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Standardized Regressions

Consider the usual regression equation with intercept,

Y = α1+Xβ + ǫ , (1)

where we have separated out the intercept. Let the OLS fit be

Y = α̂1+Xβ̂ + e . (2)

Now suppose we standardize all the variables. That is,

Ỹ = (Y − Ȳ 1)/sd(Y )

is the standardized Y , and X̃ denotes the matrix whose columns are the standardized

columns of X . Let X [k] denote the kth column of X , with mean mk and sd sk. Note that

X [k] −mk1 is the column where mk has been subtracted from each entry of X [k]. Thus,

X̃ [k] = (X [k] −mk1)/sk .

We can solve this for X [k] to get

X [k] = skX̃
[k] +mk1 .

Therefore, substitution in (2) yields

Y = α̂1+Xβ̂ + e = α̂1+

p∑

k=1

X [k]β̂k + e = α̂1+

p∑

k=1

(skX̃
[k] +mk1)β̂k + e

= (α̂+

p∑

k=1

mkβ̂k)1+

p∑

k=1

skX̃
[k]β̂k + e . (3)

Using the definition of Ỹ , this gives

Ỹ = b1+ X̃γ + e/sd(Y ) (4)

for some real b and the vector γ with

γk = skβ̂k/sd(Y ) . (5)
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If D is the diagonal matrix whose (k, k)-entry is sk, the standard deviation of the kth

column of X , then we may write (5) as

γ = Dβ̂/sd(Y ) . (6)

Now recall that e ⊥ 1. Since we standardized, we also have Ỹ ⊥ 1 and X̃ ⊥ 1. Therefore,

taking the dot product of both sides of (4) with 1, we obtain b = 0. Thus, we may use a

new residual d := e/sd(Y ) to write (4) as

Ỹ = X̃γ + d .

Furthermore, d ⊥ X̃ since the columns of X̃ are linear combinations of the columns of X

and 1, and we know that d ⊥ 1 and d ⊥ X . That is, OLS regression of Ỹ on X̃

gives γ.

The first thing we conclude is that the “estimated standardized-regression coefficients”

γ are obtained from the usual estimated regression coefficients β̂ by “changing units”, i.e.,

γk = β̂ksd(X
[k])/sd(Y ), which is equation (5). There are no parameters in a standardized

regression since the standardization is defined in terms of the data. Thus, we aren’t

really estimating the non-existent parameters. (For another interpretation that involves

standardizing Y at the population level, and which leads to a genuine regression with new

parameters, see Freedman’s note, “Comments on standardizing path diagrams: what are

the parameters?” at http://www.stat.berkeley.edu/~census/standard.pdf. This is a

transformation of (1) rather than of (2), and involves using (Y − α1)/SD(Y1) rather than

Ỹ . It is more complicated than what we do and it introduces new bias.) However, we may

regard γ as estimating β with a change of scale that depends on the unstandardized data.

If we know the standard deviations of the unstandardized data, then we may calculate β̂

from γ. But if we know only standardized data, then although we can calculate γ, we

cannot calculate β̂ since this change of scale will be unknown (unless we are told sd(X [k])

and sd(Y )).

The next thing is to find the SEs for γ. Going from X to X̃ involved two steps: first,

we subtracted a multiple of 1 from each column to center it, getting, say, the matrix Z;

second, we divided each column by its standard deviation. Notice that using a new design

matrix obtained from subtracting multiples of 1 from the columns of X does not change

β or β̂, though it does change the intercept. (Look at the equations (1) and (2), or else

(3).) Let’s write

Y = â1+ Zβ̂ + e
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for the regression of Y on 1 and Z. Since 1 ⊥ Z by design of Z, we have that the new

design matrix [1 Z] satisfies [1 Z]′[1 Z] =

[
n 0

0 Z ′Z

]
; here, n is the length of Y , as usual.

Therefore,

Cov

([
â
β̂

] ∣∣∣ X
)

= Cov

([
â
β̂

] ∣∣∣ Z
)

= σ2
(
[1 Z]′[1 Z]

)
−1

= σ2

[
1/n 0

0 (Z ′Z)−1

]
.

In particular,

Cov(β̂ | X) = Cov(β̂ | Z) = σ2(Z ′Z)−1 .

The second step in creating X̃ from X involved dividing by the standard deviations:

X̃ = ZD−1. From this and (6), we deduce that

Cov(γ | X) = Cov
(
Dβ̂/sd(Y ) | X

)
= DCov(β̂ | X)D/var(Y ) = σ2D(Z ′Z)−1D/var(Y )

= σ2(D−1Z ′ZD−1)−1/var(Y ) = σ2(X̃ ′X̃)−1/var(Y ) .

We don’t know σ; if we are given Ỹ and not Y , then we don’t know var(Y ) either. But

recall that σ̂2 = ‖e‖2/(n − p). We don’t know e, but we do know d = e/sd(Y ). Thus, we

have

σ̂2/var(Y ) = ‖d‖2/(n− p) ,

which gives us

Ĉov(γ | X̃) := σ̂2(X̃ ′X̃)−1/var(Y ) =
‖d‖2
n− p

(X̃ ′X̃)−1 . (7)

This is just the formula you would use if you treated a standardized-regression

equation as an ordinary regression equation for the purposes of OLS, except

that p is one more than the number of columns of X̃.

Consider the null hypothesis that βk = 0. We test it using t := β̂k/ŜE(β̂k). By

(5), γk = β̂ksk/sd(Y ), whence SE(γk) = SE(β̂k)sk/sd(Y ). Dividing the two preceding

equations, we obtain β̂k/SE(β̂k) = γk/SE(γk). Now by (7), we have

ŜE(γk) =
‖d‖√
n− p

(X̃ ′X̃)−1
k,k =

σ̂

sd(Y )
(X̃ ′X̃)−1

k,k =
σ̂

σ
SE(γk) .

Of course, we also have that ŜE(β̂k) = (σ̂/σ)SE(β̂k). Therefore t = γk/ŜE(γk). That is,

the t-test statistic for γk is the same as for β̂k.

In addition, since d = e/sd(Y ) as a general rule, if we are testing a smaller model, we

will also have d(s) = e(s)/sd(Y ). It follows that

F =

(
‖e(s)‖2 − ‖e‖2

)
/p0

‖e‖2/(n− p)
=

(
‖d(s)‖2 − ‖d‖2

)
/p0

‖d‖2/(n− p)
.
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Therefore, the F -test statistic for any subset of γk is the same as for the cor-

responding subset of β̂k. Also, R2 is unchanged for the standardized regression

since

1−R2 =
var(e)

var(Y )
=

‖e‖2
n var(Y )

=
‖d‖2
n

=
‖d‖2

‖Ỹ ‖2
.

Note that we use the definition of R2 with an intercept for the original regression equation

and the definition of R2 without an intercept for the standardized regression equation

(though in the latter case, it wouldn’t matter which definition we used).

The t-test statistic for a linear combination c′γ of the γk is not the same as the t-

statistic for c′β in general because different βk get divided by different quantities sd(βk).

Some other linear combination f ′β would have to be used, but it would be impossible

to know which f to use if the sd(βk) are unknown. Nevertheless, linear combinations

may seem to make more sense for γ than for β̂, as in Section 6.3, since “effect sizes”

are comparable. However, this is an illusion because γ does not estimate parameters

(recall there is no such thing as a standardized parameter). If the data gathered changed

sd(X [k]), then γk would change as well, but there might not be any real difference in effect.

(Thus, even with Freedman’s interpretation of standardized regression, where there are real

parameters, or even if we standardize only on the right-hand side and not Y , we can’t get a

stable interpretation of γ. Nevertheless, if you think of standardizing by sample quantities

as approximately standardizing by population quantities, then γ does approximate actual

parameters and therefore testing whether c′γ = 0 will make approximate sense—if indeed

the sample is a good approximation of the population.)

If we don’t have data or even standardized data, but have only correlations (as in

Section 6.1), we can still compute γ = (X̃ ′X̃)−1X̃ ′Ỹ since we need only X̃ ′Ỹ and X̃ ′X̃,

which are formed from the correlations: the kth entry of X̃ ′Ỹ is n times the correlation

between X [k] and Ỹ , while the (j, k)-entry of X̃ ′X̃ equals n times the correlation between

X [j] and X [k]. Similarly, we can get ‖d‖2, which we need to estimate errors, as follows:

‖d‖2 = d′d = d′(Ỹ − X̃γ) = d′Ỹ = (Ỹ − X̃γ)′Ỹ = n− γ′X̃ ′Ỹ .

Here, we used the fact that d ⊥ X̃ . Thus, after we calculate X̃ ′Ỹ and then γ, we may

calculate ‖d‖2.
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