOF. We show the contrapositives. Suppose that E ¢ Uo.;
Then there exists a non-zero u € R such that fule # 0 .
Let F be a closed subset of E with |u]F # 0 and put

v = u|F . Then I%(n) e(nt) + 0 for ¢ ¢ F (Graham and
McGehee [1, Theorem 4.2.1 (v) = (iv) , p. 941), hence for
t ¢ E, vhereas v # 0 .

On the other hand, suppose p £ 0 and

N
lin £ fi(n) e(nt) =0 for t €E . If mE =1, then
N+ -N

certainly E ¢ Uo + 80 assume mE # 1 ., Then y €R by
the Cantor-Lebesgue theoren (Zygmund [1, I, Chap IX, (1.2),

p. 3161). Since |[u|E # 0 (Zygwund [1, II, p. 160 (proof
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of 191)1), it follows that E gu, . O

It follows that Borel U-sets are Uo—sets .
Pjateckif-ggpiro [2] (see also Graham and McGehee [1, pp.
104-1091) was the first to show that not all U -sets are
U-sets . In fact, he gave an example of aﬁ A-set which

is not a U-set :

THEOREM 2.2, If 0 <y < 1/2 , the set

(2%-1y) < v}

[ R 2e

{x: (VK)

R

X 1
k=1 [5,1)

is not & U-get .

138

3. Purity Theorems and Infinite Convolutions

If u 1is a probability measure which is the weak*
limit of an ;nfinite convolution of discrete probability
measures, then n 1is "of pure type": either p is discrete,
absolutely continuous, or purely singular. This is the
classical Jessen-Wintner purity law,‘Corollary 3.3 below
(Jessen and Wintner [1, p. 861, Stout [1, pp. 98-991;
Brown and Moran [1] have a strengthening of this theorenm). . ..
As noted by van Kampen [1, Theorem VIII, pP. 4441, this is
part of a more géneral purity law, Theorem 3.2. As a
consequence of this and Corollary II1.2.2, we shall show
that u is (purely) in R or in J‘. In certain cases,
we shall give criteria for deciding which of these two
alternatives holds. The general purity law is proved by
introducing independent randem variables on a probability
space. The following assumptions will be shared by

several theorems:

- .
: Let Xn be independent discrete randon
variables on a probability space (Q,P)
with values in M. Assume that
«© ' . ‘
. (3.1) \ X = Zl’Xn exists a.s.[P)]. Let u

be the distribution of X : for Borel
sets EcCT,

- u(E) = P(X € E) .
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Here and in all that follows, R could replace T without THEOREM 3.2 (Purity Law). Assume (3.1). Let C be any
other changé. ‘ class of Borel sets in T which is closed under countable

unions and under translation. Then either .u puts no mass
NOTATION. 1If E , Fc T, E+ F denotes the set

on any set in C or u 1is concentrated on some set in C .,
e+ f: e €E , f €F} . )
PROOF, Suppose uE > 0 for some E € C . Let H be as
The key to th £ of th ity 1 is th
e key to the proof of the purity law is the in (3.2). Then by Theorem 3.1, p(H + E) = 1 . Since H
following theorem of Jessen and Wintner.

is countable, H + E 1is a countable union of translates

THEOREM 3.1. Assume (3.1). Let H be the gréup of E : H = g;; (htE) . Hence H + E €C and so u is
N

concentrated on a set in c . [J
(3.2) { .

n

n o

) mntn: N ? N, m . € Z, @i) P(Xi = tn) > 0} .

This theorem is called a purity law for the following

If Ec T is any Borel set, then either u(H + E) = 0 reason. If € is a class of sets closed under countable

or p(H + E) =1 . unions and

PROOF. We shall merely give a sketch; details are in

Ao = (u e M(T) : (IE e C) JulE = |lul} ,
Stout {1, p. 98], for example. Let Dn be the set of t
I, = e M(m): (VE€ ¢ E=0
such that P(X =1t) >0 . Then P(X €D) =1, D ¢ = lu ( ( ) ul b
n n n n
is countable, and H is the. subgroup of M generated by then M(T) = Ap ® I, and ACJ. I . (The proof is the
oo
La Dn + By restricting to a subset of @ of probability 1, same as that of Theorem 1.1.) If C is also closed under
n= .
translation, then the purity law says that for u of the
: ' L] form (3.1) M belongs purely to A or to I, .
we may assume that V¥n xne ]%1 and X = % Xn everywhere. ' ’ ¢ ¢

For the classical Jessen-Wintner purity law, we

Th €H +
en (X E} 1is a tail event with respect to (x)) consider the classes of countable sets or of Lebesgue-
By the Kolmogorov 0 - 1 1law (Stout [1, p. 951),

measure-zero sets. Theorem 3.2 gives immediately
P(X€H+E)=0 or 1, as desired. ]

COROLLARY 3.3 (Jessen-Wintner). If (3.1) holds, then

is discrete or continuous, and is absolutely continuous or

singular.
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This is usually reformulated in the way we had originally
1

stated it to give three possibilities: u ¢ Md s uel
or u € MS » where Md , L1 , Ms are the discrete,
absolutely continuous, and purely singular measﬁres.
respectively. We now use Corollary III.2.2 and the class

Uo for C +to obtain

COROLLARY 3.4. 1If (3.1) holds, then yu 1is either in

R or inJ .,

Note that combining Corollaries 3.3 and 3.4 shows
that either w €y, , u et , uew AR, or 4 en N,

where Mc are the continuous measures.

PROOF. For any v € R, the translate vy € R , since
Gt(n) = e(-nt) G(n) - Thus, every translate of R is
equal to R . It follows that 'Uo is closed under
translation. Also, do is clearly closed under countable
unions. Therefore, Theorem 3.2 yields uE = 0 for all

E € Uo or else u is concentrated on a Uo-set . By
Corollary II1.2.2, this 1s‘équivalent to the desired
conelusion. ]

«©
REMARK. Even if f X does not converge a.s. , every a.s.

n
) 1 . N,
limit point is of pure type. For if [ Xn +X a.s. as
1
k+eo , set Y = ) X . Then {Y,} are discrete
k n k
Nk-1<“5Nk

and independent, so the purity law applies to their sum, X
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A standard argument shows that an infinite convolution
of diseretes probability measures can be represented in the
form (3.1), and hence that the previous results hold for

such measures. We summarize this as follows.

THEOREM 3.5. Let u, € M(T) be discrete probability

N
measures with 9('“h + u weak¥*, If
1

N
H={(¢ mntnzuem,mnez,(:-n)ui((tn))>0]
n=1 ) :

and ECT 4is Borel, then u(H +E) =0 or 1. Ir ¢
is as in Theorem 3.2, then either_ 4  puts no mass on every
set of C or yu is concentrated on some set of ¢ .

Either . € Mg » u € 1l s, u e MSI)R s or u € Mcﬂ J .

NOTE. For the corresponding theorem with IR in place of
T, our proof works only under the additional assumption
that uy is a probability measure. (This is automatic for
weak® convergence in M(T) since 1 € C(T) .) However,
the theorem is Qalid even if |lufl <1, since then u = 0
(Proposition 3.6). For the necessary theorems.concerning

R and J in M(R), see Section V.1.
PROOF. Let (9, P) be the probability space
@ 00 '
(X'E ,)(un) . Denote the n-th coordinate projection on
1 1 . . . : : :

Q@ by Xn « Then Xn are independent random variables

with respect to P and have distributions My s hence.

00
are discrete. Since '%f U, converges, it follows that
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©

T Xn converges a.s. [P] {see Brown and Moran {1, Propo-
1

sition 1 and Theorem 1]; or Jessen and Wintner [1, p. 84,
Theorem 32 ] combined with Billingsley [1, Theorem 2.1,
pp. 11-121). Also, by considering the Fourier-Stieltjes
transform, we see that M is the distribution of X
(Jessen and Wintner [1, p. 84, Theoren 32)). Hence, all

the previous theorems apply to u . [1

PROPOSITION 3.6. 1If u, € M(R) are positive measures
N

with norm at most 1 and if u = lim 9éun weakd*
1

Now

-
then [lu]l = g HuJl or uw =0,

PROOF. We claim that it suffices to consider the case
where Ilunll =1 . Note that

N
INENE N

ey

CN =

If CN + 0 , then certainly pu =0 , Otherwise, if
CN + C # 0, then N

N N
lim ﬁfun = 1im Cy zf(un/”un”)

N
= C lim -)lé(un/llunll)

and un/"un|| has norm 1 . Thus, the proposition is

reduced to the case of probability measures M, 3 we wish to

show that elther |lul] =1 or u =10 .
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Suppose that u # 0 . Let X, be independent random
variables on a probability space (2,P) with distributions
M, + Since Iﬁn(t)l <1, &i: 2 Iﬁn(t)[ exists for all
t @ R. If the limit were zero a.e. {m}, then

N v
lim 0 ﬁn(t) would also be zero a.e. , whence u  would be
N 1

zero (Lo&ve [1, p. 190, Corollary 21). Hence the limit is
positive on a set of positive measure. By Logve [1, p. 251,
Corollary 2], there exist a € R so that E(Xﬁ -a)

converges a.s. [P] , Let vV, be the distribution of

X -a ,
n n

N N
v = 91“’n"’N=9l<’“n'

Then there exists a probability measure v such that

Ty * v Qeak* (Brown and Moran [1, Proposition 1 and
Theorem 11 or Lodve [1, p. 168 (c) and p. 181(A)} ). Since
there are only a denumerable number of mass-points of u

and v , let Mj t @ be a sequence such that both M

J

are continuity points for both u and v , Denote

(—Mj, Mj) by Ij « Since Xy, may be approximated from
J

above and from below arbitrarily closely in Ll(u) and in

Ll(v) by functions in CO(BU » it follows that

(3.3) " lim oy(1y) = ur

N+o

J ’

lim TN(IJ) = I

N4+
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The proof will be complete if we show that lim qu =1
Jreo

are continuity points of v . Let E = (MJ—Gk,MJ+6k) .

N Then
Note that for all Borel E , 7,(E) = P(£(X -a )X E) N
N i1 bon k

N N "N |TN (Ij -z an) - Ty (Ij -a)} < L (ERQJ - Ek) .
=P(ZX €E+Za)=ocy(E+ZIa). Weclainm that there k 1 k k

1" 1 " 1" N ~
exists a sequence N, + = such that ¥ a  converges to Since w(i Ek) +0 as k>« and for each ¢ ,

) n=1 : .
N $ B - B + 0 .
some (finite) number a . For if not, then |Z anl + o, TNk(i EQ) > it ER) » it follows that 'INk(ﬁk v k)
1
To establish a contradiction, we shall show that qu =0 This proves (3.4). Hence
. N
for all j (which implies y = 0) . Fix j and pick € > 0 . qu = 1lim oy (Ij) = 1lim Ty (IJ - zk an)
Let K be such that VE < e for E = {t € W tft] > K} . k K . k !
Let N_  be such that for N > N, = 1im v, ' (I, - a) > Him v(-M, - a + €, M,-a-e) ;
) =% N TS J J
k k e+0
N
[ty - vI(E) < e and Ij -La CE, note that since % MJ -~ a may not be continuity points of
1 .

v , we cannot assert that 1lim Ty (Ij - a) = \)(I‘_j - a) .,
Then if N > N, s we have ' koK
However, since Mj-l < MJ » the last 1limit above is at

N .
UN(IJ) = TN(I‘1 - i an) < TN(E) least \J(Ij__1 - a) , whence uI‘1 > \)(IJ_1 -a) . As j o+ =,
' the latter quantity +1 . Therefore, uIJ + 1, as desired.[]
< V(E) + € < 2¢ . m
We denote by u the m-fold convolution y * VI TR
Therefore oy(I;) » 0 as N » @ , which shows that uI; =0 It is evident that if u e R[uéR], then u" € R[u" ¢ R)
(by 3.3), as desired. for all m > 1, Now if 1 is an infinite convolution of
N
Thus the existence of Nk such that Ek a, +a is discrete probability measures, then so is um . Since yu ,
1
m
established. We claim now that for each j , . ' are pure, we deduce
N - COROLLARY 3.7. If u is an infinite convolution of discrete
k _ .
(3.4) ii: TNk(IJ - § an) - iiﬂ TNk(Ij -a) . probability measures on M or on IR, then either um_e R
for all m>1 or ™ eJ for all =m 21,
Fix Jj and choose Gk > a so that &8 _+ 0 as
n k
n>Nk

k + ®» and that for each k , the four points it Mj 1 Gk
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As noted for random variables, weak* limit points of
infinite convolutions of discrete probability measures
are pure.’

We now turn to a more detailed examination of certain
infinite convolutions and, in particﬁlar, we shall be able
to tell whether they belong to R or to J

The measure (II.5.5),
(3.5) ug = -)él (3 6(0) + L 6((e-1)0™ ) , 652,
n=

is well-known to be a Rajchman measure if 0 is not a
P-V number and to be supported on a U-set if 8 4is a
P-V number (Zygmund [1, II, pPP. 147-152]). Hence:
PROPOSITION 3.8. If O 1is not a P-V  number, g € R .

If 0 is a P-v numbef, uebe J .

With regard to the measure (11.5.6),

w = [ps(0) +q6(27") ,
n=1 n . ?

(3.6)

we have a similar result.

THEOREM 3.9. For u as in (3.6), let b = lim |p_ - q |
Then

(3.7) 2D < R(w) < b .
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If b>0, then p 1is concentrated on a W-set . Hence

wER if b=0 and p eJ if b > 0 .

PROOF. See Graham and HcGehee [1, pp. 183, 187-8] for
the proof of (3.7).

Suppose b > 0 , Let ~

(3.8) salx) = x4 (2"

1
0'5)
Then (sn} are independent random variables with respect to

v and have expectations

fsn dy = P, -

>

Let (nk} be such that P, * p for some p # % .

<

By Lemma II1.2.5, there exists a subsequence {nL} C (n

"
n&-l

for which ({2 x} has an asymptotic distribution for

almost every x [u) . By the strong law of large numbers,

L K nj-1 1 K
limg I x (2 x) = lim g I 80 (x)
Ko K x=1"10,3) Ko K g=1 Nk
K
= ling 2 Py =P #ml0,3)
Koo K o3 "0f

for a.e. x [u] . It follows that {2 k x} is Weyl-
distributed for a.e. x [wl. E]

Actually, in most cases, there is no need to appeal to
Lemma III.2.5 because we can calculate the asymptotic

n—
distribution of (2 k x} explicitly for a certain

sequence {n*} H
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THEOREM 3.10. Let u be as in (3.6). Assume that

(3.9) lim p > 0, lim q, > 0.

Then there exist sequences {nk} , {ak} such that

(3.10) lim p

a for all m> 1,
k+oo

= m
nk+m

For any such sequences, if Bk =1 - oy and

(3.11) v = Xla 6(0) + 8,86(27™1 ,

m=1

&

then

Ty .
(3.12) (2 " x}~v v a.e. [u] .
EXAMPLE, 1If P, * P, we can take n, = k and a, =p, -
whence

{2" x)m—)l(- ps(0) + q8(27™)1 a.e. [u] .

In fact, n, can be chose§ arbitrarily, so that {an x}
also has the same asymptotic distribution for a.e. x [ul} .
If p = % » then the distribution is uniform: u  puts no
mass on the set of non-normal numbers base 2 . This shows
why the more complicated.construction of Theoren I;I.é.l

was needed.

PROOF. The existence of {ny} o (o)} satisfying (3.10)

follows from an easy diagonal argument., Also note that

by (3.9), lim a, >0, lin Bm > 0, so that Zum = o = IR

m
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Let 8, be as in (3.8). By the strong law of largé

numbers,
K n K
1 k 1
lim g I (2 % x) =1imz 3§ s (x)
kv X k21 %10, Koo K o1 “hytl
K .
1 1
=1lim 3 I p =a; = v{0,5) a.e.[u] .
K e K k=1 nk+1 1 2

Likewise, since

s . 8 and s are
nk+l nk+2 nk+2+l nk+2+2
independent,
K n K
1 k 1
lim # I x 2% %) =linz [ s (x) e (x)
Krw & xo) [0,%) Koo K =1 ptl nyt2
1 (x) (x)
=lim % I s Xx) 8 X
Kom K k=1 mH1 n, +2
k odd

il 3 (2% x) 1 ; (x)
lim 3 X x) =limg ¢ g x} {1 - s (x)1
Koo K 323 [%,%) Kvw K o Tyt nyt2
1 3 (x) . (x)
=1limg I @8 x) - lims I s x) s (x)
Kroo K 2y 1yt Kro K iy Tyt ny+2

@) T %y =3B, = vl

i

.%): a.e. {uj.
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In general, a similar argument shows that for any dyadic

+1
interval I = [JL , é——) ’
2NN

n,

K
(3.13) lim % I oXp (2 %) =vI a.e. [ul.
K+e k=1

It follows that (3.13) holds for every interval I wvhose
endpoints are points of continuity of v (see the argument
in Section 1II.2), which shows (3.12).[1

In the same way, if 8 > 2 is an integer and

00

Mg = XI [p,8(0) + q,6((6-1) 8™y,

n=

lim P, >0, linm q, >0,

we can find a
o = 10, 6(0) + 8 6((8-1) 8™
m=1

such that g is concentrated on the set

R = lx:(en'lzx]ru o} .

IY 9 =3 and P, * % » then o 1s the Cantor-Lebesgue
measure. This should be compared with our rewmarks about
’the Cantor-Lebesgue measure in Section I1.3.

Even though for different sequences (pn) tending to

% y the different measures “3, are concentrated on E ,

it is still possible for them to be mutually singular.
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Indeed, if (p_ } , [p'} are two sequences tending to
n n

|

the corresponding measures u3 , ud will be mutually

3

singular if

)2 - w

TR}
o

- p!
n (pn Pn

»

This follows from

THEOREM 3.11. Let

Y -n 52D
" _-n)fz (pp,p 8(0) + o, 5 6(37) + p 5 6(2:3™) ,

(3.14) ®, }
u'=r?=(1—[pr'hl §(0) + pr 56037 + p2 5 8(2:37)
Pr,1*Pa,2"Pn3= Paa v PR ot Py 321 p 20,
w=F {l-p .)=3% (L-p .)
n=1 n 10 n,3
(3.15)
=L (lL-pt.)=1¢ (1-p!.),
n=1 n1t 0 n,3

Then Ll u' if for some i =1, 2, 3,

w

(3-16) T (Pn'i =

n=1

3 sw

1
pn.i

REMARK. Of course, a similar theorem holds for measures of

the form (3.6) or of the form
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®, q
T [Z p . 6((i-1) ™M)y ,
n=1 i=1 "%s?
.1
(3.17) q
L Payi sl P 320 .

PROOF. The maps ¢ of Section III.5 which define the
infinite convolutions pu , y' from infinite product measures
are measure-copreserving because of (3.15). Thus

(Bn—l
((1-1) 377,13™™) x)

are, for fixed 1 , independent random variables with

respect to both u and pt . Choosing the i for which
(3.16) holds, we find that the conclusion follows immediately
from Theorem 1 of Brown{ 11 . []

In the next section, very similar results will be

described for Riesz products.
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4. Riesz Products

We will use the following more compact notation for

Riesz products:

- du = I

[1+ Re(Yke(nkx))] dm
k

1
(4.1)

A

IYkI 1.

Note that Y May be complex. '
All the results in this section follow from a principle

which 1s alwost the same as Theorem III.}.l, namely

THEOREM 4.1. If u is a probability measure and {mk) is

any sequence with

bt } A A A
.2) I =, Rel (i(m-m,) - ulm ) g(-m )1} < =,
(4 )K=1 1(3 elglgkil( ke k .

then

K 1 K A . l
1l 2 =
2 ¢ eofmx) - L f(-m)} =0 a,e.[uj.
(4.) xl('i:(K k=1 ( k K k=1 k .

PROOF. Let

=

1 A
=% L | - u(-m) V.
fK(x) N e(mkx) - u(-m

Then it is easily calculated that
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K
2 1 1 A 2
el =g - I [t(m)]
K2y Tk e B e
+ % Re J [G("’k'mn - G(mk) n(-m)71 .
K 1<8 <k<K *

Hence (4.2) is equivalent to

o
1 2

£ 2 el <,

k=1 & K20

The proof of Theorem I11.4.1 shows that

lim fK(x) =0 a.e.[u],

K+eo

which is (4.3). a
Our needs will be more than met by the following simple

COROLLARY 4.2. Let

(44) o = #U02) geeksk o Blmemg) # S(m) f(-my))

If p is a probability measure, if

A
(4.5)

ne~ g

o=
A
8
-

K=1

and if a(mk) +a as k + o , then

il T e(mx)
mz I e(mx)=a a.e. [u] .
Ko K 2y K (ul

|

156

GOROLLARY 4.3. Let p be a probability measure with

ﬁ(mk) +a #0 . Let Ag be as in (4.4) and assume by = 0(1).
Then there exists a subsequence {m*}c[mk) such that for all
n>1, un ié concentrated on W(Lmk}) , the nmaximal +-set

corresponding to {mi] .

PROOF. 1If we denote the dependence of AK on the measure
and sequence by A, = A.(u,{m }) , then note that

K K k /1*
AK(u,(mﬁ]) = 0(1) for any (mi)c{mk). Also, since u =1 ,
A (™ (mt)) = A (u,(n!)) and /}(m")+an '
QLAY KMt Homy .

By Lemma III.2.5 and a diagonal argument, there exists
{mﬁ}C(mk} such that for all n > 1 and for un-almost all x,
{m! x} has an asymptotic distribution v = vw(n,x) . Since

k

AK(un,(mi)) = 0(1) , (4.5) holds, whence Corollary 4.2 gives

$(1) = a® . Since o # 0, v is not Lebesgue measure for

any n or any x . This completes the proof.[]
We now show that Riesz products are purely in R or J .

THEOREM 4.4. Let u be the Riesz product (4.1) with

(4.6) mea/ny 2 25 - 2.6018"

Then p eR if y, + 0 and neJ if Yy * 0 . 1In the
latter case, there 'is a W-set E such that for all m >1,

um is concentrated on E .

PROOF. Since we are not assuming nk+1/nk > 3 , we must

first show that (4.1) is well-defined, i.e., that there is
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a unique weak® limit of the partial products of (4.1). This
will follow if we establish that any n € Z can be written
in the form

(4.7) no=Iegmn , €, =-1,0,1,

in only a finite number of ways.

Let q = Q%KE . Since q + % =3,

1 1
Qarecrt 3 >3,
1 4
or
Q¥ - 2Kt 4 gk2, kel )
or
k-1 k+1l
q__l> gﬁl-ln—lz-]i—::l-_
q- RS 1-q
1 1 1
=1+ = ¢ = 4 t o
5 ... 5 -
1 4 a

Since neog o2 qj—l g (j 2 0) , 1t follows that

n n n n
k1514 k2, 35:2 TR
M1 e k-1 Byea

or
(4.8) N = My > Mgt Mot el t n .

If kyegn o,
= log q
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nk - nk_l - nk_2 "ee e nl > nk_l 2n,

logn 5 . g

whence if (4.7) holds, €, =0 for k Tog q

v

establishes the claim.

Furthermore, if k # 2 , then (4.8) also shows that
ny - n, may be written in the form (4.7).in exactly one
way. This means that for k # 2

A A A

(4.9) u(nyg - ng) = u(n,) u(-ng) .

Note that R(u) = Ifﬁlykl . Therefore y €R if and -

k+oo
only if 'y, » 0 . Suppose Y7 0 . Let Y, @ #0 .,
k)

If & is as in (4.4) for the sequence {n, } , then b =0

X kj
by (4.9). Thus, the theorem follows from Corollary 4.3, O
REMARK 1., 1If [Yk} has more than onevlimit point, then
U is concentrated on an intersection of \i-sets in the
obvious way, Other W-sets on which vu is concentrated may

be obtained as follows: Let {mk] be a sequence of numbers

of the fornm

m = I ek(k) ngo, g =-1,0,1

such that f(m ) + 8 # 0 and such that
ky # k2 > ¥R El(kl) . Ek(kQ) =0, (If Yy * B £ 0, then =
(nk } is such a sequence.) Then there exists a subsequence’

J : '

{mﬁ) (wd (mk) such that u 1is concentrated on
{x|@ v {mi x}~v  and 0(1) = B} .
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REMARK 2. The measure uin is a Riesz product:
©
au™ =1 [1 4 Re{YE e(nkx))] dnm .
k=1

In the previous section, we showed that general infinite
convolutions of discrete probability measures belong either
to R or to J . For certain special cases, we determined
which alternative held and we showed that in the latter case,
the measure is concentrated on a specified W-set . Ve have
now shown that the general Riesz product is either in R or
in J . Also, we have determined which alternative holds
in general and shown tha£ in the latter case, the measure is
concentrated on a W-set . Thus, general Riesz products
are more tractable than general infinite convolutions,
Nevertheless, in order to specify on which W-set a Riesz
product in J is concéntrated, we are again forced to consider
special cases: While we are able to specify (1) for the
limiting distribution v in the general case, the higher
coefficients remain unknown. This is because for m > 1 ,
the representations of mn, in the form (4.7) are unknown.
Therefore, we do not know if (4.2) holds.

As mentioned, however, for certain sequences {nk] ,
we can resolve these problems. The easiest case is when

+ o , The other case

{n,} is hyperlacunary, i.e. nk+1/nk

we will deal with is ny = qk"1 » 9 > 3 an integer.

160

THEOREM 4.5. Let p be the Riesz product (4.1) with [nk}
hyperlacunary., Let Y Y Y and set
L

(4.10) ‘dv(x) = (1 + Re{y e(x)}) dm(x) .
Then
(4.11) {nk x}T av a.e. [ul .

L %=1

PROOF. Certainly for m= -1, 0, 1,

lim

Koo

K
r

==

e(mnkgx) = C(-m) a.e. [u] .

k=1

For J{m| > 2 » there exists ko = ko(m) such that ma
and mny - mn, have no representations of the form (4.7)

for k > ko » k> & . Therefore for fixed m , by = 0(1)

for the sequence (m nk} and Corollary 4.2 gives

lim

K+

==

K
L

e(mn, x) = 0 = 0(—m) .e.
k=1 ky aees v

for |m| > 2 . [

THEOREM 4.6. Let u be the Riesz product

(4.12) dp = I

IO+ Re(ye(a®))) an

0

with q > 3 an integer. Let k,*? = be such that y =, .
- 2 k£+3 j

for j > 1 and set




o whence
(4.13) dv = 1 [ + Relo,e(qix)}1 dm .

1=0 ] N @ A )(Ej)

u(-m,) jgo 5 Ky
Then
(4.18) (e.)
k ® o € A
% I 1l i =

(4.14) {q "x}y_y~v a.e. [u] . +j=o (5 aj) v(n)
PROOF. The number of representations as & + = ., (Since €5 # 0 for only finitely many j ,

© 5 these products are really finite.)

.1 =TI €, . s = -1, 0,1

(4.15) ! ° £3° ) Now if & - p > j;{(n) , then Ky - kp > §;(n) .

Therefore if & - p > jl(n) » then the powers of q are
is at most one and is the same as the number of represen- .

distinct in the two sums
tations of nqk . Define

; kot ; o) kot
= £,q + -€ : ,
A RORE EINC N

min{j: €y # 0} if n has the form (4.15), my - m
(4.16) 3 (n) :

0 otherwise ,
so that

(4.17)  jy(n) = min(j: o¥71 2 fnl) .

n

. N
u(my - m) = y(m) u(—mp) .
Fix n of the form (4.15). Note that eJ = 0 wunless
k
L

jo <3< jl . Let m, = n:q . For any complex number =z ,

Thus for 8¢ as in (4.4),

A, <
we denote K= jl(n)K ' :

2 if € =1, so (4.5) certainly holds. By Corollary 4.2 and (4.18),

A9 21 ir -0, it follows that :

Z‘ if e =-1., 1 K k‘Q A
(4.19) lim 4 L e{-ng "x) +v(n) a.e. [uj .
Koo k=1 .
Then
© kk+j Now if n does not have a representation of the form
m, = I ¢ q »
Looyeo 3 (4.15), we clain that neither do m m_,or m -m for

Lyp L P
£ - p> jl(n) » where again m, =nq L. For suppose
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2 o Note that this is true no matter how slowly Yy * 0.
nq - nq P. 3 e.qJ . .
j=0 J This should be compared with the example following Theorem
Then 3.10 and with Theorem III.6.1.
k -1 Let us also remark that since log{l+r cos 2ut) € C(T)
k ® ; k [ ; .
(4.20) nq Lo I e.qJ = nq Py 3 e.qJ . for -1 <r <1, if
j=k2 J j=o J
. k dy =1 (1 + r cos 2n3kx) dm ,
The left-hand side is divisible by ¢q x » while the right k=o
is at most (in absolute value) then from Theorems 4.5 and II.1.2,
k, -1
Jin)-1 L k K _
q 1 q P+ 1 qj < q L K%T I log(l+r ‘cos 2n3kx) > f log(l+r cos 2nt) du(t)
j=o0 k=o jil
since kl - kp > jl(n) . Therefore, both sides of (4.20) for almost every x [u) . The fact that these linits
must be equal to 0 : exist and are equal for u - a.e. x 1is a theorem of

k o Y. Meyer and B. Weiss (see Peyriére [1]).
nq £ = F e.qj ,
=k J As in the preceding section, our discussion of the
I 3
) ~j sets on which Riesz products are concegtrated would be
n= Leg
j=o J+kg . incomplete without mentioning the following orthogonality

result of Brown and Moran (see Graham and McGeh {1, p. 2031):
contradicting the assumption that n has no such represen- ee p. 2031)

tation. Our claim is established. THEOREM 4.8. Let

Therefore Ay < Jl(n)°K and (4.19) holds for such n o
duy =1 (1 + Re(y,e(n,x)}] dm ,
as well. This shows (4.14). a k=1 k k

An especially interesting corollary is du! ﬁ 'L + Refy! e(n,x))] d
T : YR K* mo.
k=1 :
COROLLARY 4.7. Let u be as in (4.12) with Yy * 0 . Then
k

the maximal W¥-get of any sequence (q l}:=1 has Then u Lyt if

p-measure 0 .,
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The proof is very similar to that of Theorem 3.11.

An interesting consequence of Theorem 4./ is

PROPOSITION 4.9. There exist upu,ve€ J such that

u¥*v = m and u.Lv . There exist W-sets E, , E such

1
that E; + E, = {s + ¢ |s e E; , t € E;} has full

2

Lebesgue measure.

PROOF. GChoose sequences {nk] , {mk} so that if u , v
are any corresponding Riesz products not in R , then the
sets of frequencies on which G ’ C are supported are

disjoint except for {0} . Then u,ve€ J and G-G =n ,
i.e. u#*v =wmw . PFurthermore, use of the random variables
e(nkx) in Theorem 1 of Brown [1] yields u 4v . Finally:
if u,v are concentrated on the W-sets El , E2 » then

m 1is concentrated on El + E2 .0

REMARK. Ve may also prove Proposition 4.9 by using infinite
convolutions., Let u = X [%6(0) + % 6(2—2n)] and
n=1

a 1 - -
v = [56(0) + %6(2 2rl+l)] . Then u is supported on
n=1

the H-set F1 = {x € M: overy odd binary digit is 0} and
v is supported on the H-set F2=(x é’m: every even
binary digit is 0} . Hence p,v €J , udv , and

u*v = m . This also exhibits T = F1 + F2 as the sum

of two H-sets . From this and Proposition 5.14 (or
Theorem 3.9), we may find U-sets E; CF, such that

m(E1+ EZ) =1 .
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COROLLARY 4.10. There exists p € J sﬁch that yu ¥y ¢ J .
PROOF. Let vy s vy € J be such that vl*v2 ¢J . Let
o=v1+v2 « . Then

vy Fv, = %(02 - vi - vé) ,
whence one of the three squares on the right is not in

J . (For vl vV, as in the previous proof, vie J
and vg €J , so that o2 €5 ) O
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5. Containment Relations

We have seen that the class of W-sets is contained
in the class of W#~.gets . Here, we consider other
such relations among the classes of sets we have been

discussing. It will be useful to begin with the following

result.

THEOREM 5.1. A finite or countable union of W*-gets
s a Wr-set . Briefly, W% = ur |

Dress [1] demonstrated this theorem for finite unions.
The extension to countable unions requires a slight
modification of his congept of "mixing" two sequences.
We shall also simﬁlify the proofs of the corresponding
lemmas by employing Veyl's criterion.

NOTATION., If N is a sequence and k € Z+ » N(k) denotes
the k-th element of N .,

DEFINITION. Let N and M be two sequences. The sequence
P = HNmixM is defined by

P(1) = n(1) , P(2) = M(1) ,
P25 + 1) = 25l 4 1) for 0 < <2kl s

P2+ r) = (25 4 p) gor 2Kl (L o ok k> 1

Thus
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P(4) = M(2) ,

P(5) = N(3) , P(6) = N(4) ,

P(7) = M(3) , P(8) = M(4) ,

P(9) = N(5) , P(10) = N(6) , P(11) = N(7) , P(12) = N(8)

DEFINITION. If NCZ is any sequence, Ke z', xe m,
and % € Z, let

X .
Sy(K, x, 2) = I e(-aN(X)x) .
k=1
Let

WE(N) = (x € W: @2 # 0) Sy(K,x,2) # o(K))

Note that in this definition, N is not required to
be a strictly increasing sequence of positive integers.
If N is such a sequence, however, then W#(N) is the
maximal W#-get corresponding to N as in Seétion II.2.
Note also that even if N and M are increasing sequences,

N mix M need not be.

LEMMA 5.2; Fix NCZ, x € T, € Z. Then

$y(25, x, 1) = of2¥)

if and only if
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sy(2*1,x,0) - 5,(2%,x,2) = o(2¥) .

PROOF. Assuming the first condition, we have

k+l)

s(2 - 8(2%) = 02Xy 4 o(2%) = o(2K)

which 18 the second condition. Gonverdely, if the second

condition holds, the first follows fron
X k j j-1
§(2°) = x (s(29) - 823 Yy + 51y . O
j=1
LEMMA 5.3. Fix NCZ, x €T, ¢ €Z . Let
M = max{[Sy(K,x,8) - 8,(2%,x,0)] : 2¥ < x < 2Ky |
Then

Sy(Kux,2) = o(K) «> My = o(2¥)

PROOF. If SN(K,x,k) = o(K) , then

Sy(K,x,8) - SN(Zk.x,R.__) = o(K) + o(2")
= o(2k)
uniformly for 25 <k < 25"l | i 6., ve 50 Tk, Vi >k, if
2¥ < k < 2% | then IS{K) - 8,(2¥)]/2¥ < & . That is,
My = o(2%) .

Conversely, suppose Mk = o(2k) . By the previous

lenna, S~(2k,x,£) = o(2%) . Hence, if 2% < k < 2ktl

170

S(K) = (5(K) - 8(2%)) + s(2%)

= o(2k) + o(2k) = o(K) . [:

PROPOSITION 5.4. Let N ,HMCZ . Then

WE(N mix M) = W¥(N)Uux(u) .

PROOF. Let P = N mix M . Suppose x ¢ UE(N)UWH(H) ,
Then for 0 # 2 € Z and K € Z', there .exist Ky S

1 + K2 and

K, 2 0 such that K =X
Sp(K,x,2) = Sy(K;.x,2) + Sy(Ky,x,2)
= O(Kl) + o(Kz) = o(K) .
Thus x € W¥(P) .
Conversely, suppose x ¢ W*(P) : Fix & # 0 .
Since SP(K,x.i) = o(K) , we have

sp(2d + k) - 5,(23MY) = o(2))

uniformly for X e (24,23*11 | Byt

i

sp(23+K) - sp(2dtl) Sy(K) - SN(ZJ)

Thus Lemma 5.3 gives SN(K,x,l) = oK) , i.e., x * Wx{N) .
Similarly, the relation ' '
sp(23" + 1) - 523 4 2d) = 5 (0) - sy(29)
for K & (23,231 gives x ¢ wruy . O
DEFINITION. Given. N , ACZ, define N' = N add A by
W) = N+ A
W25+ 1) = H(25 + 1) + A(k ¢ 2)

"
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for 0<r<2X,k>0. Thus

N'(1) = N(1) + A(1) ,
N'(.z) = N(2) + A(2) , ;

N'(3) = N(3) + A(3) , N'(4) = N(4) + A3) ,
NH(5) = N(5) + ML), MI(6) = N(6) + AC4) ,

NYCTY = NUT) ¥ ALY, NY(8) = H(B) + A(4) ,

PROPOSITION 5.5. For any N, ACZ, we have
W*(N add A) = wx(N)

PROOF. Let N' = N a&d A ., It is sufficient to show
that W#(N')cW#*(N) since N = N! add (-A) . Let
x gUR(N) , 04 2em:. Then SN(K,X,JL) = o(K) . For
K e (23,2341, Isy(K,x,2) = 5y(2,x,0)] =
sy (K,x,2) - S"_,(Zj,x,l)l. :Thereforg, by two uses of
Lemma 5.3, it follows that SN,(K.x,!L) = o(K) . Hence
x ¢wx(n) . 0O o

Given strictly incr'éaé-ing sequences Nl , Nzc:z+ ,
it is clear that Al R A2 ClN can be chosen inductively
so that N]'_ mix Né is strlict;iy .increaéing, where
Ni = Ni add Ai (1 = 1,2) . if Al , A2 are chosen with
least possible elements Ai(k) » then we define

Ny Mix N, = (N ;da Al) mix(N, add A,) .

From Propositions 5.4 and 5.15, ve immediately deduce
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PROPOSITION 5.6. 1If Nl , N2 czt are strictly increasing,
then there exists NCZ+ strictly inereasing such that
‘.-l*(Nl)UW*(Nz) = Ur(N) .,

Therefore finite unions of W¥-gsets are Wt-gets .
To show the same for countable unions, we define the
countable mixture of sequences as follows. Given N. ,

1
N2 y sesy let

P =N1mix]N,

]
|

1= Nl mix(N2 mix W),

~
it

2 Nl mj.x(N2 mix(N3 mix N)) ,

Tae

(N plays the role of blanks or hold.ing places which get
filled by succcssive Ni's .) It is clear that for all k ,

there exists jo(k) such that for j > jo(k) ,
Pj(k) = Pjo(k)(k) . Define Mo = mix(Nl,N2....) by

Mo(k) = Pjo(k)(k) .

(Another notation could be M = Nl mix(N2 mix(N3 nix ...)).)
Note that if we set

M, = mix(N,

i SR T TRPRD
then for all i >0, .
(5.1) M, = N mix M

i i+l

i+1 *
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Thus, MO is the sequence

Ny (1), N(0) Ny (R) , Na(1) , N (3) , Ny (4) , Ns(2)
N, (1) Ng (), g (6) Ny (T) N (8) , H,(3) , H,(4)
N3(2) , Ng(1) , Hy(9) , M (20) , ..., N'l(lé) » H,(5)
Na(6) o Ny (7)), Ho(8) , N3(3) , Ny(h) L N, (2) , N (1),

N (LT L L)

The subsequence of Ao consisting of the terms from Nj
for j > i is M, . Similarly, if N,CZ' are strictly
increasing, then there exists Mo = Mix(Nl,Nz,...) defined

analogously, which could be denoted
My = Ny Mix (N, Mix(NB Mix ... )) .
The sequence Mo is strietly increasing. Note that

(5.2) l4ix(Nl.N2,...) = mix(N1 add A}, N, add A2....)

2

for the least possible Aic:m B [Ai}; can also be chosen

inductively as in the definition of the Mix of two sequences.

LEMMA 5.7. Let P = N mix M . Let Kk ez} and let L

be the number of terms of M among the first X terms of

P . Then

wj
=
In
=l
A

PN
=

for K > 2 .
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PROOF. Let K1 be the nuumber of terms of N among the
first K terms of P . Then the required inequalities

follow from

=

1YL =K,

L<kK <2 for K22 .00

GOROLLARY 5.8. Let M = mix(Mj,Ny,...) . Let Kk e z'
and let Ki be the number of terms of Ni among the

first K +terms of Mo . Then

(5.3) 3 Mg ok, <2ty
for X > 2:3171 4na
(5.4) I XK, <K, .

j>i i="1

PROOF. Let My = mix(Ni+1.Ni+2....) » so that by (5.1),
Mi—l = Ni mix Mi » 121 . Let L; be the number of
terms of Mi among the first K of H, . Since Ly is

the number of terms of Mi among the first L of

i-1
Mi-l » the lemma gives

1 1
(5.5) 3L 2y 250,
if Ll—l > 2 . S8Since L0 = K , it follows by induction that
for i>1,
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By (5-5)0

Combining this with (5.6), we obtain (5.3).
Also,

1 =
4250 2L = £ (L L z

- = K, .
i j>1 Si-1 j) 'j>i 3

This is (5.4). 1

THEOREM 5.9. Given N N2 » e C%, let

1 ’
Mo = mix(Nl.Nz,...) .+« Then

(5.7) (M) = 1\31 We(NL) .

If NiCZ+ are strictly ir;creasing, let M

o © Mix(Ni,Nz,...).

Then (5.7) again holds.

PROOF. Let N, CZ, My = mix(N, Ny 00.00) o By (5.1)
and Proposition 5.4, :

w*(uo) DW*(Nl) uw*(ul)

DW*(Nl)Uw*(Nz)Uw*(Mz)

C Deee g
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whence

W (M) Di\=11 uE(Ny) .

-3
Conversely, let x ¢ v W*(Ni):
i=1

-

vi ve # 0 SNi(K.x.Z) = o(K)

Fix 2 #0 . Let € >0 . For Ke Z', let K, be

i
the number of terms of Ni among the first K of Mo .

Then
0
(5.8) K= I K
i=1
and
(5.9) Sy (K,x,2) = £ 8, (K.,x,2) .
M PR Ml S

-1 41
Let i, be such that 2 ° <e . Let K' be large

enough that

(5.10) ISNi(K.x,l)I <ekK

for 1 <1< io and K > K!

1-1
Let K > 2+3° X' . Then by (5.3),

for 1 <ix<i . By (5.9),
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1S (Kux,2)) < = s, (K,,x,2}} + & X, .
4, TR R i b

By (5.10) and (5.4), this is

e L K., +K. ,
igi + 15

which, by (5.8), (5.3), and choice of i is

-i +1
<ek+2 ° x

<2 K .

This shows that 8, (K,x,2) = o(K) . Therefore x ¢ We(M ),
o

which completes the proof of the first half of the theorem.
The second half now follows from {(5.2) and Proposition
5.5. O
We have thus proved a result stronger than Theorem 5.1:
a finite or countable union of maximal W¥-sets is a maximal

W¥-gset for some sequence.
We use this first to prove
THEOREM 5.10. Every H™ get 15 a Wr-set .

PROOF. Let E g {x: (Vk) V,x ¢B) be an H(™ _get

where {Vk)CZm is quasi-independent and B is a non-
empty apen set in =", S;nce for every O # A 8 z"®,

|Vk * Al »® as k +® and since there are only countably
many A , a diagonal argument provides a subsequence

(kk} such that for every § # O sV * A is eventually
L
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strictly monotonic (increasing or decreasing). By re-
labeling, we assume this is the whole sequence.

Let P be a trigonometric polynomial in m variables

such that

A
P(0) >0, Pz xp-

Then for x €E , XB(ka) = 0 , vhence P(ka) < 0.

Therefore
A A 1 X
P(V,x) = P(0) + I (P(A) ‘g L e(A-ka)} .
. A#0 k=1

Letting K + « , it follows that for some A # O ,

L T o(uem)

= e(V, *Ax 0.

Ko °'

But by assumption, for k larger than sone ko s Vk~A t

or -V,*A+ o as k + o , Therefore, x€ H*((IVk'Al)k>ko).
There are only a finite number of A for which

A

P(A) # 0 , whence there are a finite number of W¥-gets

whose union contains E . []

COROLLARY 5.11, Symmetric perfect sets (Cantor sets) of

constant ratio of dissection 6_1 (Zygmund [, 1,
Chap. V, §3, pp. 194-1951) with 6 a P-V number are

Wk-sets .

PROOF. In fact, they are finite unions of H(m)-sets
(Zygmund {1, II, Chap. XII, §11, pp. 152-1561). [
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A relation of a different kind is

PROPOSITION 5.12, Every uncountable Uo-set contains‘

an uncountable W-set

PROOF. Let E be an uncountable Uo-set . Let F be a
non-empty perfect subset, Let uy be a continuous
probability measure supported on F . Since F € UO ’

u €J . Hence there is a W-set E'CF which has positive
u-measure. Since p is continuous, BE' is uncountable, []

We can say more:

PROPOSITION 5.13. If E is a Uo-set » for any positive
measure p concentrated on I , there exists a Wo-set

FCE such that u(E\F) =0 .

PROOF. Given such E , u, let
‘a = sup(uF: F e wol .

Then just as in Section 1, the sup is attained. Since

ve ¥, o= ljul .0

DEFINI?ION. If C is a ciass of sets, a set E is said
to be almost in C if for every positive measure
concentrated on E , there exists FCE such that F e€cC
and n(E\F) = 0 ,

Using this definition, we restate Proposition 5.13 as
PROPOSITION 5.13'. The class Uo coincides with the class

of almost Wo-sets .
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PROPOSITION 5.14. Every H-set is almost a W-set .

REMARK. This shows, as promised in Section II.3, that

every measure supported on an H-set is concentrated on

a W-set . Also, a proof combining the proof of Theorem 5.10-

with the one following shows that H(m)-sets are almost

finite unions of W-sets.

PROOF., Let E ¢ {x:Vk nkx:¢I} be an H-gset . Let
be a positive measure concentrated on E . Let [ni}C:(nk}
be such that {ni x) hﬁs an asymptotic distribution for
almost all x[u]. (Lemma III.2.5). Since n} x ¢ I , this
distribution is not uniform for x e E . That is, u is
concentrated on a W-set . L]

On the other hand, by Theorems III1.2.1 and III.8.3,

we have

PROPOSITION 5.15. Not every W-set is almost an Ho-set .

Similarly, we have
PROPOSITION 5.16. Not every W*-set 1is almost a Wo—set .

Every Uo-set is almost a W¥-set .

The second statement follows from Proposition 5.13"
and Theorem 5.1.

Proposition II1.8.5 is equivalent to

PROPOSITION 5.17. Every asymptotic H-set is almost an

Hc—set .
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: VWie now aim to identify the class of weak Dirichlet
PROPOSITION 5.18. Dirichlet ssts are. H-sets . Weak

sets with several other classes of sets. W4e shall use
Dirichlet sets are almost Ho-sets .

the following
PROOF, Let E be a Dirichlet set. Then there exist

DEFINITION, A Borel set ECT is called
n, + o and 6k + 0 such that

(i) an No-set if there exist n, + « such that
Ile(nkx) -1 Ile(E) <8 .

Therefore E is contained in the H-set Chap. XII, §7, p. 2931);

o«
for x € E, I |sin ﬂnkxl < o (Bari [2, II,
k=1

© : (i1) an N-set if there exist a, » b€ R such
N {x: |e(an) -1 < 8,) - o
k=1 ) that for x €E, I |a, cos 2mkx + by sin 2nkx| < e
k=1
o«

It immediately follows that weak Dirichlet sets but ¥ (ai + bﬁ)l/z = w (Zygmupd {1, I, Chap. VI,

are almost Ha-sets . [J k=1
6

§2 . 2 ;
Note that not every H-set is even a weak Dirichlet » Pe 2361);

set. TFor example, the standard Cantor-Lebesgue measure ' (111) an R-get if there exist . ay » by €R such
‘w 1, 1 thai for x €E, % (ak cos 2mkx + b, sin 2wkx)
W= 136(0) + 56(2:37M)] k=1 ¥ .
=1
o converges but ai + bi #+ 0 (Bari [2, II, Chap.
is supported on the Cantor middle-thirds set E . Now ¥I1, §4, p. 2871).
A hd ' - ' Using the fact that {sin 2mn, x| < 2|sin wn, x| ,
lu(n)] = 1 l% + % e(-2m3™1)| g ' Wl <2l ¥l
n=1 we see that every N, -set is both an N-set and an
1 1 - R-set .
< |-2- + —2- e(-2m3 n)l ]
DEFINITION. Given a Borel set BECT, let
= |eos(2wm3<M)| .
. R R
- E) = inp (R ;¢ M(E)) .
Choose n so that 3" 1Im but 3%m . Then Su(E) = inf # ue H(E) !

©

lcos(2am3™)| = % » 80 that R(u) < % » while ||uj] =1

Thus s+(E) < % . 8ince weak Dirichlet sets are those for

which s+ =1, our claim follows.
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Note that

(5.11) a(B) < s_(E) < s*(B) .

LEMMA 5.19. For any Borel set E ,
8 (E) = sup{ss R(u) > alﬁ(o)l for all u € M(E)} .
PROOF. It is clear that
A
R(n) 2 s_(E)|u(0)]
for u €M(E) . Conversely, suppose
A
R(u) 2 slu(0)l

for all u € M(E) . For u e M(E) , set dun(t) = e(-nt) du(t).
Then u € M(E) , so that

R(u) = R(uy) 2 slii (0] = sli(n)| .

Since n is arbitrary, it follows that
A
R(w) 2 siiull, -
The lemma now follows. L]

We shall prove
THEOREM 5.20. The following conditions are equivalent:

(1) s'(E) = 1.

(11) E is a weak Dirichlet set.
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(1i1) E 1is almost a countéble union of increasing
‘Dirichlet sets.

(iv) E 1is almost an N-set .

~(v) E ’is almost an N -set .

(vi) E 1is almost an R-set’.

(vi1) s (E) =1 .

(viii) For all u € M'(E) , Re B(2n) = [ull .

1im
n

(ix) For all u € M+(E) , 1lim ]'|sin 2mx|du(x) = 0 .
' n

Salem [1,2] showed the equivalence of (iv), (v),
(vi) and (viii). The proof also appears in Bari f2.
1I, Chap. XII, §10 and Chap. XIII, 56]. The equivalence
of (i1), (iv) and (ix) is also known already (Lindahl and
Poulsen [1, pp. 148-1491). Ké&rner I'l, p. 259, Lemma 5.2
shoﬁed that (11) = (vii). By (5.11), (vii) = (i) and by
Theorem II1.7.4, (i) = (ii). Although it only remains
to show the equivalence with (1ii), we prefer to give
a full pfoof of the theorem here, .assuming certain
facts about N-sets and R-sets . While our method of
proof is not fundamentally different from those Just
cited, some parts of our proof do use a different approach.
Also, we shall isolate or extend some lemmas of independent

interest. We begin with the establishment of these lemmas.

PROPOSITION 5.21. If u > 0 » R(u) = Jlul]l » and 'm € z*,

then there exist ny, > = such that ﬁ(mnk) + Jlull

as k » o ,
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EXAMPLE. Let u = 6(0) + 6(3) . Then

A 2 , n even
u(n) =
0, n odd.

PROOF. Assume that {ju}ll = 1 . For some -2 , there exists
(nk} such that Iﬁ(nk)l + 1, n = 2({mod m) , and

Byp - By * @ o If Iﬁ(nk)l = e(Bk) ﬁ(nk) , then we may
assume {ek) converges, By (III.7.1),

Rele(8y,; - 8,) Blngy - n)) 2 308, D1 + 1fndN 21,

whence both sides converge to 1 as k + o , Therefore

ﬁ(nk+1 - nk) +1 . But ng,, -0y is a multiple of n . O
We have the immediate

COROLLARY 5.22. If u > 0 , then R(u) = {{u|l if and only

it Tim Re B(2n) = Jlull .

PROPOSITION 5.23. For u >0 , the following are equivalent:

(1) Tim Re 1i(2n) = {lufl ;
1

(11) 1iim f sin? 2mnx du(x) = 0 ;

(111) lim‘[lsin 2mnx| du{x) = 0 ,
PROOF. The equivalence of (i) and (ii) follows from
Re %{(2n) =‘[cos Aunx dp(x) =_[(1 - 2 sin? 2unx) du(x) .

The equivalence of (ii) and (iii) follows from
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fsin2 2nnx du(x) < j’|sin 2unx] du(x)

1
) 2
< Wull® (] sin” 2anx du(x))

N

.0

PROPOSITION 5.24. Let n be a probability measure on

T and let v be a measure such that |v| < u

all n, meZ and all 6 e R,

(5.12) le(8) Y(n+tm) - B(m)] < [2(1-Re{e(8) H(n)N

In particular,

A A A 1/2
(5.13) i{v(nim)| - jv(m)|] < [2(2 - Ju(n)| N}

". . Then for-

1/2'.

PROOF, The proof is quite similar to that of Lemma III.7.l.

The arithmetic-quadratic wean inequa}ity gives

lo(8) (ntm) - S(m)| = | [(o(0) ol(-(ntm)t)-e

S

v}lle(e) e(-nt) - 1] du(t)
" 1/2
(fl...l'~ du)

N 1/2
f2(1 - Ref{e(B) u(aMi .

in

If we choose 8 so that e(8) N{(n) = Iﬁ(n)]
fact that
A A
[v(ntm) | - [V(a) |} < le(8) S(ntn) - B(m)} ,

then (5.13) follows. [J

(-ut))av(t)|

and use the
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Proposition 5.24 in & somevhat more specialized form

is called "the increments inequality" by Losve [ 1, p. 1951 .

COROLLARY 5.25. For any measure U e M(m), if
R(jul) = Wull , then R(n) = Wl . -

'PROOF. We may t;ke Hull to be 1 . It is evident that
R(u) < "ﬁilw . Now |u| 1s a probability measure
dominating u in absolute value. Hence, if R{jul}) =1,
then the preceding proposition implies that for all € > 0
and all m , there are infinitely many n such that
|a(n+m)| differs from |fH(m)| by less than € . Hence
R(u) la(m)l for all m , from which we deduce
R 2 N3N, -0

PROPOSITION 5.26. If u € M+(ﬂﬁ and R(u) = |juljl,» then

Iv

v

p  1is concentrated.on a countable union of increasing Dirichlet

sets.

REHARK.'bThia proposition holds for complex u as well
by Corollary 7.2 below.
s

PROOF. We saw in the first part of the proof of Theorem 111.7.4
that for each € > 0 , there exists a Dirichlet set E such
that u(E®) < £ . Choose Dirichlet sets En such that

Cy o oD : -
w(ES) < 2" and set Py Qm E . We have

u(Fg) < u(e¢) < 27Vl
N ngﬁ n !
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go that u(FN) > il - 27N

Since FNCE“ , _FN '
ig a Dirichlet set. It is clear that FN<:FN+1 and

that u 1is concentrated on U r, . O
N>1 N

PROOF OF THEOREM 5.20. That (1) < (11i) is
Theorem III.7.4. That (i) < (viii)e (ix) follows from
Corollary 5.22 and Proposition 5,23, By (5.11), (vii) »> (1)
and by Corollary 5.25, (1) = (vii)

Suppose that E 1is almost an N-set . Let u € M+(E) .
Then (Zygmund (1, I, Chap. VI, 52, pp. 236-2371) there
exists (ph): such that

-]
L pn|sin 2mnx| < » for u-almost all xeE

n=1
-3
and § Py == -
Hence
N
£ p._lsin 2mwnx|
i 0
lin =0 for p-a.a. x€E,
N+ . N -
£ o
whence

0 = linm

N+

N
T p.}sin 2mnx|
1°n

du{x)

N
E Zp
1
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N ) of u . Hence (ix) holds for E-t . Therefore (1)
Ip ]llsin 2nnx|dp(x) .
1" holds for E-t and hence for E .
- iy
= lim ] . :
N+ £ Now Proposition 5.26 immediately implies (i) = (iii).
n .
1 Finally, it is evident from the definitions that
Therefore (ix) folloys.. (1i1) » (11). O
Conversely, suppose (ix) holds. Then let ny be REMARK 1. It is not hard to show that R-sets are
such that Ho-sets (Bari [2, II, Chap. X111, §6, P. 2931); this fact
- is d t .
jlsin 2""kx' du(x) < 2 k . . is due to Rajchman
REMARK 2. C(Closed weak Dirichlet sets and closed N-sets
We have

are identical (Lindahl and Poulsen {1, pp. 148-1501).

-2
f % sin 2nnkx| du(x) < » , We now show that if E is an H-set » then s+(E) >0,

: In fact, we shall prove the fpllowing stronger assertion:
Let F be th bset ite. .

¢ the subset of E where the integrand is'finlte. if E is an H(r)-set for some r > 1 , then s, (E) > 0 ,
T = ; .
hen  u(E\F) 0 and' Fis an No set  (with Sequence For this purpuse, we generalize Theoren ITI.1.4 as follows.

{2n}) ] + « +.p
_ THEOREM 5.27. Let pe M(M), re z', il c(z”)
We have shoun (1v) = (ix) = (v). Since (v) = (iv) Pe quasi-independent, and 1ot f e Lz(n;'m) be Borel-
and (v) » (vi), it remains to show that (vi) = (1) » (111) measurable, where m is (normalized) Lebesgue measure
> (11). ) . on ™. For ¥y » t e ™', denots ft(y) = f(y-t) .
Assume (vi), Let y 6 M+(E) + Since any translate Using the notation (IT1.8.12), set

- i - : ’ A N
of an R-set is an R-set (Bari {2, II, Chap. XII, gk(t) - f ft(vkx) du(x) - £(0) (o) .
54, pp. 287-2881), there is a translate E-t of R which ol

is almost an R-set and which contains 0. It is easy Then g, (t) exists ror almost all tIm] and
to show (Bari [2, 1T, Chap., XII, §4, p. 288]), that there . A

g Lim sup We ll , < fl£- F(o)y 2, ¢ R .
exists {nk) such that 1im sin 2m,x = 0 for ke L(1 ,u) LY ,n)

Ui-a.a. x € E-t , where ut(F) g p(F+t) is the translate
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PROOF, From Fubini's theorem, we deduce the existence of

gk(t) g.0. {m] and also that
Py
g (0) =0,
A
g (A) = £C-n) (v, - 1y

for 0 # A €Z™, Therefore
2 2 A n 2
el 2 = NELl 5 = £ [£0-0) By, « a)|
k'l 2 k2 = B k

Since |Vk' M + « for each & # 0 , we have

A 2 1/2
11 < R( (z |£(-n)
m sup eIl L2S RO A;‘O' %)

= e - 3(0)||L2 R(u) . [

COROLLARY 5.28. Let ue (m), re z', ()7 ciz")”
quasi-independent, Il"“'Ir arcs of MW, I = le"'xIr s
m Lebesgue measure on WT « For t = (tl,...,tr) s, denote

1+t=(11+t1)x...x('.1r+tr). Let

(5.14) " gy () = [ x7,, (%) au(x) - uI ~f(0) .
ol

Then

1/2
(5.15) 1im sup | < (nI. uiS
n s Ig]FIILZ(Hr S (nI. n1®) R(u) .
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THEOREM 5.29. Let Il.....Ir be non-empty open darcs of
Ty I =1y % eeu x I, (V)T €(Z*)T be quasi-independent,
and let E be an H(r)-set contained in

(x emT: (Vk) kav{!I] .
Then

s.(B) 2 (B) T2 a1

PROOF. Let u eM(E) . Let Jz be the subare of Iz
having common left endpoint and having length %'Ill .

Let J = J1 X L., X Jr and define gx as in (5.14) but

for J , not I, For t = (tl,...,tr) satisfying

0<t

Ia

. -%Ilzl » We have J + tCI , .whence

ge(t) = -ns - f(0) .

Considering the integral of ng|2 only over this gset of

t , we see that
le i, 2 ()2 (8012 1 &ir. )
Bkl = g p=1 3L

= ()7 (a0 [i(0)? .
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By (5.15), it follows that
RO 2 ()72 ()72 (a1)3/2 R0y
= &2 ko)) .

The theorem now follows by Lemma 5.19, [}

REMARK. Let B be a ball in ¥ of radius at most % ’

where we use the (induced) Euclidean metric. An argument
similar to the above shows that for H(r)-sets E contained

in {x e T: (Vk) Vyx € B) , we have the inequality
s.(8) 2 (5)7/2 4,

KSrner proved the following deep

THEOREM 5.30. There exists a Helson-1 set which is not

a U-get .

See Graham and McGehee [1, pPp. 114-117] for a proof.
We deduce immediately

COROLLARY 5.31. There exists a weak Dirichlet set which

is not a U-get .,

Since Ho—sets are U-sets , we obtain the following

complement to Proposition 5.18:

COROLLARY 5.32. There is a weak Dirichlet set which is

not an HO- set .

On the other hand, by using Proposition 5,18, we see
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COROLLARY 5.323., There is a set which is almost an Ho-set .

hence is almost a U-set , but which is not a U-set .

At least sometimes, N-sets are translates of W¥#-sets:

THEOREM 5.34 (Salem). If p 20, & P, = » and one of

the following hold:

(1) Pn is decreasing;

s : X
(ii) pn+k/pn is bounded over all n , ;
o

(ii1) £ p, " = O(N
n=1 R

then the N-set consisting of the points of absolute
N
convergence of z Pn cos(mnx - en) is a translate of a
n=1
W¥-set corresponding to (mn} .
See Salem [1] for the proof. Another theorem we

mention without proof is due to Arbault {11 :

THEOREM 5.35. N6t every H-set is an No-set . In fact,

the Cantor middle-thirds set is such an exanmple.
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6. Baire Category

The difference in size between W-sets and W#-gets,
illustrated by Theorems II11.2.1 and I11.6.1, shows up also
when we consider their BDaire category.v All VW-sets are
meager (i.e. are of first category), while many W*-gets
are co-meager {(i.e. have meager complement, and hence are
of second category). Not all maximal W¥-gets are
co-meager; some sequences, in fact, have f as their
maximal Wh-.get ., The example where the sequence (nk)

is just (k) wvas mentioned in Section I1.1. Another
example, due to I.M. Vinogradov [11], is that where ny
is the k-th prime; again W*([nk}) = m..

THEOREM 6.1. Every W-set. is meager. 1In fact, the set

{x: (am}o)'lim I%

K
I e(mnkx)l > 0)
K+ =

k=3
is meager..

PROOF. It suffices to show that

E = {x:

ey
i

im |

K
L e(nkx)l > g}
K+ k=1

is meager for any € > 0 . But
Ec U 5,
K=1

where
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o k
Fy = N (x: I% .E e(njx)l > €} .
k=K j=1
Since FK is a W¥-gset , it has Lebesgue measure zero.
Being closed, FK is nowhere dense. . Therefore E is
meager, O N
An exactly parallel proof with "e(nkx)" replaced
by ”XI(nkx)" and ">g" replaced by "< mI -~ g
shows that A-sets are meager. ‘

The easiest, though rather special, example of co-

meager W¥-sets 1is given by

THEOREM 6.2, If nk+l/"k 2 2 1is an integer for all k ,
then the maximal W¥.set of .{nk} is co-meager. 1In

fact, the set
— 1 K
E=(x: Iim |g £ e(nx)| = 1)
K+ k=1

is co-meager.

PROOF. If t ¢ E , then for some rational r < 1 and
some Ne N, t belongs to the set

K
= fxs 1l 5
FN,r- {x: K>¥N§ > |K kﬁl e(nkx)l <r}) .

That is, Ec is a countable union of sets FN.r y 80 it
gsuffices to show that FN r is nowhere dense. Since
» .

FN,r is closed, this amounts to showing that FN.r

contains no arc J . But for large enough K , J contains

i,
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some point x = mw/ng , m @ . For all k > K , ny /g
is an integer, so e(nyx) = 1. Therefore x e FN r\J .0
n ’

Somewhat more generally, we may shou that

THEOREM 6.3. If mny,,/n 2 q > 4 , then W*((n)) is

co-meager. In fact,

= 1 K 2w
E = {x: 1im 'K T e(nkx)l > cos =%
K+ k=1 q

is co-meager.

PROOF. As above, it suffices to show that

F=(x: K>N > I%

I3
[ -
Pt

e(nkx)| < cos nd)

contains no (non-trivial) arc J for <4 < % .

O = O

Let I be the closed arc - % , 21 and let 7

be any arc., Choose AK 2 2/|13} . Ve claim that J
o

contains a point x such that for k > Ko s mxe I,

i.e. Re e(nyx) > cos %% + Given this, the result

follows, since

T 12 5 e(npd| 2T Rel § elnx)
1im | £ e{n, x >1lim Re £ I e(n,x
O S A Koy Kk

2n
> cos Y >cos wd,

vhence x @ F . The object of the following lemma is to

prove our claim (apply it .to tﬁe sequence

(1,nKo.nK°+l.nKo+2,...) and I =J, I,=I for k > 2) .[]
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LEMMA 6.,. Let nk+1/nk 22 ., Let I, be closed arcs
of T with |1k| > 2nk/nk+l . Then there exists x e M
such that for all k, nx € Ik .

PROOF. This is a nested-intervals argument. For the
duration of the proof, we use "arc" to mean "closed arc."‘
Let Jl be any arc of length l/nl . Then x nyx
maps Jl bijectively to T, so there is an arc J)I_CJl
of length |11|/2n1 vhich is mapped into I, . (Note that
we cannot assert that sucha J exists of length |Il|/n1
since the portion‘of J1 which 13 mapped onto I1 nay
consist of two subarcs whose endpoints contain the endpoints

of J,; .) Since

i1, |

S
1
there is an arc J2<IJi which is mapped bijectivelyvto
T by x n,x . The arc J2 contains, as before, a
subare J) of length |I2|/2n2 vhich is mapped into
12 by . x > nox . If we cont inue in this manner, we
obtain a sequence Ji:)J':'2 D... of arcs such that x nyx
maps Ji into Ik . Since J* are closed, the point

s

x € J

& satisfies the desired conclusion, []

I
1]

1

In the hyperlacunary case, we may prove more than

Theorem 6.3, namely




199

THEOREM 6.5. If ny,,/n, * © , then the set

E = {x: Dx = A}

is co-meager, where Dx is the set of limit points of

K
1 © .
(g kil e(nyx)}y_, end A ={ze@l: |a] 1) .

PROOF, If D # A , then there exists a rational z € A
which does not belong to Dx » There is also a rational
€>0 and an N € N such that v

K
(6.1) K>H » l% I e(nmx) - z] 2¢ .

Therefore, if F 1s the closed set of x for which (6.1)
holds, it suffices to show that F contains no arc J .
We do this by finding,for any J , an x € J such that
1 i ¢
(6.2) 1lim R e(nkx) =3z ,
Ko k=1

-

Let the-line through z and 0 hit the circle. .{f: lz] = 1)

at ‘@ and - w . Then z is a convex combination of w

and -w3
z2=aw -Bw,at+g =1, 0<agl .

Choose K so that nKo 22/13] and k> kK, = “k+l/nk >22.
Let o = e(‘i;) » t e M, Choose any sequence NCIK,,»)

K
of dénsity a (i.e., limF I x (k) = a) . For
K+ k=1

k > Ko s put
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t if xe N,

by =
t+u if kx €N

and let Ik Pe any arc about tk of length 2nk/nk+l .
Thus, e[Ik] is an arc .about either w or - . Apply

Lemma 6.4 to the sequence (1, R S «..} and the
. o o

arca J , IKo ’ IK0+1 v «o» to obtain a point x . Then

xed and since IIkI + 0 , it is clear that (6.2) holds. ]

Turning briefly to some. other classes of séts. we
note that all N-sets are meager (Zygmund [}; I, p. 233]).
It seems to be unknown whether all Borel U-sets - are meager,
though it is knoun that not all Lebesgue-measuraﬁle U-sets
are meager (HolS%evnikova {1}). For that matter, it is
apparently'unknown whether Uo-sets -are meager, although
this seems unlikely.

Finally, let us remark that using regﬁlarity, one may
show that T is almost meager. For if u e M(M), let
E=T\R . Let E' = ( t:{ Fn)l)Q have full p-measure

. . ns » :
with Fn being closed subsets of E ., Since %n is
novhere dense, E' 1is meager. This remark shows the

existence of meager sets having full ﬁ—measure for

u =m or any other measure.
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7. Miscellaneous

Lemma IIT.7.1 can be iwproved in several ways. For

example, by introducing a second neasure and a weight,

we obtain

THEOREM 7

1. Let u be a probability measure and v a

coaplex measure with |v] <y . Let lc(n)l = e(en) G(n) .

Then for any m , n € Z,

(7.1)

Re{e(en -em) ﬁ(n—m)}

2 S B ] -A-15 a5 Y .

PROOF. Let a = |%(n)| , b = |O(n)| and

e = Re{e(en - em) ﬁ(n-m)) . Let w be a positive number

to be chosen later. By the arithmetic-quadratic mean

inequality, we have

(a+wb)2

Therefore

0]

1fte(e,) e(-nt)tu o(6) o(-ut)) av(s)|?

A

SJiood abvD2<(f)n) am?
5.[|e(6n) e(-nt) + v e(em) e(-mt)l2 du(t)

=1+ w2 + 2we .

-

2
¢ >ab - %(li?— + (1 - b2)w) .
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If b#1, choose w =v(1-a9/1-b%) . Then (7.1) results.

If b =1, then we let w + » to obtain (7.1). []
Note that Lemma ITI1.7.1 is obtained from putting

v=u and using w = 1 in the proof.

COROLLARY 7.2. If u € M(T) and R(u) = |{u}], then

R (hul) = flull.

PROOF. Let v = u/lull . OChoose n 8o that-

Is(nk)l > 1 and |ng,, - nl + « . Then by Theorem 7.1
applied to the probability measure |v| and the measure v ,

AN
iim | Tvi (nyyq - ndl 21,
Fo0

whence 2(Jv]) =1 .[]
Another improvement of Lemma III.7.1 is obtained by

considering more Fourier-Stieltjes coefficients.

PROPOSITION 7.2, Let u be a probability measure and
jvl < u . Let By > Ny s eeey ng€ Z and set
1S(a )] = o(w) 8(n) for 1<k <K. Then

=i

+ 5 Z Refe(w, - ¢,) filn, - ny))
1k gk

(7.2) K .
2 kzllv(nk)n)2 .

PROOF. The arithmetic-quadtatic mean inequality yields
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K K ] N ' 2
1 A 2 1 2 Tim zi Re 4(n,_ ~ n,) > R(v)“ .
L IOID2 = [T etv) el-nt) av(e))? . X L
K :)I:. | k | | K ;:. Wy ( X ) ()] K+ (2) 1<k<t<K
[ 12 K ) 2 —_ A ' 2 ;
S 'K ) e(‘bk e('"kt)l du(t) Hence 1lim Re u(n, - n,) > R(v)* . Since n, - n, is
i . k L k L
k,R,-)-w
1 K X A k<q . .
) EE kzl zzl e(wk ) wl) U(nk N nl) divigible by m , the result follows. E]
While by Corollary 7.5, R{}u{) cannot be much smaller
= % + j% EE Re{e(wk - wl) ﬁ(nk - nl)) .0 than R(u) , R(p) can be arbitrarily smaller than R(|u|) .
K™ dckensk :
THEOREM 7.7. For every € > 0 , there exists a measure
‘ such that R(Ju]) = flull =1 and R(n).< ¢ .
COROLLARY 7.4. 1If v is a probability measure and .
. S Hel
|v| 2w, then R(p) > R(v)2 . PROOF. lLet E be any countable set which is not a elson
set; then E is a weak Dirichlet set. (See the remarks
+ s
COROLLARY 7.5. If 1 eM(T) and flull = 1, then preceding Proposition III.7.5.) Thus s (E) = 1 while
R(lul) > R(w? . : s{(E) = 0 . 3y definition, then, for any ¢ > 0 , there
. exists u € M(E) with R(u) < e. and Hufl = 1 . Since
W i '
€ may now generalize Proposition §.21. ' jul € MT(E) , also R(Jul) =1, ]
PROPOSITION 7.6. Let u be a probability measure and As noted in bho above proof, countable sets have
) +
Ivi <u . For every me Z* , we have 8 =1 . In other words, if u 1is a positive discrete
A - 2 measure, then R(u) = ||p}] . 1If ‘v is diserete but not
1im R > .
o e ulmn) 2 R(v) _ necessarily positive, then by Corollary 5.25, R(y) = Ha]lm .
A This also follows from the fact that ﬁ is an almost periodic
PROOF., Let ]v(nk)l + R(V) . We may assume that
. ' sequence. Moreover, combining this latter fact with Wiener's
My = My * ® and that e(wk) converges, using the
theorem (Katznelson [1, p. 421), it way be shown that for any
terminology of Proposition 7.3. Since there are infinitely .
measure u , R(u) > R(ud) » where 1y, 1s the discrete part
many ny congruent to some p {mod m) , we may also assume
of u . Uee Graham and McGehee [1, p. 110) for the details.
that n, = p (mod m) for all k . Then by taking the
We now study those measures. p for which R(u) = [lul| .
1lim sup of (7.2), we obtain

Recall that by Proposition IIT.2.3, such a measure p is
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concentrated on a W-set . By Coréliary 7.2, Proposition
. in fact be zero a.e.:
5.26, and Theorem 5.20, y 1is also concentrated on a weak

Dirichlet set, hence (by Proposition 5.18) on an H -set . Re(e(em - mt) £(t)) =1 a.e. [fu]l.

The next theorem describes the measureé for which ]ﬁl : ' )
’ Since Ie(em - mt) £(t)} <1 a.e., it follows that

attains its maximum , ju|| .
THEOREM 7.8. Let u € M(T) and me Z . Then o8, - mt) £(t) =1 a.e. [luly,
Iﬁ(m)l = Jlull if and only if yu has the form or
du(t) = e(mt +0) dluj(t) £(t) = elmt - 8.) a.e. [lul).
A
for some 8 . Let n # 0 . Then lﬁ(m)| = |u(mtn}} = {|ull Thersfore
if and only if  has the form
(7.3) du(t) = e(mt - 8,) dlul(t) .
u = nil e(l{--nl t 8) a G(E' + )
k=0 n k "'n Conversely, if du = e{mt + 8) dlp| , then clearly
: A A _
ﬁ for some a, > 0 and some ©,% . If p is positive, then w{m) = e(8))lu]} , whence |fi{m)| luil
b . : i = | =
IG(n)[ = |lull for some n # 0 if and only if the support Now suppose that |ii(n)| hiCntn)| bl for
of u is finite and contained in a translate of Q. some n # 0 . Prom the first part of the theorem, we have
PROOF. Set |u(k)| = e(8,) fi(k) . Suppose that du(t) = e(mt - 6 ) ajul(t)
a(m)] = flull . Let du = f aju] . Then *
= g((mtn)t - 6m+n)d|u|(t) .
Hull = e(e,) fi(n) = fe(em) e(-mt) £(t) ajul(t) ,
Therefore
whence W
. e((min)t - em+n) = e(mt - em) a.e. [lull,
0 =f(1 - e(am) e(-mt) £(t)) dlu)(t)
or
=](1 - Refe(o, - mt) £(t)}) dlul(t) . e(nt + 6, -6.,)=1 ae. [ull.

Since the integrand is non-negative a.e. [|u]l , it must .. .
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Putbing ¥ = (o , - 8,)/n , we see that |u| is supported THEQREM 7.9. For w €M(T), either A .
K S S (1) for some un and some n # 0, |ii(m)]| = |{(mtn)|
in (; t¥v: 0<k<n-1) . For some a, > 0, then, ' A
= Jlull . in which case [li(mtkn)| =-|ju]| for
n-1
ul =1 a 5(% + ), all 'k € Z;
k=0
or v . .
whence b 7.3 : ©
¥ ) (i1) for any sequence {(n,} - of distinct integers,
n-1 k=1 -
- A .
we ] o) sk y) Af el > Jlull , then fnyy - nyl > @ .
k=0 n
vhere © = my - 5, . PROOF. We assume |lu]] =1 for convenience. If
Iﬁ(m)l = |ﬁ(m+n)| =1 for gsome n # 0 , then the

Conversely. if -y has this form, then u has the form

conclusion of (i) follows easily from Theorem 7.8.
(7.3), so that lﬁ(m)l = lull . Furthermore, g Y
To prove the remainder of the theorem, we must show
n-1
Mm+n) = kz e(é - k - myp - ny) a, ‘ that if Iﬁ(nk)l +1, (n) are distinet, and 'nk+1 -nkP+w,
=0
then [fi(m)| =1 for two values of m . Since
= e(6 - mp - ny) fjull . Ink+1 - nk|{+ o , there exists N # 0 such that
' Byyy - 7 = N for infinitely many k . For such k ,
Finally, 4f u 1s positive, then #(0) = ||u]| .

(7.1) yielda
Hence the aecond part of the theorenm shows that

K o
[f(n)| = Null for some n.#0 if and only if u 1ia ] m(N)l > .a(nk‘fl)"la(nk)l - .v/(l-lﬁ(nk+l)|2)(1-|ﬁ(nk)l.2) .
supported on a set of n equally spaced points of Tr for. '

. Since the right side tends to 1 as k + » ang sincé
some n # 0 ., This is clearly equivalent to the assertion 8

of the theoren. E] : . | T:}(N)l < Hull = 1, we have ] T:T(N)l =1,

The Fourier-StieltJea coefficients of y exhibit . Proposition 5.2, now implies that ﬁ is periodic with
markedly different behavior, depending on whether . . period N . From the assumption la(“k)l *+ 1, it follows
lﬁ(m)l = Hu1| for two values of m or not. . that lﬁ(m)l =1 for infinitely many values of m . L]

. An immediate consequence of this result is




COROLLARY 7.10. For all u e M(T), the set

A
(n e Z: {u(n)] = lulj} is an arithmetic progression or

is empty.

While in general TIim lﬁ(n)l is not necessarily equal
n+o

to Tim |{i(n)| (Graham and McGehee [1, pp. 29-301)
n+ -o

it is interesting that if 13n lﬁ(n)l = Jlull , then also
n-+o

= A

lim |u(n)] = {ju]| . This follows from the more general

ne+ e~

Theorem 7.11 below. We shall emnploy the following

NOTATION. For e M(T) , write

Ry(w) = Tim |i(n)] ,
n+o

R.(w) =TIm (f(n)] .

n+w~o

THEOREM 7.11. For any , e M(T) with u|| =1 ,

IR G - R < 20-ROUNN 2 < ra(1r(y)?); 112

PROOF. Without loss of generality, assume that

R*(u) 2R (u) ., Set v = ful . By Proposition 5.24,

B | - Jh(m)] < 1201 - [S(n-n) ) 172

for all n , m ez, If we take the lim inf of both

sides as m + -w » We obtain

.

Bl - R < 1201 - R(Juf))11/2

»

'7Taking the lim SuUp as n »> + ® qnow yields the first

iheduality of the theorem., The éecond inequality follows
from Corolléry 7.5. O

By modifying the above argument, we may obtain many

8imilar inequalities (Theoren 7.12),

NOTATION. For up € M(T), denote

ry(w) = Lin fia)| v () = 1im |B(n)] ,
n-+co n+-oo

r (u) =IiiEwI¢(n)l = min{r (u) , r_ (W)},

RoQe) = min{R (u),R_(u)}, ro(u) = maxir, (u),r_(u)) ,

00 = 2l - RO, a0 =2l -2 fu ]y 272 ,

THEQREM 7,12, For any u € M(m) ,
IRy () - R < D) s e (w) - & ()] < D(y) |

flu) - r(y)

in

d(u) ,

A
in

Il < RyGw) + DGO L e () < tng [Ba)| 5 D(y) |
m .

N

A, < rGu) + dlu) . R() < tnf|R(n)] + a(u) .
m

We omit the wasy proofs. In order to illustrate these

inequalities, ws prove

COROLLARY 7.13. 1If y e M) is concentrated on a weak

Dirichlet set, then




T2l T

R,(u) = R_(w) = I,

and

n
it

T, (w) = r_(u) = ing [B(w)] .
m

PROOF. Since weak Dirichlet sets have s = 1
(Theorem 111.7.4), we have R(|p}) = |lu}l . Therefore
b(u) = 0 , whence by Theorem 7.12,

Ryu) =R () »  r,(n) = r_(u) ,
NS0, < B Gw) o r (W) < tnf [B(m)] .
m

Also, it is evident from the definitions that

R(u) < %I, » inf Ji(m)] < x (u) .
m

Thus the result follows. L] o

Finally, we give a short proof of a ‘theorem of
Milicer-Gruzewska {1].
PROPOSITION 7.14. Let e M(W) and E be a set of

positive Lebesgue measure. Set -

v(t) = u|(E - t) ,

If 4y €R for almost all +{m], then u € R

PROOF, Using Fubini's theorem, we have
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Ic(t)(n) am(t) =Ife(-n1) xE-t(T) du(t) dm(t)
u T

- [ etent) xg_ (8) an(t) au(q)
ps s

= I e{(-nt) mE dp(T) w
™
= gk = ﬁ(n) .

. » A
Since |3(t)(n)|$"\’(t)|| s llull , if V(g)(n) » 0 for alwost
all + (m ], then the bounded convergence theorem gives

a(n)+0 O
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8. Notes

Van Kawmpen and Wintner [1 , Theorem 5, p. 6521
generalize Proposition 3.6.

'Kakutani's criterion for mutual singularity of infinite
product measures (Graham end McGehee [1 , p. 1701) , if
used instead of Theorewm 1 of Brown [ 1] in the proof of
Theorem 3.11,would give Theorem 3.11 a somewhat different
form,

Peyridre [1] has additional infornation on the sets
which may receive positive measure from a Riesz product.

Corollary 5.11 should be compared to Theorem II.2.2

in Mendes France [1].

Sa1dt 1) proves that maximal W¥#-sets are co-meager

k
for sequences {q°) , q an integer, by establishing a result

similar to Theorem:6.5.

A set ECZ is called a Rajchman get if whenever ﬁ
is supported on E , then p € R . Host and Parreau [1]
characterize such sets. From their characterization and
Theorem 4.4, it followus immediately that if E is not a
Rajchman set, then there exists p € J such that ﬁ is
supported on E .

Some more inequalities between values of ﬁ for
probability measures u are collected by Kawvata [1 ,
PP. 95-101}1.

CHAPTER V

LOCALLY COMPAGT ABELIAN GROUPS
1, Characterizations of MO(G)

Most of the main results that we have described for
the circle carry over with little difficulty to the general
LCA -case., It is usually only a matter of making the
proper definitions. Thus, most of our proofs will cite
earlier theorems and proofs and be rather concise. This
chapter also érovides a summary of most of the important

theorems of earlier chapters.

- A
The dual of an LCA group G will be denoted G

The (finite) complex regular Borel measures on G are
denoted by M(G) , the positive ones by M'(G) , and those
u for which fi(y) + 0 as y + = by M (G) ; recall that

1lim a(y) = 0 means that for each & > 0 , there exists a
YM

A - A
compact set KCG such that if y @ K , then |u(Y) | < ¢ .

When the group G 1is understood, Mo(G) will also be
A
denoted by R and be called the Rajchman measures. If G

is compact (i.e. , G 1is discrete), then the condition Y +
is impossible to fulfil. 1In this case, MO(G) = M(G) and
the problem of characterizing Mo(G). disappears., Neverthe-
less, we will not need to specially exclude this case from
our theorems, as they will be vacuously fulfilled. |

The all-important property of being a band still holds
for M_(G) . First, note
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THEOREM 1.1. For any LCA group G and any ue M'(q) ,

the set of trigonometric polynomials
K A 1
- a, Ykl 8 €L, v, €G , Ke W)} is dense in L(G,n) .

For the proof, see Hewitt and Ross [1, II, pp..211-212].
(This, by the way,Ais the only place where regularity of
u e M(G) is needed.) It follows as in Section II.} that
'MO(G) is a band:

THEOREM 1.2. If v «pe MO(G) » then v e MO(G)
we M (G) if and only if |u| e M (c) .

DEFINITION. A Borel set ECG is a Uo-set if uE =0
for all y e MO(G) .

How do we define W-sets ? Once we observe that the

A
elements of G map G into T, this becomes easy:

DEFINITION. A Borel set ECG is a W-set 1if there is a

sequence {Yk}m cé tending to « such that for all xe B
- k=]

(yk(;)I: , i@ Weyl-distriputed.

Récall that when G = T, the characters of M are
{e(nx))® « Identifying T with {lz] =1) or with R/7Z

n=-o

as necessary, we see that the new definition of W-sets

agrees with the dld. Actually, there is one minor difference.
In the old definitionm, n, was required to.be atriectly
1ncreasing.to infinity, while here we only require 'Yk + @

(we do not even require Yk to be distinct). This does
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make a difference in the definition of W-sets on W !
since we cannot merely rewrite a sequence n, in inereasing

order, as the following result shows.

PROPOSITION 1.3. If n t © and E is the corresponding
maximal W-set on M, there exists a sequence lmkl + o

such that -(mk}m = Z as sets and yet the maximal W-set
1
of {mk} is B .

PROOF. It is easily checked that
(mk}:=(n1'OynszB-lnn4ﬂn5rn6on7-"1;

g r P9 » Pyo My v My e My3 e Ny, myg, 2,000
works., []

REMARK. Likewise, any given W-get -in ¢ corresponds to

: A
a sequence {yk} contalning any given countable subset of G

It was convenient when dealing with G = M to require
n, + ©» as it led to a slightly stronger theorem. In the
general case, however, we giQe up ‘any such requirement with
no great loss.

If G is compact, then clearly there are no W-sets .
Hence, it is -vacuously true that a measure B lies in MO(G)
if and only if “uE = 0 for evéry W-set E .

When we identify M with {lz] =1} , Weyl's criterion
takes this form:
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THEOREM 1.4. (zk) has an asymptotic distribution if and only
if ' S

(1.1) lim

K+

[ R b=t

zl exists
k

R

k=1

A
for every m € Z , in which case the limits are v(-m) ,

where v is the limiting distribution.

A
Suppose that for some sequence (Yy}mc:G and some
Tl

m>2 , all Yy have order. w3 YE = id , the identity

of 6 . Then every x € G satisfies (l.l)vfér z, = Yn(x)
and this m . It follows from Lemma 1.5 below that G is
almost a W-set , whence w(iU0 . This unsapisfactory
situation has two possible solutions: we can work only with
those groups for which this cannot happen, or we can modify
the definition of W-sets and work with a new class of sets.

The first solution involves the following groups.

DEFINITION. G 1is a Weyl group if for all m‘# 0 and for
A

all sequences Yt in G , we have Yﬁ + o as k + o ,

The structure of Weyl groups ls given in Section 2.

The second solution involves the

DEFINITION. A Borel set EcG is a w]—sat ?f there is

A

a sequence Y, * « in G  such that for all x € E , therc
A

exists v e M(T) such that {y (x))~v and v(1) #0

Since the definition of W-set only requires v # m

’

this is a stricter definition: W1¢:w . By using Wl—sets ,
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we may show that for all Lga groups, Uo—sets characterize
Mo (G) .

To do this, we shall need the fact that if ¢ R ,

then there exists a sequence (not merely a net) +

Tk
such thatr_ﬁ(yk) converges to a non-zero value. This
follows from Theorem 2., in the following section. For if

¥ &€ R, then there exists € > 0 and a net {Ya}

aeh
A

tending to « in G such that for all a €4 ,

|C(Yu)] > € (for example, the directed set A may be taken
as the collection of compact subsets of 3 directed by
inclusion and Yo is a point outside of a such that

Ia(ya)l > €& ) . Theorem 2.4 provides a subsequence

iy 17 tending to ® ., Since g < |ﬁ(y o< ull
%k k=1 @

there is a further subsequence {Ya'} such that
k

z = lim §(y

k4o

axists. Since 2z # 0 and Yt > this

)
o X

is the required secquence.
The fundamental lemma needed for characterizing R

has the same proof as has Lemma I1I.2.5:

LEMMA 1.5. Given yp € M(G) and Y * * » there exists a

subsequence Y'k v o guch that fyé(t)) has an asymptotic

distribution for almost every t ([|ull.

Note that the weak sequential compactness of the unit ball
in Hilbert space is very important to the proor.

We now stale the basic theorem. Recall that for a
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class of Borel sets ¢ ,_CL denotes {y € M(G): |p|(E) = 0
VE €C) .

THEOREM 1.6. For any LOA group G, M (c) = w,* .
For Weyl groups G , MO(G) =wt,

PROOF. Suppose py €R . We deqire to show that if Y *
then u W;({y,})

I W({yk}) =0 ., As in Section II1I1.2, Yy * 0 weakly in

0 and, if G 1is a Weyl group ,then

L2(lu|) and, if G is a Weyl group, also yE + 0 weakly
in L2(|u|) for m # 0 . Therefore

K

k)jl Yp + 0 weakly in L2(|u])

=l

for m =1 in general and for all m # 0 if ¢ is a

Weyl group. From Lemma III.2.4, it follows that for almost

all ¢ (lul|) , if % z yE(t) has a 1limit as K + o , then
k=1

that limit 4s 0 . This establishes the two parts of the
theorem in one direction.

Conversely, let u € R. and let ﬁ(yk) +a 0,
+ o, Let y! be as in Lemma 1.5, f, = % g (y9) 1
Tk . Tk A Sl SRS YA

and
E = {t: (av) (yL(t))~v and B(1) £ 0) .

Since 1lim fx existe a.e. [Jull and is 0 off E , we

have
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==

K .
jlimrKdu=1imfdeu=11m_ IR =a#0.
E oy 1

Therefore the Wi-set E has positive |u|-measure. a

We have a gsimilar situation for abnormal sets.

.

DEFINITION. A Borel set ECG 1is an A-get if there is

A
a sequence’ y, * @ in G such that for all xe€e E ,

{7, (x)} is badly distributed.

In order to show that AC:UO for Weyl groups, we need

to generalize the'Rajchman-Milicer-GruiewskaAcriterion:

THEOREM 1,7. Let G be an LCA group and y e M(G) .
Consider the following three conditions:

(i) nenr.
(1i) For every are IC{|z] = 1},
L ! (xgey) (£) au(t) = |1]-fi(1a) .
(111) For every £ € c((]z] = 1)) ,

$(0)-f(1a) .

'Y-)-m

(1.2) lim f(roy) (t) du(s)
G

Then (11} < (ii1) = (1). If G 1is a Weyl group, then

(1) » (i11) also, so that all three conditions are equivalent.

PROOF. The proof is exactly parallel to that of Theorem III.1.1,
We only note here that in showing (i) = (iii), the assumption

that G is a Weyl group is neéded in order to assert that
(1.2) nolds for £(z) = 25, ke z.[J
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The proof of Theorem III.3.1 now extends to yield

THEOREM 1.8. For Weyl groups G , p € MO(G) if and only
if pE = 0 for all A-sets E . For any LCA group G ,
if uE = 0 for all A-sets E, then p € MO(G) .

As before, we define J +to be the class of measures

concentrated on a Uo—set .

THEOREM 1.9, For any LCA group G , M(G) =R & J and
RLT . ’

222

2, The Structure of Weyl Groups

Baker [1,2] has defined the term "Weyl group" in a
very different way than we have. The object here is to
show that the two notions in fact coincide. This is the

content of the next theoren.

- DEFINITION (Beker [1]). A group is almost torsion-free

if for every um € E+, it contains at wost finltely many

elenénts of order m .

THEOREM 2.1. An "LCA group G 1is a Weyl group if and

only if it possesses an open subgroup of thevform- " x Gl ’
wvhere n € N and Gl_ is a compact group whose dual is
almost torsion-free. Furthermore, if R x G1 is any A
open subgroup of a Weyl group with G1 compact, then Gl

is almost torsion-free.

The proof is a series of short lemmas. The idqa is
to prove it for compact G and_build up from there via
the structure theorem for LCA grqﬁps. Recall that if
B 18 a closed subgroup of G and A 1s the ahnihilator of
H in G, then H is G/A . If ¢: &+ H 1s the natural
map ensuing from this, then ¢ 1is a c&ntinuoua open homo-

morphism (see.RuQin {1, pp. 35-361).

LEMMA 2,2, With notatlon as above, 1f H 1is open in G
A . ' A
and KCH 1s compact, then ¢ 1(K) is compact in G .

A
PROOF. We first claim that there exists compact K1C:G such
that ¢(K1) =K . For let Nx be a neighborhood of x with
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compact closure N;-.for each x € ¢'1(K) . Then

{o(N_) is an open cover of K , so let (¢(N_ )}}"
x -1 x40
x€d” " (K) *
n
be a finite subcover. Now let K, = ¢-1(K)r\[\,)Nx“] ;
. %
n
note 0'1(K) is closed while Nx— is compact.,
' 1 i

Now ¢71(k) = Kl t+ A . Since A is igsomorphically

. AN
homeomorphic to G/H (Rudin [1, p, 35] and G/H is

discrete (Rudin [ 1, p. 40]), it follows that A is compact.
Therefore so is ¢'1(K) .0

. A A
LEMMA 2.3. Let H be an open subgroup of G and ¢: G » H

A A
the natural map. Let {ya} CG, {(BJCH be nets such
agA @
that ¢(Ya) =BQ . Then Yo * © if and only if By > = -

’ N
PROOF. Let Yo * @ . Let KCH be compact. Let a, € A
be such that a > @, $:Ya ¢ ¢-1(K) . Then By € K for

a > ag . That is, Ba + o,

. A
Conversely, let Ba + o , Let K1(:G be compact,
Then f(Kl) is compact, so for some @, s 02 a SB € ¢(Kl) .
Then a > a, > ¥, ¢ Ky . Thus Yo ¥ ™ . O .
THEOREM 2.4. Let I be an LCA group and {Yq} be a net
in T tending to = , Then there exists a subsequence

yﬁ tending to o ,

A
PROOF, Let T = G . By the structure theorem, there exists
an open subgroip HCG of the form R"™x Gl » where ne N

A A
and Gl is compact. Let ¢: G + H be the natural map.,
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A n
Then &(y ) » » . But H =

A A
x Gl and Gl is discrete.:
s

H> ">

N
Let o(y,) = (8,,8 ) , 8 € « € G .+ Note

] ’

¢(yu) o> B e or § *e . If By * = » lot B,

be a subsequence tending to « , If 6« + e, let 6ak
be any subsequence of distinct terms. Then Ga- + o,
k
In either case, let y} =y, . Then ¢(Yi) + o , Now
k
i + o []
This theorem was used in the last section, but it is

Lemma 2.3 applies again to give vy

not needed for the proof of Theorem 2.1.

LEMMA 2.5. Let H be an open subgroup of an LCA group
G . Then G 1is a Weyl group if and only if H is a Weyl

group.
PROOF. This is an immediate corollary of Lemma 2.3. O

LEMMA 2.6. If G, G, are Weyl groups, so is G, x &y

and conversely,
RROOF. This is obvious. E]

LEMMA 2.7. A compact -abelian group G is a Weyl group
A .
if and only if G is almost torsion-free.

PROOF, Since e is discrete, the compact subsets of 6
are precisely the finite subsets.

Suppose 8 "is not almost torsion-free. Let YE = id
for some m > 2 and every k €Z+ , where [yk} are

distinct. Then y, > = , but yg #* » , so G is not

a Weyl group,
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Conversely, supposé G is not a Weyl group, Let
Y * © with yE + o for some m # 0 ., Then there
exists a finite set X such that yE € K for infinitely
i

many Yki » Some element of K , say vy , 1is equal to

infinitely wany yE . Since
i
b

m
(Yki Yir) =y loua,

ih
there are infinitely many elements, Yk Yil , of
i i
order dividing |m} .[] _ 1

PROOF OF THEOREM 2.1. Suppose G is a Weyl group. By

the structure theorem, there exists an open subgroup =" x Gl

G1 compact., By the lemmas, IR™x Gl » hence G1 » iz a
Weyl group, hence '81. is almost torsion-free. Note also
that this holds for all open subgroups R"«x Gl ’ G1
compact, '

/,Cbhversely, i m%x Gl is an open subgroup of G
with Gl compact and 81 almost torsion-free, then by
the lemmas and the obvious fact that R" is a Weyl group,

it follows that Gl and hence G are Weyl groups, []

REMARK. It follows from Theorem 2.4 that G is a Weyl
group if and only if for all m e Z\(0} ,

A
lin y® = in G .

?
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3. Riesz Products

Let us briefly recall how Riesz products are defined
in compact abelian groups (see Graham and McGehee [1,
pp. 196-198 i). A subsst @Ca is said to be dissociate
if every w. 8 3 can be expressed in at most one way as

g
(3.1) w= 0 6°Y,
0E®

where

0, +1 if 62 41,

2

(3.2) e, = .
: 0, +1 if 8 =1 »

and €g # 0 for only finitely many 6 . (The usual
example on the circle is a set of characters e(nkt) wit

nk”_/nk 23.) Let a: @+ L be any function satisfying

(3.3)  la(e)l <3 ir 0241, -1<a(e) <1 ir o2 =

Define the polynomial

1+ a(e)e + a(6) if o241 ,

(3-4) qe = 2-=

1+ a(e)e - if o 1.

Then the Riesz product u based on ® and a is the
weak* 1imit in M(G) of ( I qe)k » where the limit
: o 08¢

1s taken over the net of finite ¢c® ordered by
inclusion and A is Haar measure on G . The

Fourier-Stieltjes transform of u is given by

h

1




)
N a(6) °  if 4 has the form (3.1),
T (3.5) f(w) = '

0 ’ otherwise,

where for 2z € © , we write

(e)_

%

SE R
-
m
u
(=)

H E=-l-.

The elements of the form (3.1) are called words in ® .

The set of all words in @ 1is denoted Q@) . We have

~R(u) = 1im |a(@)] if @ is infinite, where R(u) denoctes
6o ’ . .

[ — . A
Iim|fi(y)} . Note that since G 1s discrete, compact
Yoo

" sets are finite and "o i3 a limit point of @ vif @ is

. infinite.

The proofs of the next three results are the same as

those in Section IV.4. From now on,. we agsume ® is infinite.

THEOREM 3.1. If u 6 M(G) is a probability measure and
A
[yk}CG is any ‘sequence with

3 oA, - A Apme

I -5 Rel (v ¥,) - uly,) 0T, < w
k=1 k% lgg<kek K2 SR

-then
K K
1 1 Ay

lim{z £ (x) - £ N(¥.)) =0 a.e. .
Kom K Koy Y K 2 Y [nl

k=1
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COROLLARY 3.2. Let
bp = HOGO] 12 <k <k, JnF) A TGIRED)

If u € M(G) is a probability measure, if

.

nm~g

A
K=1 K

and if G(Yk)

+

@ as k + « , then

lim
K-Mn

K —
z Yk(x) =a a.e. [u] .
k=1

=

THEOREM 3.3, Let ® be dissociate and let a satisfy
(3.3). Let . be the Riesz product based on @® and g

.

If 1lim a(8) = 0 , then 4 € R . Otherwise, 1™ is
[P ET)

concentrated on a wl-set and um € J for every m > 1

.

In order to formulate and prove the analogue of

Theorem III.7.6, we must define the analogue to (III1.7.3):
nk+1/nk 29> 3 . (Actually, we will define the analogue .
to the weaker hypothesis (III.7.15).) For ] 8®U®_l
=@UD , let us use the notation

@\(e} if ae® ,
LO\E) if o ed .

We call ® superdissociate if @ 1is dissociate and if

: A
for every finite set Kce 3 there exists a finite KlCG

A —
such that for every ¥y € G\Kl » there exists 8, ceOUWY
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such that for all y € K , if vy, € Q(®) , then vyy
1 1

has the form
YYy < eom

for some w 8 Q((I!)e ) and such that for all vy € K ,
o

-2

Yy, 6,

é Q(®6 } . ("Super" refers not to the complexity
o
of the definition, but to the fact that more than
"k+1/nk > 3 is required in the case of the circle. It
is recommended that the reader verify that most of the
proof of Lemma III.7.8 was devoted to verifying that
{e(nkx)} is superdissociate; K, there corresponds to
eo here.) It is not hard to see that ® is superdissociate

if and only if @ is dissociate and there exist functions

A A
GO(K.Y) and L(K) for KcG finite and vy € G such that

8, (K,y) €BUD

(3.6) A
L(K) is a finite subset of G ,

A
and such that for all finite KcG ,

for all y € X and all Yy 8 a\L(K) ,
(a) if Yy, € (@) , then YYy = BO(K.yl)m

(3.7) for some w € Q(@e (x Y1)) » and
- o L4

{(b) YYq GO(K,Yl)-z ¢ Q«Dﬁ (K’Yl)) .
[¢]

Such functions BO(K,Y) ,» L(K) will be called 8D functions.
Given ® , we shall denote
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¥(K) = {y; €Giyy 6K vy, § 2@) .

As we have mentioned, BO(K,Y) corresponds to
KO(N,m) of Lemma IIT.7.8. We shall need analogues
(Lemmas 3.5 and 3.6) of (III.7.7) and (I1.7.8), for

which we require

LEMMA 3.4, Let ® be superdissociate and SO(K,Y) ,

L(K) corresponding SD functions. Suppose that for some
A

K and some Y,Y, , 8 € G, we have yldiL(K) » Y €K,

Yy, € 2@) , and vl e K . Then o (K,y;) # 0 .

PROOF. Suppose to the contrary that 6 = eO(K,yl) .
Then for some w & Q(®e) » YYy = BO(K,yl)w = 6w, Also ,
(ye'l)yl w €& Q@) , so for some w' € Q((De) ,

-1
(Ye )Yl
dissociativity of @ . O

8w' . But then 6w' = w., which contradicts

LEMMA 3.5. Let @ be superdissociate., Given a finite
A A
set K CG and an infinite set BCG\\I‘(KO) , there exists

SD functions 8 (K,y) , L(K) and {en)co CB such that
n=l

B, * = and eo(Ko,Bn)-»w as n + o ,

PROOF., For each B8 8 B , there exists vy _ 8 Ko

o
such that y B & Q®) since B ¢ ‘I‘(Ko) . Without loss
of generality, we may assume that Yo is the same for aill
g8 € B, Pix this Yo -

Let Bl(K,y) , L(K_) be SD functions for @ . It

A
is clear that By € B, K, <€G (n > 1) may be chosen

inductively so as to satisfy
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’ PROOF, If el(K,Y) , Ll(K) are SD functions for @ , put
B € BNU(By.ByseensB, (JUL(K 1))

(3.8) . L(K) = Ly(Kv{id)) ,
Ko = KQULY8y (K b8 ™y 0y (K180 ™ Lol yy 0 (k. o, )Yy .
n oo 1 0’ o 1'71F2 0°1'"'n-1"%n BO(K'Y) = {el(}(u(id}, y) if v ¢ L(x) ,

Now put Y if v € L(K) .

el(K'Y) if K £ K, or vy 4: {Bn}: , Then eo(K,y) » L{K) are certainly SD functions. Also,

(3.9) e (k,y) = 1f ¥ § L(K) , then (3.7a) implies that y = id-y = 6w
el(Kn_l.sn) if K =X, and y = B, -
for some w € Q«De) » where 8 = el(Kl/{id}, Y) . If

By (3.8), (8 )°1“ are distinct, hence tend to o , Yy 6 @UD , then dissociativity implies 6 =y , as desired. L]
n .
It is also clear that eo(K’Y) satisfies (3.6) and, if We are ready to prove the analogue of Theorem III.7.6.
: A -
KEK . (3.1). 1f ye K, and v, € G\L(X ) vis ) THEOREM 3.7. Let @ be superdissociate and suppose a

then again (3.7a) and (3.7b) clearly hold. Finally, satisfies (3.3). Let u be the Riesz product based on

GO(KO,Bn) satisfies (3.7a) and (3.7b) for all vy € L ® and a . Then for all v <<y ,

because, first, el(Kn—i'Bn) satisfies (3.7a) and (3.7b)
(3.10) R(v)

A
RO -Vl -
for all y € Kn-l and, second, KocKn_l and Bn 4) L(Kn-l) s

Thus, 6 (K,y) , L(K) are SD functions. In particular, if v > 0 , then

It remains to show that (eo(Ko’Bn)); are distinct

(3.11) R(v) = R(u)+ |iv]|
and hence tend to o , Let m < n . Then Bn ¢ L(Kn~1) ,

-1
Yo © Kny v YoBy € (@) , and Yol Ky 1s8p) ™" € Ky PROOF. First consider the case dv = P du , where P is
By Lemma 3.4, 0,(K, _;.8,) # 6,(K _,,8,) . That is, by (3.9), '

: A
a trigonometric polynomial. Let the finite set K,€G be
0,(K;»8,) # 8, (K »8,) , as desired. []

A
the support of P . 1If Ko does not contain id, adjoin

We also have the following freedom. id to Ko . Then we have

LEMMA 3.6. If @ is superdissociate, an SD function

Stvp) = [ pe) Fy(8) au(w)
A |

8,(K,¥) can be chosen so that 8,(K,y) =y for y ¢ @UD

I Ph) fyyy)
Y (¢}
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A
Ir vy, € W(Ké) » then it follows that v(yl) =0 . For
Y1 ¢ W(Ko) , let Y{ = Yleo(Ko'Yl)nl » where eo(K,y) ,
L(K) are any SD functions for ® . We claim that for
Y1 § ¥(K)UL(K) ana y6K_,

(3.12) Blyry) = fiteg(x ,vy ) fieny)

For set 0 = eo(Ko,yl) . If Yy; € Q®) , then
Y = v el e a@®,) by (3.7a), so that (3.12) holds
by "multiplicativity" of ﬁ . If YYq ¢ Q{®) , then
we claim yyi ¢ Q(®) , whence both sides of (3.12) are
0 . For if YY] € 2{®) but YYy ¢ Q(@®) , then since
YY; = Yy{ 6 6 8 2(®) , it nust be that YY] € ® Q(@%) .
But then YYy 872 = Yv{ ole Q(G%) » contradicting (3.7b).
This establishes (3.12).
Therefore for vy, ) W(Ko)llL(Ko) ,

A '_ A A -1, A
Y%K POr™) Tilyry) = (o (K ,v,)) YgK P(y™1) Wlyy])

o 0

whence if Yy ¢ L(Ko) s

0 if v, € w(Ko) ’

A
(3.13) V(Yl) = f(e (k ) O(Y') if v ¢ W(Ko) .
o' Mo’ Tl 1 1

Hence for Yy ¢ L(KOY‘,

0 if vy, 6 “’(Ko) ,

. S(vy)
P OO o e I8 s v b v |
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We claim that this implies R(v) < R(u)-llcllaD . For choose
an infinite get B

w A
(ag) "€G\¥(K )UL(K,)) such that = -
1 .
lc(an)l > R{v) - % . Choose 8D functions 8,(K,y) ,

L(K) and (én}wtiB according to Lemma 3.5. Since (3.14)
1

holds for any choice of SD functidns, we have

A

R(v) = 1in|S(p )| Linla(e (k,,8,))]- 18]
n+w n-oo

in

R(w) YIS, .

as claimed. On the other hand, we may instead choose

eo(K.y) according to Lemma 3.6. Let {yn}ﬁ:@»JAKo)
1

be such that lﬁ(yn)l + R(u) . Since id 6 K, o it
follows that y, ¢ ¥(XK,) , whence by (3.13),

A .
Slry) = By $(1a)  ana

R(v) 2 LinfS(v )] = R(u)[D(1a)] .
n-co

If vy ¢ 8 » then substitution of Y"lv for v in this

relation yields R(v) > R(u)le(y)l . Therefore

R(v) > R(u) Hc]]m and the theorem is proved for the case.

dv = Pdu , P a trigonometric polynomial,
In general, for v << o, let dv = f dy ,

fe Ll(G.u) + Since Theorem 1.1 supplies, for any e > 0

a trigonometric polynomial P such that fie- 1 <e,
u

the remainder of the proof is exactly like that for
Theorem I11.7.6. []
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4. HNotes

Baker [1] shows that Weyl groups are exactly those
groups which satisfy an analogue of one of Weyl's theorems

concerning W#*-sets in R .

APPENDIX
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APPENDIX:

SOME OPEN QUESTIONS

In the appendix, "U" will denote the class of Borel

U-sets , not all U-sets,
We consider the most interesting question to be:
1s R=U%? This was already asked in Section III.9.

The other questions of that section will not be repeated

here.

Section III.2

1. Is Lemma 2.8 true without the hypothesis (1)? 1Is it

true for fm n € Ll(u) converging in the weak topology
»
from L%(u) ?

2. Kakutani extended Lemma 2.6 to uniformly convex Banach

spaces (Theorem IIT.10.1)." Does the rate of norm convergence

extend?

3. If ¢ R and ﬁ(nk) + a # 0, then the proof of
Proposition 2.3 shows that for some subsequence {ni}CZ(nk] R
ful(Wl{ng})) # 0. 1s lul(W({n,})) # 02

4. What is sup |u|E ? According to Proposition 2.3, it
E€W

is at least R(u) . What if u € J ? What is sup |u|E ?
Esi#
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Note that if |[v| < |u} , then sup |u|E > R(v) .
Eew

This raises the related question, what is sup R(v) over

all such v ?

Section III.4

1. Do Theorems 4.4 and 4.5 hold for complex measures u ?

Section II1.7

1. 1Is (7.15) necessary for Theorem 7.6; that is, is it
enough to have ny/ny 232

2. When does u have the property that if v << u ,

then B (R 5 ot does

n have the property that if

I il ; |
0 < v <<y, then . BL!l = Eiul ? When does there
vl el
correspond to u a fixed sequence {nk]m such that
k= )

whenever 0 < v << 1 , we have Ic(nk)l + R(v) ? How

are these properties related to each other? See Theorem 7.6.

Section III.8

1. Is (8.3) necessary for Theoren 8.3? 1Is (8.14) necessary
for Theorem 8.8%

2. Does there exist a measure concentrated on an H(m)-set
which puts no mass on any H(m'l)-set ? This is likely to
be true. (However, if it is false for every m , then every

H(m)—set is almost an H -set )
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+
Section 1IV.2 3. Suppose that [qu]rvv for some x € M and some q'6 Z .
. ’ . R

ily £ Weyl! iteri that v = vin

l. Given 0 <y <1, a non-trivial arc ICT, and a It follows easily from Weyl's criterion tha (qn) (n)
11 5 that R. I veJ?
lacunary sequence {nk}w » is it true that for a n € 7Z, so that v ¢ _ ] J
k=1

4. For a general Riesz product, can an explicit W-set
1
(x: VK g kzl xg(nyx) < yenI) be given on which it is concentratgd? See the remarks preceding

Theorem 4.5. For example, if p is as in (4.1) and
is not a U-set ? Theorem 2.2 says this is true for

k-1 1 Y Y s let
ny = 2 and I = [5,1) « Is every maximal A-set
o
corresponding to a lacunary sequence not a U-get ? dv(x) =kﬂ1[l t Ref{ye(n;x)}] dnm(x) .
Section IV.3 Is {nkx}:vv a.e. [ul 2 If n, = qk'1 s this is true by
1, If (3.16) feils for all i , are u and u! mutually : Theorem 4.6. Compare Question 3 for Section III.2.

absolutely continuous (i.e., equivalent)?
) Section IV.5

SQCt.ion V.4 1. Is the union of W-gets a W-set ? Is the union of

1. Call yu & M(T) abgolutely pure if yu satisfies the A-sets an A-set ? Is the union of W-sets an A-set ?

conclusion of Theorem 3.2. (Van Kampen [ 1, p. 444] calls 2. Are H(m)-sets A-sets ? This is true for m = 1

such measures "pure.") Are Riesz products absolutely pure?

3. Are W-gets U-gets ? What about those W-sets of
Riesz products are pure with respect to the classes of

) the form (x: {nyx}~v} for fixed v # m ?
countable sets, of Lebesgue-measure-zero sets (Zygmund

. ’ * = lm’ (m)
[1, I, Chapter V, §71), and of U, -sets (Theorem 4.4). 4. Is UcwWr? Is UcW, ? Is Uch, 2 Is U (m=1H )g ?
(m) . ,(m+1) .
c

2. Suppose (qu}Nv a.e. {u}l, q € Z+ + What conditions (Since H H » this latter class equals

. o0
on u,v , and q are necessary or sufficient to imply that k)l H(m) .)

m=

k
for all subaequences {kzl» » {gq R‘x}:vv a.e. {u} ? See

5. 1Is UOCWO ? See Proposition 5.13'. If some Uo-aet
Theorem 4.6, Corollary 4.7, and the examples following

" is non-meager, then this cannot be true because of Theoren 6.1.
Theorem 3.10. The question can be extended from {q°)} to .

Is UOCW* ?

sequences {nk) « Compare Theorem 4.5,




e

241

6. If B 1is almost a WH-get » is E a Wk.set ? If
the answer is "yes," then by Proposition 5.16, Uoc:W* ’

hence, for example, NCW¥ and UCW* .

7. Is H&W ? See Proposition 5.14. Are H(m)-sets

almost W-sets ?

8. By Theorem 5.20, s_(E) =1 @ s'(E) =1 . Ir s'(E) >0,
is sm(E) >0 7?

9. What else can be said about sets E for which
s'(E) > 07 for which s_(E) > 0 ?

10. Are all N-sets translates of W¥-sets ? See Theoren 5.34.

Section IV.6

1. Are all maximal W#-gsets corresponding to lacunary

sequences co-meager? See Theorems 6.2, 6.3.

2. 1 s'(B)>0, 1s E neager?

Section IV.7

1. The bounds for lR+(u)'— R_(u)| given by Theorem 7.11
are effective only when R({u|) or R(u) is close to 1 .
Are there bounds effective for other ranges of R({ul) or

R(u) ?

.,

2. The Hausdorff dimension of any lacunary maximal W¥.get ,
but not of any maximal W¥.-get v is 1 (Erdds and Taylor
[1]). What about maximal W-sets ? See also Bari [2, II,

Chapter XIV, §23, p. 404].
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3. Is the translate of a W-set a wo-set ? What about
A-sets , W¥-sets ? What about homotheties (seeFZygmund
f1, 1, (vi.2.13), p. 238, and (IX.6.18), p. 350] for
homotheties of N-sets and of U-sets) ? It is not
difficult to prove that a rational translate of a W¥-set

is a Wt-.get .

Section V.1

1. For non-abelian locally compact groups G , it is
still possible to define MO(G) and to prove Theorem 1.2
(Dunkl and Ramirez [1}). 1Is Mo(G) characterized. by its

common null sets U0 ?

Section V.3

1. Does Theorem 3.7 hold if ® is merely disscciate?
Compare Questivoa 1 for Section III.7.
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GLOSSARY

We do not give here those terms defined in Chapters I

or I1, The section number where a term is first introduced

is indicated after its definition.

N add A See Section 1IV.5.

almost If € is a clagss of sets,
a Borel set E is almost in € if
for all Borel measures u concen-
trated on E , 3FCE such that
GLOSSARY
F&C and u(E\F) = 0 (1v.5).

almoat 1 - 1 If (X,F,u) is a probability space
and Y is a set, #: X + ¥ is almost
1 -1 if UE € F such that ¢|E
i 1.1, ¢[EINGIEY = ¢, ana
wE o= 1 (I111.5).

almost torsion-free A group is almost torsion-free if
Ym & n}‘. Lt contains at most finitely

many elements of order m (V.2).

A-get A Borei set K in an LCA group
G is an A-set if there exists a
sequence Y, > » in 8 sucn that
¥vx 8 E , (yk(x)] is badly distri-

buted (V,1).
243




asymptotic H-set

atom

band

Dirichlet set

dissociate

245

A Borel set ECT is an asymptotic

H-set if there is a non-empty open

arc ICT and a sequence of integers

ny t+ = such that V¥x € E

1

K
linz ¥ yx;(nx) =0
KLy X'

K+

(111.8).

A set E is an atom of u if
Iul(E) # 0 and if whenever FCE
is measurable either uF = 0 or

wF = uE (111.2).

A set ACM(G) 1is a band if
V<<peA=xvEA (IV.l).

If € is a class of sets in
an LCA group G , ct- {ueM(G):
lulE =0 VE €€} (II1.9).

A Borel set ECT is a Dirichlet

set if le(nx) - 1l‘w =0
In]+e L (E)

(111.7).

See Section V,3,

A
G is the dual of an LCA group

G (v.1).

Helson constant

Helson set

10 _get

hyperlacunary

lacunary

lacunary W#-get
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s(E) (I11.7).

If s(E) >0, E 4is a Helson set
(111.7).

A Borel set ECT®™ 1is an H(m)-aet
if there 1s a quasi~-independent

sequence {Vk}°° and a non-empty
k=1

open set BCT" guch that Vx € E
vk (nil)x,....nﬁm)x) ¢ B , where

vy = (nﬁl).....nim)) (111.8).
A sequence {nk]CZ+ is hyper-
lacunary if nk+l/nk + ® ag

k+ o (I1I.6).

If G 4is an LCA group,
J = {u € MG): uE = 0 VE ¢ Uo}
(1v.1),

A sequence {nkh:?Z+ is lacunary
if 99 > 1 such that vk
nk+l/"k >2q (II1.4).

A W¥-get B corresponding to a
lacunary sequence is a lacunary

W¥-get (IIT.4).



less-than-exponential
growth

M(E)

u*(E)

measure-copreserving

M(a)

u* (a)

M ()

mix(Nl,Nz,...).
Mix(Nl,Nz....).

N mix M, N Mix M
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A sequence {uk)c.Z+ is of less-
than-exponential growth if

lim n, . ./n, =1 (III.4).

om t1/Px

For Borel ECT, M(E) = {y € M(T):
Il(E) = Nulp (111.7).

MY(E) = (b € M(E): w > 0} (ITI.7).

it (x,F,u) , (1,6,v) are measure
spaces, then ¢: X + Y is measure-
copreserving if VE € F ¢[E] is
v-measurable and v(¢{E)) = pE
(II1.5).

M(G) is the set of (finite) complex

regular Borel measures on an

LCA group ¢ (Vv.1).

K G) = (w e M(G): > 0) (V.1).
My(6) = {u € H(G): lin B(y) = 0)
YW
166
(v.1).

See Section IV.5.

i,

N(k)

(nl,nz.... ,nm)x

N-set

No-set

2(®)

quasi-independent

248

A A
For u € M(G) , |[ull_ = suplu(y)t

Yé
(I11.7, v.3).

" = Psps...xu  m btimes (1v.3).

N(k) 1is the k-th element of the

sequence N ,

If (nl.nz,....nm) e Z" and
xem, (nl.nz....,nm)x = (nlx,

vesnpX) ¢ m® (III.8).

A Borel set ECT is an N-set
if qa; bk € IR such that
¥x € E £;=1lak cos 2nkx +
by sin 2mkx|. < ® but Ep_ (a2 +

bi)l/2 =w (IV.5).

A Borel set ECT is an No-set
if 'é[nk 4+ » such that ¥x 6 E
Lpalsin mnx| <= (1V.5).

See Section V,3,

f nez' » 8 sequence {vk}"’c(z")“‘
1

is quasi-independent if for all
oo

ANEZ", AfoO,| nii) Y

i=1

as k + » , where vy = (n)(cl).....nl((m))

and A = (11.....zm) (111.8).




R(u)

R-set

SD function

s(E)

st(E)

8,(E)

SN(K.x.Q)
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M (G) (v.1).

For u € M(G) , R(n) = Tim|fity)]

as Yy + ® in g (v.3).

A Borel set EcCT™ is an R-set if

ﬁak , bk ¢ R such that Vx € E
Lo

b3 (ak cos 2unkx + by sin 2nkx)
k=1

converges but ai + bi A 0 (1Iv.5).
See Section V.3.

For Borel ECT,

s(E) = inf %h'—“l:o#uem(m
u

(111.7).

For Borel ECT,

s'(E) = inf ?ﬁﬂﬁ 04w M+(Ei}
) 1]

(111.7).

For Borel ECT,

s_(E) = inf B , o ¢ u € M(E{}

I,

(1v.5).

K
sylK,x,2) = I e(-aN(X)x) (IV.5).
k=1

superdissociate

U-set, set of

uniqueness

Uo—set

weak Dirichlet set

Weyl group

word in @

W-set
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See Section V.3.

A set ECT is a U-set 1if the

only trigonometric series

2, c e(nt) which converges to O

for all t @ E is ¢ £ 0 (111.8).

If E is a Borel set in an LCA
group G , then E 1is a Uo-set
if uyE =0 ¥Yu € MO(G) (v.1).

A Borel set ECT is a weak Dirichlet
set if yyu € M (E)ye > 0 TB, CE
such that El is a Dirichlet set

and u(E\El) < e (ILI1.7).

An LCA group G 1is a Weyl group
if Vm # 0 and for all sequences

A
Y T in G , we have YE + o asg

k+ o (V.1).
Ses Section V.3.

A Borel set B in an LCA group

A
G is a W-set if a{yk)“cc tending
1

to o gaguch that yx € E {Yk(x)}: N

is Weyl-distributed (V.1).




wl-set

We(N)

(e)

251

A Borel set E in an 1cA group

© A
G is a W.-set if 3l{y, )" c G
1 Ky

.tending to « such that

¥x € E §v € M(M) such that
ty (N7 ~v o oand $(1) £0 (v.1).
k=1

WX(N) = (x € m: (& # 0) Sy(K,x,2)
# o(K)} (1Iv.5).

For z €L ’ z(e) =z, 1, 0or 2z

if €e=1,0, or -1 respectively
(IV.4).
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