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RANDOM WALK IN A RANDOM ENVIRONMENT AND
FIRST-PASSAGE PERCOLATION ON TREES'

By RusseLL LyoNs AND ROBIN PEMANTLE

Stanford University and University of California, Berkeley

We show that the transience or recurrence of a random walk in certain
random environments on an arbitrary infinite locally finite tree is deter-
mined by the branching number of the tree, which is a measure of the
average number of branches per vertex. This generalizes and unifies previ-
ous work of the authors. It also shows that the point of phase transition for
edge-reinforced random walk is likewise determined by the branching
number of the tree. Finally, we show that the branching number deter-
mines the rate of first-passage percolation on trees, also known as the
first-birth problem. Our techniques depend on quasi-Bernoulli percolation
and large deviation results.

1. Introduction. A random walk on a tree (by which we always mean an
infinite, locally finite tree) is a Markov chain whose state space is the vertex set
of the tree and for which the only allowable transitions are between neighbor-
ing vertices. We assume throughout that all transition probabilities are
nonzero. For a fixed tree, the transition probabilities may be taken as random
variables, in which case the resulting mixture of Markov chains is called
random walk in a random environment (RWRE). The first theorem proved in
this paper is conceptually the ‘““least upper bound” of two previous results
obtained by the authors (separately) about RWRE on trees. The notation
necessary to describe this is as follows.

Choose an arbitrary vertex as the root and let o be any other vertex. Let &
denote the first vertex on the shortest path from o to the root. If o is at
distance at least 2 from the root, define A, as the transition probability from
o to o divided by the transition probability from & to &. We assume the
following uniformity in our random environment: All but finitely many of the
random variables A are identically distributed. (Since the values of A_ are
determined by the transition probabilities in a way that depends on the choice
of root, it may appear that whether this condition is satisfied depends on the
choice of root, but actually a different choice of root changes only finitely many
of the A ’s.) Let A denote a random variable with this common distribution.

By the zero—one law, a RWRE is a.s. transient or a.s. recurrent. We shall
determine the phase transition boundary; we do not know in general when the
cases on the boundary are transient or recurrent, but examples indicate that
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126 R. LYONS AND R. PEMANTLE

there is no simple rule here. Intuitively, the larger a tree is, the more likely a
RWRE is to be transient, not only because the root is harder to find again, but
also because there will be more branches along which the values of A are
atypically large. This can be quantified by a large deviation calculation which,
one way or another, is behind each result in this paper. The branching number
of a tree T, denoted br(I"), is a real number greater than or equal to 1 that
measures the average number of branches per vertex of the tree [4]; the precise
definition is given in Section 2. In [4], Theorem 6.6 and Remark 2, it is shown
that, when A < 1, the RWRE is transient or recurrent according to whether
E[A] - br(T') is greater or less than 1. In Theorem 2 of [6], it is shown that if T
is a homogeneous tree or the genealogical tree of a Galton—-Watson process on
(a subset of full measure of) the event of nonextinction, then RWRE is a.s.
transient or a.s. recurrent according to whether p br(I') is greater or less than
1, where p is a function of the distribution of A (defined in the next section of
this paper) and is equal to E[ A] in the case where A < 1. Theorem 1 of this
paper is that, for any tree and any distribution of A, RWRE is transient or
recurrent according to whether p br(I') is greater or less than 1. The solution
of the general case combines and simplifies techniques from [4] and [6] and
provides as well a simpler expression for p. As shown in [6], edge-reinforced
random walk (RRW) on an arbitrary tree is equal in law to a RWRE of the type
discussed here. Hence, the present results show too that the phase transition
for RRW occurs at a point depending only on the branching number of the
tree. Our methods also resolve the boundary case left open in [6].

Our results on RWRE have equivalent formulations for flows in random
electrical or capacitated networks. In fact, that will be important for our
solution. Such problems are often regarded as part of percolation theory. The
second main problem we consider is also part of percolation theory and it
illustrates again how the crude behavior of probabilistic processes on trees
often involves minimal interaction between the random variables involved and
the tree structure as, moreover, the latter enters only as a single number,
namely, the branching number of the tree.

Indeed, for our second problem, choose positive i.i.d. random variables for
each edge of a tree T', regarded as transit times from one end to the other. We
shall give the a.s. rate of fastest possible transit from any point to infinity; this
is similar to the usual problem of first-passage percolation (or first birth) and
is probably the appropriate formulation for this setting. Since this problem
explicitly asks for the largest deviation from mean behavior, it is not surpris-
ing that the techniques used to find the phase transition for RWRE also solve
this problem. Indeed, Theorem 4 gives the a.s. fastest transit rate to infinity as
1/m(1/br(T')), where m, is an inverse to a rate function m defined in
Section 3. A further connection between the two problems is that the proofs of
JTheorems 1 and 4 both require results on quasi-Bernoulli percolation [3] which
show that a configuration of values of A in an appropriate range, once shown
to be common enough, must percolate in an appropriate sense. Theorem 4 also
gives information concerning the asymptotic profile of the transit times to
large distances.
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2. RWRE. Given a tree I', designate one of its vertices as the root, 0. If o
is a vertex, we write |o| for the number of edges on the shortest path from 0 to
o. For vertices o and 7, we write o < 7 if o is on the shortest path from 0 to
7, we write o <7 if o <7 and o # 7 and we write 0 > 7 if 0 <7 and
I7| = lo| + 1; in this last situation, we call 7 a successor of o. If o # 0, then &
denotes, as in Section 1, the vertex such that & — o. The edge preceding o,
from & to o, is denoted e(o). A cutset I1 is a finite set of vertices not including
0 such that every infinite path from 0 intersects II and such that there is no
pair o,7 € Il with o < 7. The branching number of T [4] is defined by

brT = inf{)\ > 0;inf ), A7l = 0}.
oell
The branching number is a measure of the average number of branches per
vertex of T'. It is less than or equal to liminf, ,, M!/" where M, := card{o €
I'; lo| = n}, and takes more of the structure of I' into account than does this
growth rate. For sufficiently regular trees, such as homogeneous trees or, more
generally, Galton-Watson trees, br I' = lim,, _,, M}/" [4].

Given a random environment and the r.v.’s A as described in Section 1, we
shall assume without loss of generality that all A are identically distributed.
Choose further i.i.d. A, for |o| = 1 and set

c,= [] 4A,.
0<r<0
Consider an electrical network formed from I' with conductance C, along the
edge e(o). The transition probability from o to 7 is recovered by dividing the
conductance of the edge joining o to 7 by the sum of the conductances of all
edges incident to o. Actually, this may not be true for |o| < 1, but we may
ignore this insofar as our interest lies in the type of the random walk.

We shall use the fact that our random walk is transient if and only if the
electrical network has positive conductance from 0 to '« (see [2], Proposition
9-131). This, in turn, is closely related to the question of whether the capaci-
tated network (with, say, water flowing instead of electricity) formed by I' with
(channel) capacity C, through e(o) admits flow to infinity. In particular, if no
water flows, then no current flows. [To see this, note that if the electrical
conductance is positive, then a unit potential imposed between the root and
infinity induces a current flow that is bounded by C, on e(o) for each o and is
hence an admissible water flow.] Moreover, the converse to this is almost true,
as made precise in the proof of part (i) of Theorem 1. For more details, see [4].

THEOREM 1. Consider a random environment on a tree I' as described
previously, with 0 < A < w© a.s. Let p == min,_, _, E[A*].

G If pbrT > 1, then the RWRE is a.s. transient, the electrical network
has positive conductance a.s. and the capacitated network admits flow a.s.

(i) If pbrT < 1, then the RWRE is a.s. recurrent, the electrical network
has zero conductance a.s. and the capacitated network admits no flow a.s.
More generally, it suffices that inf ¥, cnp'“' = 0.
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(iii) If plimsup, ., M}/" <1, then the RWRE is a.s. positive recurrent.
More generally, it suffices that ¥, op'! < c.

REMARK 1. One might expect a part (iv) to this theorem, as there is when
A is a.s. constant [4]. However, the following example shows that
plimsup M!/" > 1 does not imply that the RWRE is a.s. null recurrent or
transient. Let T' be a single infinite branch, to which have been added
291+1 _ 1 guccessors of each o. Each of the added nodes has no successor.
Then M!/" = 2 for all n. It is easily shown that the random walk will be a.s.
positive recurrent or not according to whether the geometric mean of A is less
or greater than ;. Since we can choose A to have geometric mean less than p,
there is no (weak) converse to (iii). Similar examples exist even on trees with
every vertex having at least two neighbors.

REMARK 2. The behavior on the phase transition boundary itself will be
discussed after the proof of the theorem.

REMARK 3. Our assumptions of independence concerning the random envi-
ronment are stricter than necessary. For example, the same proof is valid in
the situation where, for some root 0, the environments at o and 7 are
independent whenever |a| # |7].

REMARK 4. In case we wish to allow the transition probabilities to be zero
with probability in ]0, 1[, then we must make the following changes to the
statement of the theorem. First, in calculating p, we use the conventions that
0° = 0 and «° = 1. Second, we change “a.s.” in (i) to “with positive probabil-
ity’’; alternatively, instead of starting the RWRE at the root, we can say in
case (i) that there is a.s. some vertex in I' at which the RWRE is transient and
from which conductance to infinity is positive. To see this, suppose first that
the transition probabilities p, , satisfy p; , > 0 a.s. and Plp, ; = 0] > 0 for
o # 0. In this case, P[A = ] > 0, so that p = 1 and we must show that the
RWRE is a.s. transient. Indeed, it is immediately apparent that this is the case
for any subtree consisting of a single infinite branch, hence that it is true for
the whole tree.

More generally, now, without changing the law of the random environment,
we may assume that the transition probabilities p, . have the form p, . =
b, .D, ., where b, _ takes only the values 0 and 1 and, in fact, b, ; = 1; p; , is
never 0; {6, ,} are JOlntly independent of {p, ,}; bo Ap, .1is 1ndependent of

b, [P, ] for o # p. Thus, the random environment { Po, .} can be considered as
the compound process of percolation via {b; ,} followed by use of the transition
probabilities {p Do, g If A corresponds to {p Do, T} and q = Eb; ,], then E[A*] =
qF[ A*], whence pbrI' = min, _, <1 E[ A*](g br T'). We now combine Theorem
1 with the fact that percolation via {b; ,} leaves subtrees, the supremum of
whose branching number is a.s. ¢ br I’ ([4] Corollary 6.3); here, we interpret a
branching number less than 1 to mean that the tree is finite.
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The proof of our theorem depends on the Chernoff-Cramér theorem. We
have not found this theorem stated in the literature in the form and generality
which we require, so we state it here. The reader may check that it follows
from the material in Chapter 1, Section 9 of [1] by a truncation argument.
Note that we make no assumptions on the existence even of E[ X].

THE CHERNOFF—-CRAMER THEOREM. Let X be a real-valued random variable
and define

#(6) = Ele*™] and y(a) = inf (~a + log 4(6)).

If S, denotes the sum of n independent copies of X, then, for all a € R, the
quantity

1
—logP[S, > na]
n
approaches y(a) from below (though not necessarily monotonically) as n — .

Note that in the following lemma, as well as in the proof of the theorem, no
exceptions need be made when E[ A*] = « for some x.

LEMMA. min,_, , HA*] = max,_,_,inf,_,y'"*HA*].

ProoF. This can be verified directly by a case analysis of the point x,
where E[A*] is minimum, but it also follows immediately from Fenchel’s
duality theorem ([7], Theorem 31.1): Let f(x):= logt A*] for x > 0 and
f(x) = +x for x < 0. Then f(x) is convex by Hélder’s inequality and lower
semicontinuous by Fatou’s lemma. Let f*(r) := sup,(rx — f(x)) be the convex
conjugate of f. Similarly, let g(x) be the concave function that is 0 for x < 1
and — o« elsewhere, and let

. ) if = 0,
g*(r) = ngf(rx - g(x)) = {7‘_00’ ;f:io,

be its concave conjugate. Then Fenchel’s theorem asserts that inf,(f(x) —
g(x)) = max (g*(r) — f*(r)), which is the same as the statement of the
lemma. Indeed,

inf(f(x) - g(x)) = log min E[A"]
and

max (g*(r) — f*(r)) = max(r — f*(r)) = loé max inf y'*E[ A*]. O
r r<0 0<y<1l x>0

Proor oF THEOREM 1. The assertions will be demonstrated in reverse

order.
(iii) We shall use the fact that the random walk is positive recurrent if and
only if the electrical conductances have finite sum ([2], Proposition 9-131).
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Suppose that ¥, .p'”! < ® and that p = F[A*], 0 < x < 1. Then

E[ ) c:]=2[ﬁ [T Ax|= % TI ga]=% p <,

0#cel oc#0 LO0<t=<o g#0 0<7<o oc#0

whence ¥, (C; < » a.s. In particular, C, < 1 for all but finitely many o a.s.
Since CF > C, for C, < 1, it follows that X, . ,C, < ® a.s.

(ii) Here we use the fact that the random walk is recurrent if and only if no
electrical current flows. Suppose that inf; ¥ .;p'”! = 0 and that p = EH A*],
0 < x < 1. Then, as before,

[E[ )y C,f] = X p,

cell oell

whence if ©, . p!”' — 0, we have, as before,
liminf ) C,=0 as.,

n—® ocell,
by virtue of Fatou’s lemma. By (the trivial half of) the max-flow min-cut
theorem, the capacitated network admits no flow a.s. Hence, no electrical
current flows, and the random walk is a.s. recurrent.

(i) This part uses the fact that if water flows even when C, is reduced
exponentially in |o|, then electrical current flows and the random walk is
transient ([4], Corollary 4.2). If pbr ' > 1, let y €]0,1] be such that p =
inf, cp ' "*EH A*]. By the Chernoff~Cramér theorem, there exists k& > 1 such
that, for |o| = &,

P[C, = y*] > (ybr )~
Let &£ > 0 be sufficiently small that, for |o| = &,
q=P[C,2y*andVO<r<o, A =¢] > (ybrD)7"

Let I'* be the tree whose vertices are {o¢ € T'; k|lo|} such that o — 7 in T'® if
and only if ¢ < 7 and |o| + £ = |7| in T. It is easily verified that br I'* = (br I')*.
Form a random subgraph I'*(w) of T'* by deleting those edges o0 — 7 where

a<]_pISTAp<yk or 3pel, o<p<randA, <s.
pel
This is an edge percolation on I'* for which each edge is present with
probability ¢ and the presence of edges with distinct ‘‘preceding’ vertices are
mutually independent. In particular, it is a quasi-Bernoulli percolation process
on I'* (see [4] for the general definition of quasi-Bernoulli percolation). Choose
w €l(yg'/*br )71, 1[. Since g br I'* > (wy)~* > 1, there is almost surely a
subtree I'* of I'*(w), not necessarily beginning at the root, that has branching
number larger than (wy)* (combine the method of proof of Corollary 6.3 or
Proposition 6.4 of [4] with Theorem 3.1 of [3]). Any subtree I'* of I'* induces a
subtree I"of " whose vertices are those p € T" for which 3 o, 7 € I'* such that
o < p < 7. Thus, there is almost surely a subtree I'" of I' induced by I'*(w)
with the following three properties: br I' > (wy)~!; A, > ¢ along each edge;
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for every o,7 € I" such that kl|lo|=|7| — k, we have I, ,<.4, > yk It
follows that

wC, > irrll,fek—l Y (wy)”'> o0,

oell

inf Y

11 cell
where I’ is any cutset of I". By [4], Corollary 4.2, I has positive conductance,
hence so does I' (a.s.). We may now deduce that the RWRE is transient a.s. and
that the capacitated network admits flow a.s. (e.g., the current flow from an
imposed unit potential from 0 to «). O

REMARK 5. The proofs of (i) and (ii) use the different expressions of p given
by the lemma. Since the equality of the two expressions is not intuitive, the
fact that (i) and (ii) meet (cover all possibilities except p br I' = 1) may seem
miraculous. The following discussion is intended to explain “why”’ (i) and (ii)
meet. Part (i) is true because there are enough branches of the tree along
which the geometric mean of the A_’s exceeds a certain value y in order to
force transience. This is shown directly from the second expression for p,
which is just a large deviation rate. For each y individually, there is a converse
to this, which is that the conductances to those parts of a cutset where the
geometric mean of the A_’s is close to y approach zero as the cutset gets far
from the root. This uses the other half (i.e., the upper bound) of the
Chernoff-Cramér theorem not used in (i). It is possible to show that the total
. conductance to a cutset goes to zero by “integrating’ this fact over y. Such an
approach can be used to derive (ii) from the second expression for p, but it
involves several calculations (see [6], where this is done for positive recurrence).
These are avoided by using the simpler expression for p provided by the
lemma.

We now turn our attention to the behavior of the random walk on the phase
transition boundary, p br I' = 1. Here, the type of the walk depends on further
structure of the tree and of A. First, we remark that, even when A is
constant, the walk may be either transient or recurrent [4]. Furthermore,
there are trees I' for which p = br(I') = 1 and RWRE is a.s. transient, yet
simple random walk on T" (i.e., A = p = 1 almost surely) is recurrent. On the
other hand, there are trees I' for which br(I') > 1 and for which there are a.s.
recurrent RWRE’s with p = br(I') !, even though the RWRE with the deter-
ministic environment A =p is transient. We do not know whether the
difference in behavior of the walk for random as compared to deterministic
environments always depends, as before, on br I We hope to clarify this
behavior at a later date, but for now, suffice it to record the following
extension to part (ii) of Theorem 1, which covers many of the boundary cases,
pbr(l) = 1.

ProposiTioN 2. Under the same -hypotheses as in Theorem 1, if
liminfy ., X cgp'! < ® (in other words, if there are cutsets 11, such that
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inf{lol; o € I1,,} = © and sup, £,y p'"! < ), then the RWRE is a.s. recur-
rent and the electrical network has zero conductance a.s.

Proor. Let II, be as indicated. We have

[E[Sup > C’;‘] ssup[E[ M C;‘] =sup Y. p"l <o,

n gell, ocell, ocell,

whence

1/x
sup Y. C(,3sup( Y C(f) <o a.s.

ocell, ocell,

This implies a.s. recurrence by virtue of [4], Corollary 4.2. O

The capacitated network may admit flow in these circumstances, as the case
where ' is a binary tree and A = § shows. A complete answer for both
electrical and capacitated networks may be given when I' is homogeneous or
produced by a Galton-Watson process. The following theorem simplifies,
refines and extends Theorem 2 of [6]. (The assumptions there that the progeny
distribution be bounded and that F{log A] exists are now seen to be unneces-

sary.)

THEOREM 3. Let T be the genealogical tree of a Galton—Watson branching
process with mean m > 1. Consider a random environment as in Theorem 1.

(i) If pm > 1, then, given nonextinction, the RWRE is a.s. transient, the
electrical network has positive conductance a.s. and the capacitated network

admits flow a.s.
(ii) If pm < 1, then, given nonextinction, the RWRE is a.s. recurrent, the

electrical network has zero conductance a.s. and, unless both A and T are
constant, the capacitated network admits no flow a.s.
(iii) If pm < 1, then the RWRE is a.s. positive recurrent.

REMARK 6. When pm =1, the RWRE may be either null or positive
recurrent ([5], Theorem 3.2).

Proor oF THEOREM 3. Part (i) follows immediately from Theorem 1, since,
given nonextinction, the genealogical tree has branching number m as. (4],
Proposition 6.4). The first two parts of (ii) follow from the same argument
used in the proof of Proposition 2:

[E[ Y Cj] =m"p" <1,
lol=n
whence

sup ), C, <o as.

n ]0-|=n
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Likewise, the proof of (iii) is similar to the proof of part (iii) of Theorem 1. It
remains to establish the assertion in (ii) on the capacitated network when
pm = 1.

For 0 <t <1, let F® be the maximum flow to infinity in the network on T’
with capacities C! along e(o). Thus, we are interested in showmg that
F® = 0 almost surely Now, as in Proposition 2,

(F(1))x - inf( Z Ca) < inf( Z C;‘) = F®,
I \sen O\ e

so that it suffices to show that F = 0 almost surely. For |o] = 1, let F*) be
the maximum flow in the subtree {r € T'; ¢ < 7} with capacities C*/A%. Thus,
F® has the same law as F® does. It is easily seen that

F@O = Y A%(1AF®).

lol=1
Taking expectations yields
E[F®)] = mpE[1 A F®] =[F[1 A F™].
Therefore F*) < 1 almost surely. In addition, we have, by independence,
L A
|0' I =1 0

Since [|X o|= 1A%l > 1 unless both A and I' are constant, this shows that
F® = 0 almost surely unless both A and I' are constant. O

3. First-passage percolation. Given a tree I' rooted at 0, the boundary
T of T is the space of infinite paths beginning at 0 which go through no
vertex more than once. This is a compact space with metric d(s,t) =e™",
where n is the number of edges common to s and ¢. Changing the root gives
essentially the same boundary with an equivalent metric. Suppose we are
given real-valued i.i.d. r.v.’s X for each edge e(c). Let S, = X,.,.,X,. As

explained in Section 1, the random variable
inf limsup —
sedl oESs IO.[

may be thought of as the reciprocal of the fastest sustainable transit rate to
infinity if X_ > 0. The calculation of this rate depends on the nondecreasing
function

m(y) = inf E[ex*),

where X has the same law as every X,. As the infimum of linear functions,
log m is concave. Write
m(z) = sup{y; m(y) <z},

so that m, is a sort of inverse function to- m. Note that m cannot be constant
unless m = 1 nor have range {0,1}. Hence m is strictly increasing where
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10, 1[-valued by log-concavity and
my(z) = inf{y; m(y) > z},

for 0 <z<1,exceptif m =1and z = 1.
THEOREM 4. Unless brI' = 1 and m = 1, we have

inf limsup — = inf{ lim —; s € " and lim — exists
sedl’ oEs IO'I OEs '0" oEs IO’I

= my((br ) _1) a.s.
and
. S, . .S,
dim{s € dT'; limsup — <y; = dim{s €dI'; lim — =y
OEs IO'I OEs I(T I
=log(m(y)brI') a.s.
for m((brT)™1) <y < sup, HX A nl.
REMARK 7. The statement concerning Hausdorff dimension (cf. [4], Section
7) may be interpreted as giving information on the asymptotic profile of transit
times. [We are grateful to Yuval Peres for the statements and proofs concern-

ing lim (rather than lim sup). Peres also has examples showing that when
brI' = 1 and m = 1, the rate depends on more information.]

ProorF oF THEOREM 4. Suppose first that m(y)brI' < 1. Then by the
Chernoff-Cramér theorem,

inf [E[ Y 14 sylal] <inf ¥ m(y)'=o0,
I oell 7 1 oell
whence there are cutsets I1,, = « (i.e., min{|o|; o € II,,} = «) such that

liminf card{o € I1,,; S, < ylol} = 0 a.s.

n—o
In other words, a.s. for infinitely many n,
Voell, S, > ylol.
Therefore, a.s.,

Vsedl, limsup— >y.
oges |0

On the other hand, if m(y)br I' > 1, then, by the Chernoff-Cramér theo-
rem, there is a £ > 1 such that, for |o| = £,

P[S, < ky] > (br ') %
Let M be sufficiently large that, for |o| = &,
(8.1) q=P[S,<kyandVO<r<o, X, <M]> (brT)7".
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Let T'* be as in the proof of Theorem 1. Form a random subgraph I'*(w) of T'*
by deleting those edges o — 7 where

Y X,>ky or dpeT, o<p<tand X, > M.

o<p<T
pel

This is a quasi-Bernoulli percolation process on I'* [3]. Since g brI'* > 1,
percolation occurs a.s. That is, there is a.s. an s € ' whose image in I'* is
except for a finite set, contained in TI'*(w); for such s, we have
limsup, ., S,/lol <y. This establishes that inf,_,rlimsup, ., S,/lol =
m((br 1) as.

Additional information can be extracted from the argument of the last
paragraph. Embed I' in the upper half-plane with its root at the origin and
order ' clockwise. Given y such that m(y)brI' > 1, let T} be the tree
denoted I'* previously and let s(y) be the minimal element of dI" whose tail
lies in Fk(w) Thus, s(y) is defined a.s. For any |o| = k&, set

S,<kyandV0<r<o,X <M|.

— S()’
P(y) = [5[7

Recall that £ and M depend on y. By the strong law of large numbers, we
have

S,
lim — =¢(y) a.s.
oes(y) '0' |
Since ¢(y) <y and y is arbitrary, subject only to m(y)br I' > 1, this estab-
lishes the remainder of the first assertion of the theorem. We claim, moreover,
that, for any y < sup, EH{X A n] such that m(y)br I’ > 1,

o

(3.2) as.Isedl, lim — =y.

OEs '0"

Indeed, given such y, find 2 and M such that (3.1) holds and y < E{ X A M].
We may write

y=ay(y) + (1 - a)E[X|X < M]

for some a € [0, 1]. Choose a sequence .#” of density a in N and percolate as
before on T'*, except that the edges preceding vertices o € I'* for which
lo| & 4 survive a.s., rather than with probability q. We now find by similar
reasoning to the above that

lim — =y as.,

oes(y) IO'I

thereby validating (3.2).



136 R. LYONS AND R. PEMANTLE

The remainder of the theorem follows from general considerations. Namely,
denote the sets in question by

E(y):

I

SG‘
s €l'; limsup — sy},

TgESs |0-|

TES IO'l

Sy
F(y) = {s erl; lim — =y}.

By the 0-1 law, dim E(y) and dim F(y) are constant a.s. As E(y) and F(y) are
clearly Borel and F(y) c E(y), [4], Section 7, implies that it suffices to show
that if independent Bernoulli percolation with survival parameter p is per-
formed on T, then, for pm(y)br I' < 1, a.s. no point of E(y) survives, while, for
pm(y)or T’ > 1, with positive probability some point of F(y) does survive.
These conditions in fact follow from [4], Corollary 6.3, from what was shown
previously and from Fubini’s theorem. O
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