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Per
olation Perturbations in

Potential Theory and Random Walks

by Itai Benjamini, Russell Lyons, and Oded S
hramm

Abstra
t. We show that on a Cayley graph of a nonamenable group, a.s.

the in�nite 
lusters of Bernoulli per
olation are transient for simple random

walk, that simple random walk on these 
lusters has positive speed, and that

these 
lusters admit bounded harmoni
 fun
tions. A prin
ipal new �nding

on whi
h these results are based is that su
h 
lusters admit invariant random

subgraphs with positive isoperimetri
 
onstant.

We also show that per
olation 
lusters in any amenable Cayley graph a.s.

admit no non
onstant harmoni
 Diri
hlet fun
tions. Conversely, on a Cayley

graph admitting non
onstant harmoni
 Diri
hlet fun
tions, a.s. the in�nite


lusters of p-Bernoulli per
olation also have non
onstant harmoni
 Diri
hlet

fun
tions when p is suÆ
iently 
lose to 1. Many 
onje
tures and questions are

presented.

x1. Introdu
tion.

The question of whether various potential-theoreti
 properties of graphs and manifolds

are preserved under perturbations or approximations has been studied for more than a

de
ade. For example, invarian
e under quasi-isometries of transien
e (i.e., the existen
e

of non
onstant positive superharmoni
 fun
tions) or of existen
e of harmoni
 fun
tions in


ertain 
lasses has been studied by Kanai (1986), T. Lyons (1987), Salo�-Coste (1992),

Soardi (1993), Benjamini and S
hramm (1996a), Thm. 3.5, and Holopainen and Soardi

(1997).

In this paper, we study perturbations of graphs that are more radi
al than quasi-

isometries and that are random. Namely, edges are deleted at random to form a per
olation

subgraph ! and the behavior of simple random walk hX(t)i on ! is examined (where

ea
h neighbor of X(t) in ! is equally likely to be X(t+ 1)).

1991 Mathemati
s Subje
t Classi�
ation. Primary 60B99. Se
ondary 60D05, 31C20, 60J15, 31B05, 20F32.

Key words and phrases. Spanning trees, Cayley graphs, harmoni
 Diri
hlet fun
tions, bounded harmoni


fun
tions, amenability, per
olation, random walks, speed, entropy, RWRE (random walk in a random

environment), isoperimetri
 
onstant.

Resear
h supported by a Varon Visiting Professorship at the Weizmann Institute of S
ien
e (Lyons) and

the Sam and Ayala Za
ks Professorial Chair (S
hramm).

1



We re
all some de�nitions. Given a graph G =

�

V (G); E(G)

�

and p 2 [0; 1℄, the

random subgraph !

p

formed by deleting ea
h edge independently with probability 1� p is


alled p-Bernoulli bond per
olation. The 
riti
al probability p




(G) is the in�mum

over all p 2 [0; 1℄ su
h that there is positive probability for the existen
e of an in�nite


onne
ted 
omponent in !

p

. The 
onne
ted 
omponents of !

p

are also 
alled 
lusters.

In the 
ase that G is an amenable Cayley graph, Burton and Keane (1989) show that p-

Bernoulli per
olation has a.s. at most one in�nite 
luster. For ba
kground on per
olation,

espe
ially in Z

d

, see Grimmett (1989). Following earlier work of Grimmett and Newman

(1990) on the dire
t produ
t of a regular tree and Z, a general study of per
olation on

dis
rete groups was initiated in Benjamini and S
hramm (1996b). One phenomenon that

was 
onje
tured there to be general was a 
onverse to the Burton and Keane result, namely,

that on any nonamenable group, for some p, there are a.s. in�nitely many in�nite 
lusters

in !

p

. This led to the de�nition

p

u

(G) := inf

n

p : P[!

p

has exa
tly one in�nite 
luster℄ = 1

o

:

Thus, p

u

(G) = p




(G) when G is an amenable Cayley graph. H�aggstr�om and Peres (1998)

show that on a Cayley graph G, for every p > p

u

, there is exa
tly one in�nite 
luster a.s. in

p-Bernoulli per
olation. It is known that p

u

< 1 in many 
ases besides amenable groups,

e.g., �nitely presented groups with one end (Babson and Benjamini 1999) and Kazhdan

groups (Lyons and S
hramm 1998).

The uniqueness phase of Bernoulli per
olation is the range of p where there is

pre
isely one in�nite 
luster a.s.; the nonuniqueness phase is the range of p where there

is more than one in�nite 
luster a.s.

The unique in�nite per
olation 
luster of super
riti
al Bernoulli per
olation on a

graph, if there is su
h, 
an be viewed as a random perturbation of the graph. It is then

natural to ask whi
h properties of the graph are inherited by su
h a per
olation 
luster.

After presenting further de�nitions and reviewing some ba
kground in Se
tion 2, we

begin by studying in Se
tion 3 purely geometri
 aspe
ts of per
olation 
lusters, namely,

how the isoperimetri
 
onstant �

E

(G) (see Se
tion 2) behaves under per
olation. If ! is

a random 
on�guration of Bernoulli per
olation on a Cayley graph G, then, of 
ourse,

�

E

(!) = 0 a.s. However,

Theorem 1.1. If G is a nonamenable Cayley graph and ! is a random 
on�guration of

Bernoulli per
olation on G, then a.s. every in�nite 
luster of ! 
ontains a subgraph !

0

with

�

E

(!

0

) > 0.

(See Theorem 3.9.) In fa
t, we show in Theorem 3.10 that one 
an further require !

0

to
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be a tree. Note that ! is a random variable, representing the 
on�guration; in the sequel,

we shall often say, however, that ! is a \per
olation".

The theorem raises the following question about per
olation in Z

d

. Re
all that the

isoperimetri
 dimension of a graph G is the supremum of all s su
h that

inf

�

j�

E

V

1

j

s

jV

1

j

s�1

: V

1

� V (G); 0 < jV

1

j <1

�

> 0 :

Question 1.2. Let ! be super
riti
al Bernoulli per
olation in Z

d

. Is it true that for every

� > 0, a.s. ! 
ontains a subgraph with isoperimetri
 dimension at least d � �? Does it


ontain a subgraph with isoperimetri
 dimension d?

It is well known that if G is nonamenable, then the speed of simple random walk

hX(t)i on G is positive, i.e.,

lim

t!1

dist

G

�

X(0); X(t)

�

t

> 0 a.s. ;

whi
h results from the fa
t that the spe
tral radius is less than 1 (Kesten 1959); see

Se
tion 2. We prove the following extension in Se
tion 4 as a 
onsequen
e of (a more

pre
ise version of) Theorem 1.1:

Theorem 1.3. Let G be a nonamenable Cayley graph and ! be Bernoulli per
olation on

G. Let hX(t)i be simple random walk on !. Given that the 
luster K of X(0) is in�nite,

we have a.s. that the speed of X is positive.

(See Theorem 4.4.)

We 
onje
ture the following generalization:

Conje
ture 1.4. If G is a Cayley graph on whi
h simple random walk has positive speed,

then a.s., simple random walk on ea
h in�nite 
luster of p-Bernoulli per
olation has positive

speed.

There are (nontransitive) graphs on whi
h simple random walk has zero speed, but for

whi
h Bernoulli per
olation a.s. produ
es 
lusters where simple random walk has positive

speed. An example is a binary tree with a 
opy of Z atta
hed to every vertex.

Conje
ture 1.5. If G is a Cayley graph on whi
h simple random walk has zero speed,

then a.s., simple random walk on every 
luster of Bernoulli per
olation also has zero speed.

Any possible 
ounterexample would have to be amenable and of exponential growth by

Lemma 4.6 below.
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The speed of random walk is related to other probabilisti
 behavior through the follow-

ing theorem due to the work of Avez (1974), Derrienni
 (1980), Kaimanovi
h and Vershik

(1983), and Varopoulos (1985). Re
all that a fun
tion F : V (G)! R is 
alled harmoni


if F (x) =

P

y�x

F (y)= deg

G

x for all x 2 V .

Theorem 1.6. (Speed, Entropy, and Bounded Harmoni
 Fun
tions) The follow-

ing 
onditions are equivalent for a given Cayley graph:

(i) the speed of simple random walk is zero;

(ii) the asymptoti
 entropy of simple random walk is zero;

(iii) there are no non
onstant bounded harmoni
 fun
tions.

Furthermore, Kaimanovi
h (1990) extended the equivalen
e of (ii) and (iii) to many

random walks in a random environment (RWRE) that have a stationary measure; the

extension to in
lude (i) is easy (Lemma 4.6). Sin
e simple random walk restri
ted to

per
olation 
lusters has an equivalent invariant measure (see Lemma 4.1), our 
onje
tures

and results about the speed of random walk have some alternative formulations in terms

of entropy and bounded harmoni
 fun
tions.

Transien
e holds more generally, of 
ourse, than positive speed. Transien
e of the

in�nite 
lusters of Bernoulli per
olation in Z

d

, d > 2, was established in Grimmett, Kesten

and Zhang (1993) (see Benjamini, Pemantle and Peres (1998) for a di�erent proof). De

Masi, Ferrari, Goldstein and Wi
k (1989) proved an invarian
e prin
iple for simple random

walk on the super
riti
al 
luster in Z

2

.

Conje
ture 1.7. If G is a transient Cayley graph, then a.s. every in�nite 
luster of

Bernoulli per
olation on G is transient.

The nonamenable 
ase follows from Theorem 1.3; a slight extension is:

Theorem 1.8. Let G be a Cayley graph su
h that the ball of radius n has 
ardinality at

least �

n

for all n, where � > 1. Then a.s., every in�nite 
luster of p-Bernoulli per
olation

on G is transient when p > 1=�.

(See Theorem 4.9.)

In Se
tion 5, we study the existen
e of non
onstant harmoni
 Diri
hlet fun
tions on

the per
olation 
lusters of Cayley graphs. A fun
tion F : V (G)! R is 
alled Diri
hlet if

P

x

P

y�x

jF (x)� F (y)j

2

< 1. Re
all that O

HD

denotes the 
lass of graphs that do not

admit any non
onstant harmoni
 Diri
hlet fun
tions. As we shall see below, the pi
ture in

the nonamenable situation is rather involved and our understanding is far from 
omplete.

In the amenable 
ase, we have
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Theorem 1.9. If G is an amenable Cayley graph and ! is Bernoulli per
olation, then a.s.

every 
luster of ! is in O

HD

.

(See Theorem 5.5.)

Medolla and Soardi (1995) proved that amenable transitive graphs are in O

HD

(see

Remark 7.5 of Benjamini, Lyons, Peres, and S
hramm (1998) for a short proof via uniform

spanning forests). Soardi (1993) proved that O

HD

is invariant under quasi-isometries.

(See Lyons and Peres (1998) for a simple proof due to S
hramm.)

Our proof of Theorem 1.9 uses the uniform spanning forest measures and their 
on-

ne
tion to harmoni
 Diri
hlet fun
tions as presented in BLPS (1998). Su
h an ingredient


an be motivated as follows: In order to study the in
uen
e of geometri
 properties on

potential-theoreti
 behavior, it is useful to have a geometri
 representation of the potential-

theoreti
 obje
ts. The uniform spanning forest a
hieves this by representing the analyti


spa
e of harmoni
 Diri
hlet fun
tions by a random geometri
 obje
t. The relevant de�ni-

tions and properties are given in Se
tion 5.

A positive answer to the following question would extend Theorem 1.9:

Question 1.10. Let G be a Cayley graph, and suppose that G 2 O

HD

. Let ! be Bernoulli

per
olation on G in the uniqueness phase. Does it follow that a.s. the in�nite 
luster of !

is in O

HD

? We do not know the answer even in the 
ase that G is the dire
t produ
t of a

tree and Z or is a latti
e in hyperboli
 spa
e H

d

(d > 3).

In the nonuniqueness phase of Bernoulli per
olation on a (nonamenable) Cayley graph

G, the in�nite 
lusters are not in O

HD

(Corollary 4.7).

In the other dire
tion, for graphs admitting non
onstant harmoni
 Diri
hlet fun
tions,

we believe:

Conje
ture 1.11. Let G be a Cayley graph, G =2 O

HD

. Then a.s. all in�nite 
lusters of

p-Bernoulli per
olation are not in O

HD

.

We 
an prove this for p suÆ
iently large:

Theorem 1.12. Let G be a Cayley graph. If G =2 O

HD

, then there is some p

0

< 1 su
h

that for every p > p

0

, almost surely no in�nite 
luster of p-Bernoulli per
olation is in

O

HD

.

(See Theorem 5.7.)

The last se
tion of our paper dis
usses questions 
on
erning the speed of simple ran-

dom walk on a graph and a variant of the isoperimetri
 
onstant, 
alled an
hored expan-

sion. The an
hored expansion 
onstant might be useful in studying the speed of simple

random walk on in�nite per
olation 
lusters and other graphs as well.
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Although in the above theorems, only Cayley graphs are mentioned, we work in the

greater generality of transitive graphs. Similarly, we dis
uss per
olation pro
esses that are

mu
h more general than Bernoulli per
olation.
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x2. Notation and Ba
kground.

Graph terminology, isoperimetri
 
onstant and ends. We use the letter G to denote

a graph and � to denote a 
losed subgroup of the automorphism group Aut(G) of G. The

verti
es and edges of G will be denoted V (G) and E(G), respe
tively. When there is an

edge in G joining verti
es u; v, we write u � v. The degree deg v = deg

G

v of a vertex

v 2 V (G) is the number of edges in
ident with it. A tree is a 
onne
ted graph with no


y
les. A forest is a graph whose 
onne
ted 
omponents are trees. The distan
e between

two verti
es v; u 2 V (G) is denoted by dist(v; u) = dist

G

(v; u), and is the least number of

edges of a path in G 
onne
ting v and u.

For a set of verti
es V

1

� V (G), let �

E

V

1

denote the set of edges in E(G) that have

one endpoint in V

1

and one endpoint in V (G) � V

1

. The graph G is amenable if there

is a sequen
e of �nite vertex subsets V

1

� V

2

� � � � � V

n

� � � � � V (G), su
h that

S

n

V

n

= V (G) and j�

E

V

n

j=jV

n

j ! 0 as n ! 1. Here and in the sequel, jAj denotes the


ardinality of a set A. The (edge) isoperimetri
 
onstant of a graph G, also known as

the Cheeger 
onstant, is de�ned by

�

E

(G) := inf

�

j�

E

V

0

j=jV

0

j : ; 6= V

0

� V (G); jV

0

j <1

	

:

An in�nite set of verti
es V

0

� V (G) is end-
onvergent if for every �nite K � V (G),

there is a 
omponent of G � K that 
ontains all but �nitely many verti
es of V

0

. Two

end-
onvergent sets V

0

; V

1

are equivalent if V

0

[ V

1

is end-
onvergent. An end of G is an

equivalen
e 
lass of end-
onvergent sets.

Spe
tral radius, speed and entropy. Given v; u 2 V (G), let p

t

(v; u) be the probability

that simple random walk starting at v will be at u at time t. The spe
tral radius �(G)

is de�ned by

�(G) := lim sup

t!1

p

t

(v; u)

1=t
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and does not depend on the 
hoi
e of v and u. Dodziuk's (1984) dis
rete version of

Cheeger's inequality states that if G has bounded degrees and �

E

(G) > 0, then �(G) < 1.

The speed of a random walk X starting at o 2 V (G) is

� = �(X) := lim

t!1

dist

�

o;X(t)

�

=t

when the limit exists. The lim inf speed is de�ned by

�

�

= �

�

(X) := lim inf

t!1

dist

�

o;X(t)

�

=t :

If G has bounded degrees and �(G) < 1, then there are 
onstants � > 0 and � < 1 su
h

that

P

h

dist

�

o;X(t)

�

< �t

i

6 �

t

;

be
ause the probability that the random walk is inside the ball of radius �t about o is

bounded by the number of verti
es in the ball times the probability that X is at the most

likely vertex. Consequently, in this situation, �

�

> 0 a.s.

The entropy of a probability measure � on a �nite or 
ountable set A is de�ned to

be

H(�) :=

X

x2A

��(x) log�(x) :

Let �

t

denote the distribution of the lo
ation X(t) of a random walk X at time t. If

lim

t

H(�

t

)=t exists, it is 
alled the asymptoti
 entropy of the random walk. If hX(t)i

is simple random walk on a Cayley graph, then the asymptoti
 entropy exists. In fa
t,

the Subadditive Ergodi
 Theorem ensures the existen
e of lim

t

�t

�1

log�

t

�

X(t)

�

a.s. and

in L

1

; see Derrienni
 (1980). The same is true for stationary RWRE, as observed by

Kaimanovi
h (1990). Similar reasoning applies to graphs with a transitive unimodular

automorphism group (Kaimanovi
h and Woess 1998).

For further information about random walks, spe
tral radius, harmoni
 fun
tions, et
.,

see Kaimanovi
h and Vershik (1983) and Woess (1994).

Automorphism groups, unimodularity, and the Mass-Transport Prin
iple. Let

� � Aut(G) be a subgroup of automorphisms of G with the topology of pointwise 
on-

vergen
e. We say that � is (vertex) transitive if for every v; u 2 V (G), there is a 
 2 �

with 
u = v. The graph G is transitive if Aut(G) is transitive. Re
all that every 
losed

subgroup � � Aut(G) has a unique (up to a 
onstant s
aling fa
tor) Borel measure that,

for every 
 2 �, is invariant under left multipli
ation by 
; this measure is 
alled (left)

Haar measure. The group � is unimodular if Haar measure is also invariant under

right multipli
ation.
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Most of our theorems 
on
ern per
olation that is invariant under a transitive unimod-

ular 
losed subgroup of Aut(G). For example, when G is the (right) Cayley graph of �

and � a
ts by left multipli
ation, then � � Aut(G) is (obviously) 
losed, unimodular, and

transitive. If G is an amenable graph, then every 
losed transitive subgroup of Aut(G) is

unimodular (Soardi and Woess 1990).

Several illustrations of the signi�
an
e of unimodularity 
an be found in Benjamini,

Lyons, Peres, and S
hramm (1999). The most important one seems to be that when

� � Aut(G) is unimodular, the Mass-Transport Prin
iple takes the following simple form:

Theorem 2.1. (Mass-Transport Prin
iple) Let G be a graph with a transitive uni-

modular 
losed automorphism group � � Aut(G). Let o 2 V (G) be an arbitrary base point.

Suppose that � : V (G)� V (G)! [0;1℄ is invariant under the diagonal a
tion of �. Then

X

v2V (G)

�(o; v) =

X

v2V (G)

�(v; o) : (2:1)

See BLPS (1999) for a dis
ussion of this prin
iple and for a proof. In fa
t, � is

unimodular i� (2.1) holds for every su
h �. Hen
e, (2.1) 
an be taken as a de�nition of

unimodularity.

Per
olation terminology. A bond per
olation ! on G is a random subset of E(G).

For a more pre
ise de�nition, given a set A, let 2

A

be the 
olle
tion of all subsets � �

A, equipped with the �-�eld generated by the events fa 2 �g, where a 2 A. A bond

per
olation ! on G is then a random variable whose distribution is a probability measure

P on 2

E(G)

. Similarly, a site per
olation is given by a probability measure on 2

V (G)

,

while a (mixed) per
olation is given by a probability measure on 2

V (G)[E(G)

that is

supported on subgraphs of G. If ! is a bond per
olation, then !̂ := V (G) [ ! is the

asso
iated mixed per
olation. In this 
ase, we shall often not distinguish between ! and

!̂, and think of ! as a subgraph of G. Similarly, if ! is a site per
olation, there is an

asso
iated mixed per
olation !̂ := ! [

�

E(G)\ (!� !)

�

, and we shall often not bother to

distinguish between ! and !̂.

Let p 2 [0; 1℄. Then the distribution of p-Bernoulli bond per
olation ! on G is

the produ
t measure on 2

E(G)

that satis�es P[e 2 !℄ = p for all e 2 E(G). Similarly, one

de�nes p-Bernoulli site per
olation on 2

V (G)

.

If v 2 V (G) and ! is a per
olation on G, the 
omponent (or 
luster) K(v) of v in

! is the set of verti
es in V (G) that 
an be 
onne
ted to v by paths 
ontained in !.

Suppose that � is an automorphism group of a graph G. A per
olation on G is

�-invariant if its distribution P is invariant under ea
h automorphism in �.
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Insertion toleran
e and 
omponent indistinguishability. Given a set Z, an element

z 2 Z, and a subset ! 2 2

Z

, let �

z

! := ! [ fzg. A probability measure P on 2

Z

is insertion tolerant if P[�

z

A℄ > 0 for every z 2 Z and every measurable A � 2

Z

satisfying P[A℄ > 0. For example, p-Bernoulli bond per
olation is insertion tolerant when

p > 0.

Let G be graph and � a 
losed transitive subgroup of Aut(G). Let ! be a �-invariant

bond per
olation. We say that ! has indistinguishable 
omponents if for every mea-

surable A � 2

V (G)

� 2

E(G)

that is invariant under the diagonal a
tion of �, almost surely,

for all in�nite 
omponents C of !, we have (C; !) 2 A, or for all in�nite 
omponents C,

we have (C; !) =2 A. (That is, whether (C; !) 2 A does not depend on C, but may depend

on !.)

The following is from Lyons and S
hramm (1998):

Theorem 2.2. (Component Indistinguishability) Let G be a graph with a transi-

tive unimodular 
losed automorphism group � � Aut(G). Every �-invariant, insertion-

tolerant, bond per
olation pro
ess on G has indistinguishable 
omponents.

For example, this shows that in p-Bernoulli bond per
olation on a Cayley graph of a

nonamenable group, almost surely, either all in�nite 
lusters are transient, or all 
lusters

are re
urrent. In fa
t, as indi
ated by Theorem 1.3, a.s. all in�nite 
lusters are transient.

Similar statements hold for site and mixed per
olations.

x3. Geometry of Perturbations of Nonamenable Graphs.

Let G be an in�nite graph and K a �nite subgraph of G. Set

�

K

:=

1

jV (K)j

X

v2V (K)

deg

K

v ;

where deg

K

v is the degree of v in K. De�ne

�(G) := sup

�

�

K

: K � G is �nite

	

:

Note that when all verti
es in G have degree d, the isoperimetri
 
onstant of G satis�es

�

E

(G) = d� �(G) :

Let T be a regular tree and o 2 V (T ) be some base point. H�aggstr�om (1997) has

shown that when ! is an automorphism-invariant per
olation on T and E[deg

!

o℄ > �(T ),
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there are in�nite 
lusters in ! with positive probability. In BLPS (1999), it was shown

that the same result applies to transitive graphs with a unimodular automorphism group.

In Theorem 3.2, we extend this result and show that with the same assumptions but with

a stri
t inequality E[deg

!

o℄ > �(G), with positive probability, there is a subgraph in !

with �

E

> 0. This will be used to prove

Theorem 3.1. (Uniqueness Gives a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular 
losed automorphism group � � Aut(G), and suppose that

�

E

(G) > 0. Let ! be a �-invariant per
olation in G that has a.s. exa
tly one in�nite


omponent. Then (on a larger probability spa
e) there is a per
olation !

0

� ! su
h that

!

0

6= ; and �

E

(!

0

) > 0 a.s. Moreover, the distribution of the pair (!

0

; !) is �-invariant.

In the following, if K � G is a subgraph and v 2 V (G) is not in K, then we set

deg

K

v := 0.

As we indi
ated, the proof of Theorem 3.1 is based on the following more quantitative

result.

Theorem 3.2. (High Marginals Give a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular 
losed automorphism group � � Aut(G). Let ! be a �-

invariant (nonempty) per
olation in G. Let h > 0 and suppose that

E[deg

!

o j o 2 !℄ >

�

�(G) + 2h

�

: (3:1)

Then there is (on a larger probability spa
e) a per
olation !

0

� ! su
h that !

0

6= ; and

�

E

(!

0

) > h with positive probability. Moreover, the distribution of the pair (!

0

; !) is �-

invariant.

Proof. Given any subgraph ! of G, we de�ne per
olations !

n

on ! indu
tively as follows.

Set !

0

:= !. Suppose that !

n

has been de�ned. Let �

n

be a (1=2)-Bernoulli site per
olation

on G, independent of !

0

; : : : ; !

n

. Let 


n

be the union of the �nite 
omponents K of �

n

\!

n

that satisfy

j�

E(!

n

)

Kj

jKj

< h ;

where �

E(!

n

)

K denotes the set of edges of !

n


onne
ting K to its 
omplement. Now set

!

n+1

:= !

n

� 


n

. Finally, de�ne

!

0

:=

1

\

n=0

!

n

:

For future use, write �(h; !) := !

0

.
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Most of the proof will be devoted to showing that !

0

6= ; with positive probability,

but �rst we verify that �

E

(!

0

) > h. Indeed, let W be a �nite nonempty set of verti
es

in G, let F be the set of all edges of G in
ident with W , and let F

0

� F . Suppose that

jF

0

j=jW j < h. To verify that �

E

(!

0

) > h a.s., it is enough to show that the probability

that W � !

0

and !

0

\ F = F

0

is zero. If !

n

\ F = F

0

for some n, then a.s. there is some

m > n su
h that W is a 
omponent of �

m

. Now either W 6� !

m

, in whi
h 
ase W 6� !

0

, or

W � !

m

, in whi
h 
ase W is not 
ontained in !

m+1

, hen
e not in !

0

. On the other hand,

if !

n

\ F 6= F

0

for every n, then also !

0

\ F 6= F

0

. Consequently �

E

(!

0

) > h a.s.

Now set

D

n

:= E deg

!

n

o ; D

1

:= E deg

!

0

o ;

�

n

:= P[o 2 !

n

℄ ; �

1

:= P[o 2 !

0

℄ :

Our goal is to prove the inequality

D

n+1

> D

n

� (�

n

� �

n+1

)

�

�(G) + 2h

�

: (3:2)

This will be a
hieved through use of the Mass-Transport Prin
iple. Observe that

�

n

� �

n+1

= P[o 2 


n

℄ :

Fix n and de�ne the random fun
tion m : V (G) � V (G) ! [0;1) as follows. For every

vertex v 2 V (G), let K(v) be the 
omponent of v in 


n

, whi
h we take to be ; if v =2 


n

.

Let v; u 2 V . If u =2 


n

, set m(v; u) := 0. If v 2 K(u), let m(v; u) := deg

!

n

v=jK(u)j.

Otherwise, let m(v; u) be jK(u)j

�1

times the number of edges in !

n

that 
onne
t v to a

vertex in K(u). Note that v and u need not be adja
ent in order that m(v; u) 6= 0. Clearly,

Em(v; u) is invariant under the diagonal a
tion of � on V (G)� V (G). Consequently, the

Mass-Transport Prin
iple implies that

X

v2V (G)

Em(o; v) =

X

v2V (G)

Em(v; o) :

A straightforward 
al
ulation shows that

X

v2V (G)

m(o; v) = deg

!

n

o� deg

!

n+1

o ;

while, if o 2 


n

, we have that

P

v2V (G)

m(v; o) is equal to twi
e the number of edges of !

n

in
ident with K(o), divided by jK(o)j. The number of edges of G with both endpoints in

K(o) is at most �(G)jK(o)j=2, and, by 
onstru
tion, j�

!

n

K(o)j < hjK(o)j. Hen
e

X

v2V (G)

m(v; o) < �(G) + 2h (3:3)

11



when o 2 


n

and

P

v2V (G)

m(v; o) = 0 otherwise. Therefore,

D

n

�D

n+1

= E[deg

!

n

o� deg

!

n+1

o℄ =

X

v2V (G)

Em(v; o)

6 (�(G) + 2h)P[o 2 


n

℄ = (�(G) + 2h)(�

n

� �

n+1

) ;

whi
h is the same as (3.2).

Indu
tion and (3.2) give

D

n

> D

0

� �

0

�

�(G) + 2h

�

+ �

n

�

�(G) + 2h

�

;

taking a limit as n!1 yields the inequality

D

1

> D

0

� �

0

�

�(G) + 2h

�

+ �

1

�

�(G) + 2h

�

: (3:4)

This gives D

1

> 0, be
ause (3.1) is equivalent to D

0

� �

0

�

�(G) + 2h

�

> 0. Consequently,

!

0

6= ; with positive probability.

Remark 3.3. (The Density of !

0

) The following lower bound for �

1

is a 
onsequen
e

of (3.4) and the inequality �

1

deg

G

o > D

1

:

P[o 2 !

0

℄ = �

1

>

D

0

�

�

�(G) + 2h

�

�

0

deg

G

o�

�

�(G) + 2h

�

= P[o 2 !℄

�

1�

deg

G

o�E[deg

!

o j o 2 !℄

�

E

(G)� 2h

�

: (3:5)

Remark 3.4. (A Weak Inequality Suffi
es) In fa
t, in pla
e of (3.1), it is enough

to assume the weak inequality E[deg

!

o j o 2 !℄ >

�

�(G) + 2h

�

. The reason is that the

inequality (3.3) is stri
t when o 2 


n

, whi
h implies that (3.4) is stri
t when D

1

6= D

0

.

Theorem 3.5. (Threshold for a Forest) If ! is a forest a.s., then Theorem 3.2 is

true when �(G) is repla
ed by 2.

Proof. In a �nite tree K � G, we have �

K

< 2. Hen
e the proof of Theorem 3.2 applies

with 2 repla
ing �(G) everywhere.

Proof of Theorem 3.1. Fix a base point o 2 V (G). Let !

�

be the in�nite 
omponent of

!. Conditioned on !, for every vertex v 2 V (G), let �(v) be 
hosen uniformly among the

verti
es of !

�


losest to v, with all �(v) independent given !, and for edges e = [v; u℄ 2

E(G), let �(e) be 
hosen uniformly among shortest paths in !

�

joining �(v) and �(u), with

all �(e) independent given all �(v) and !. For integers j, let �

j

be the set of edges e 2 E(G)

12



su
h that �(e) is 
ontained within a ball of radius j about one of the endpoints of e. Then

�

1

� �

2

� � � � are �-invariant bond per
olations on G with

S

j

�

j

= E(G). Consequently,

E deg

�

j

o ! deg

G

o as j ! 1. For ea
h j, 
hoose independently a random sample of

�(h; �

j

) and denote it �

j

. By (3.5), we have that P[�

j

6= ;℄! 1. Let J := inffj : �

j

6= ;g.

Then J < 1 a.s. Set !

0

:= � (�

J

). Sin
e �

E

(�

J

) > h a.s., we have also �

E

�

�(�

J

)

�

> 0 a.s.

Suppose that G is transitive, �

E

(G) > 0, and ! is, say, Bernoulli per
olation on G

that has a.s. more than one in�nite 
omponent. Then Theorem 3.1 does not apply to !.

However, as observed by Burton and Keane (1989), insertion toleran
e shows that there

are a.s. 
omponents of ! with at least three ends. Hen
e the next theorem does apply.

Theorem 3.6. (A Forest with �

E

> 0 Inside Many-Ended Per
olation) Let G

be a graph with a transitive unimodular 
losed automorphism group � � Aut(G), and let

! be a �-invariant per
olation on G. Suppose that a.s., there are 
omponents of ! with at

least three ends. Then there is (on a larger probability spa
e) a random forest F � ! with

�

E

(F) > 0, F 6= ; a.s., and the distribution of the pair (F; !) is �-invariant.

We shall need the following two lemmas from BLPS (1999). Re
all that K(x) denotes

the 
omponent of x in !.

Lemma 3.7. (Ends, p




and Degrees) Let G be a graph with a transitive unimodular


losed automorphism group � � Aut(G). Let ! be a �-invariant per
olation on G that has

in�nite 
omponents with positive probability. If

(i) some 
omponent of ! has at least three ends with positive probability,

then

(ii) some 
omponent of ! has p




< 1 with positive probability and

(iii) for every vertex x, E

�

deg

!

x

�

�

jK(x)j =1

�

> 2.

If ! is a forest a.s., then the three 
onditions are equivalent.

Lemma 3.8. (Trimming to a Forest) Let G be a graph with a transitive unimodular


losed automorphism group � � Aut(G). Let ! be a �-invariant per
olation on G su
h that

a.s. there is a 
omponent of ! with at least three ends. Then (on a larger probability spa
e)

there is a random forest F � ! su
h that the distribution of the pair (F; !) is �-invariant

and a.s. whenever a 
omponent K of ! has at least three ends, there is a 
omponent of

K \ F that has in�nitely many ends.

Proof of Theorem 3.6. By Lemma 3.8, there is a random forest F

0

� ! with some 
ompo-

nents having in�nitely many ends a.s. and the distribution of (F

0

; !) is �-invariant. Let
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F

00

be the union of the in�nite 
omponents of F

0

. By Lemma 3.7, E[deg

F

00

o j o 2 F

00

℄ > 2.

Given !, for ea
h j, let �

j

be an independent sample of �(1=j;F

00

). Put F := �

J

, where

J := inffj : �

j

6= ;g <1 a.s.: Clearly, J <1 with positive probability. If the set A of !

where J = 1 had positive probability, then we would obtain a 
ontradi
tion to what has

just been proved by noting that A is �-invariant and by 
onditioning on A.

We 
an now dedu
e the following extension of Theorem 1.1:

Theorem 3.9. Let G be a graph with a transitive unimodular 
losed automorphism group

� � Aut(G), and suppose that �

E

(G) > 0. Let ! be a �-invariant per
olation on G that

has in�nite 
lusters a.s. Then in ea
h of the following 
ases (on a larger probability spa
e)

there is a per
olation !

0

� ! su
h that !

0

6= ;, �

E

(!

0

) > 0 a.s., and the distribution of the

pair (!

0

; !) is �-invariant:

(i) ! is Bernoulli per
olation;

(ii) ! has a unique in�nite 
luster a.s.;

(iii) ! has a 
luster with at least three ends a.s.;

(iv) E[deg

!

o j o 2 !℄ > �(G) and ! is ergodi
.

Proof. In Bernoulli per
olation, if there is more than one in�nite 
luster, then there is a


luster with at least three ends by insertion toleran
e and ergodi
ity. Consequently, (i)

follows from (ii) and (iii). Parts (ii){(iv) follow from Theorems 3.1, 3.6, and 3.2.

Although it will not be needed in the sequel, we note that Theorem 3.1 
an be strength-

ened as follows.

Theorem 3.10. (A Forest in the Uniqueness Regime with �

E

> 0) Let G be a

graph with a transitive unimodular 
losed automorphism group � � Aut(G), and suppose

that �

E

(G) > 0. Let ! be a �-invariant per
olation on G that has a.s. exa
tly one in�nite


omponent. Then (on a larger probability spa
e) there is a random forest F � ! with F 6= ;

and �

E

(F) > 0 a.s., and the distribution of the pair (F; !) is �-invariant.

Proof. Let !

0

� ! be as in Theorem 3.1. Sin
e �

E

(!

0

) > 0, Theorem 13.7 from BLPS

(1998) 
onstru
ts a per
olation !

00

� !

0

su
h that a.s. !

00

has all 
omponents with in�nitely

many ends and the distribution of (!

00

; !) is �-invariant. By Lemma 3.8, there is a forest

F

0

� !

00

su
h that some tree in F

0

has in�nitely many ends a.s. and the distribution of

(F

0

; !) is �-invariant. Let F

00

be the union of the in�nite 
omponents of F

0

. By Lemma 3.7,

E[deg

F

00

o j o 2 F

00

℄ > 2. The proof is 
ompleted as for Theorem 3.6.

Applying Theorem 3.10 to the 
ase where ! = G a.s., we obtain an invariant random

forest in G with �

E

(F) > 0. This is related to the result of Benjamini and S
hramm (1997)
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whi
h says that every bounded-degree graph with �

E

> 0 
ontains a tree T with �

E

(T ) > 0.

In fa
t, the latter result 
an be used to extend our theory to the non-transitive setting as

follows.

Corollary 3.11. (The Non-Transitive Case) Let G be a graph of bounded degree

with �

E

(G) > 0. Then there is some p

0

< 1 su
h that p-Bernoulli bond per
olation on G

has a subgraph with �

E

> 0 a.s. whenever p > p

0

.

Proof. By the result of Benjamini and S
hramm (1997) mentioned above, there is a tree

T � G with �

E

(T ) > 0. Let T

3

be the 3-regular tree. There is a map � that takes

V (T

3

) into V (T ), takes every edge e = [v; u℄ 2 E(T

3

) to a path of bounded length �(e)

in T joining �(v) to �(u), and when e; e

0

2 E(T

3

) are distin
t, the 
orresponding paths

�(e); �(e

0

) are edge-disjoint. Consequently, p-Bernoulli per
olation on T 
an be pulled

ba
k via � to a bond per
olation ! on T

3

in whi
h the events fe 2 !g (e 2 E(T

3

)) are

mutually independent. Moreover, P[e 2 !℄ > 1�k(1�p), where k is the maximum length

of a path �(e

0

), e

0

2 E(T

3

). Consequently, ! dominates

�

1 � k(1 � p)

�

-Bernoulli bond

per
olation !

0

on T

3

. By Theorem 3.5, when 3

�

1 � k(1 � p)

�

> 2, there is with positive

probability, and therefore a.s., a subgraph !

00

� !

0

with �

E

(!

00

) > 0. Now �(!

00

) is the

required subgraph of !.

x4. Speed and Transien
e.

In this se
tion, we prove that in many 
ases, simple random walk on the in�nite


omponents of invariant per
olation on a nonamenable transitive graph G has positive

speed.

Let ! be a per
olation on G. It will be useful to 
onsider delayed simple random

walk Z = Z

!

on !, de�ned as follows. Set Z(0) := o, where o 2 V (G) is some �xed base

point. If n > 0, 
onditioned on hZ(0); : : : ; Z(n)i and !, let Z

0

(n+1) be 
hosen from Z(n)

and its neighbors in E(G) with equal probability. Set Z(n + 1) := Z

0

(n + 1) if the edge

[Z(n); Z

0

(n+ 1)℄ belongs to !; otherwise, let Z(n+ 1) := Z(n).

For any sequen
e hz(0); z(1); : : :i, let Sz be the shifted sequen
e hSz(0);Sz(1); : : :i

de�ned by Sz(n) := z(n+ 1) and let S(z; !) := (Sz; !). For 
 2 �, we set


(w; !) := (
w; 
!) ;

where (
w)(n) := 


�

w(n)

�

.

The following lemma is from Lyons and S
hramm (1998); it generalizes similar lemmas

in Lyons and Peres (1998) and in H�aggstr�om (1997).
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Lemma 4.1. (Stationarity of Random Walk) Let G be a graph with a transitive

unimodular 
losed automorphism group � � Aut(G). Let o 2 V (G) be some base point.

Let (�; 2

E(G)

) be a �-invariant per
olation pro
ess on G; let ! denote the per
olation 
on-

�guration. Let b�

o

be the joint law of ! and delayed simple random walk on !, as de�ned

above. Then b�

o

[A℄ = b�

o

[SA℄ for every �-invariant A � V

Z

� 
. In other words, the

restri
tion of b�

o

to the �-invariant �-�eld is S-stationary.

Let �

0

be the measure on subgraphs ! � G whose Radon-Nikodym derivative with

respe
t to � is deg

!

o=E

�

[deg

!

o℄. Let b�

0

o

be the joint law of ! and simple random walk

(non-delayed) on ! starting at o. Then the restri
tion of b�

0

o

to the �-invariant �-�eld is

S-stationary.

Lemma 4.2. (Speed Exists and is Not Random) Let G be a graph with a transitive

unimodular 
losed automorphism group � � Aut(G). Let ! be a �-invariant per
olation

on G. Then the speed � of delayed simple random walk on ! exists and is an !-measurable

random variable (possibly zero).

If ! has indistinguishable 
omponents and is ergodi
, then, 
onditioned on jK(o)j =1,

� is equal a.s. to a 
onstant.

The same statements hold for simple random walk in pla
e of delayed simple random

walk.

Proof. Let f

n

(

^

Z) := dist

G

(o; Z(n)). Then

f

n+m

(

^

Z) 6 f

n

(

^

Z) + f

m

(S

n

^

Z)

by the triangle inequality. Consequently, the Subadditive Ergodi
 Theorem shows that the

speed

� = �(

^

Z) = lim

n!1

f

n

(

^

Z)=n = lim

n!1

dist

G

�

o; Z(n)

�

=n

exists a.s.

To show that the speed �(

^

Z) depends only on ! and not on the path of the random

walk a.s., de�ne F (

^

Z) to be the varian
e, 
onditioned on !, of the speed of an independent

random walk starting from Z(0). By L�evy's 0-1 Law, F (S

n

^

Z) 
onverges to zero a.s. But

by stationarity, the distribution of F (S

n

^

Z) is the same for all n. Hen
e, it is 0.

The statement 
on
erning indistinguishable 
omponents is a 
onsequen
e of the de�-

nition.

The same proof applies to simple random walk sin
e the measures � and �

0

of

Lemma 4.1 are mutually absolutely 
ontinuous.

Our main tool to 
onvert the geometri
 information of Se
tion 3 to probabilisti
 in-

formation is the following:
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Theorem 4.3. (Speed When There is a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular 
losed automorphism group � � Aut(G). Let !

0

� ! be

per
olations on G su
h that the distribution of the pair (!

0

; !) is �-invariant. Suppose that

!

0

6= ; and �

E

(!

0

) > 0 a.s. Then simple random walk on ! has positive speed a.s. on the

event that K(o) \ !

0

6= ;.

Proof. Let V

�

be the verti
es of !

0

that are in the !-
omponent of o, and let Z be delayed

simple random walk on ! starting at o. Note that given !, Z is reversible with uniform

stationary distribution. Given ! and !

0

with o 2 !

0

, there is an indu
ed walk Z

�

on

V

�

de�ned as follows. Set t

0

:= 0. Sin
e the transformed

^

Z is stationary (Lemma 4.1),

the Poin
ar�e re
urren
e theorem (see, e.g., Petersen (1983), p. 34) shows that 
onditioned

on o 2 !

0

, there is a.s. some �rst time t

1

> 0 su
h that Z(t

1

) 2 !

0

. (Stri
tly speaking,

Lemma 4.1 does not apply when there is an extra \s
enery" !

0

, but the lemma extends

easily to this situation; see Lyons and S
hramm (1998).) Indu
tively, for k > 0, let t

k

be

the �rst time t > t

k�1

su
h that Z(t) 2 !

0

. De�ne Z

�

(k) := Z(t

k

). Then given ! and !

0

with o 2 !

0

, Z

�

is just the Markov 
hain Z indu
ed on the states V

�

. In parti
ular, it is

reversible with the same stationary distribution on V

�

, i.e., uniform.

We 
laim that, given ! and !

0

with o 2 !

0

, the spe
tral radius �(Z

�

) is less than 1

a.s. Given two verti
es u

�

; v

�

2 V

�

, let p

�

(u

�

; v

�

) denote the transition probability of the

Markov 
hain Z

�

. Let G

�

be the graph whose verti
es are V

�

and whose edges [u

�

; v

�

℄ are

those pairs with p

�

(u

�

; v

�

) > 0. Note that there is some positive lower bound 
 > 0 for

p

�

(u

�

; v

�

) whenever [u

�

; v

�

℄ 2 !

0

. Consequently,

inf

(

1

jK

�

j

X

e

�

2�

E

K

�

p

�

(e

�

) : K

�

� V (G

�

) is �nite

)

> 
�

E

(!

0

) > 0 :

Sin
e the stationary distribution is uniform, this implies that �(Z

�

) < 1 a.s. (see, e.g.,

Kaimanovi
h (1992)), as 
laimed.

Fix any �

0

< 1 su
h that �(Z

�

) < �

0

with positive probability, and let A be the event

that o 2 !

0

and �(Z

�

) < �

0

. Then, for some � < 1 and all v 2 V (G),

P

�

Z(t

k

) = v

�

�

!; !

0

�

6 �

k

on A ;

whi
h gives

P

�

Z(t

k

) = v

�

�

A

�

6 �

k

: (4:1)

Sin
e the number of verti
es v 2 V (G) with dist

G

(o; v) < r is bounded by (deg

G

o)

r+1

, by

summing (4.1) over all su
h verti
es, we get

P

h

dist

G

�

o; Z(t

k

)

�

< r

�

�

A

i

6 �

k

(deg

G

o)

r+1

:
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Let � be su
h that (deg

G

o)

�

= 1=�, and 
hoose r := (�=2)k � 1. Then

P

h

dist

G

�

o; Z(t

k

)

�

< �k=2� 1

�

�

A

i

6 �

k=2

: (4:2)

By the Borel-Cantelli lemma, it follows that

lim inf

k!1

dist

G

�

o; Z(t

k

)

�

=k > �=2

a.s. on A. Also, the ergodi
 theorem ensures that lim t

k

=k <1 a.s., when
e

lim inf

k!1

dist

G

�

o; Z(t

k

)

�

=t

k

> 0

a.s. on A and hen
e a.s. when K(o) \ !

0

6= ;. This shows that the speed of Z is positive

a.s. when K(o) \ !

0

6= ; by Lemma 4.2. By the obvious 
oupling of delayed random walk

and simple random walk, it follows that also the speed of simple random walk is positive

a.s. when K(o) \ !

0

6= ;.

Theorem 4.4. (Speed) Let G be a graph with a transitive unimodular 
losed automor-

phism group � � Aut(G), and suppose that �

E

(G) > 0. Let ! be a �-invariant per
olation

on G. Then simple random walk on some in�nite 
luster of ! has positive speed with

positive probability in ea
h of the following 
ases:

(i) ! is Bernoulli per
olation that has in�nite 
omponents a.s.;

(ii) ! has a unique in�nite 
luster a.s.;

(iii) ! has a 
luster with at least three ends with positive probability;

(iv) E[deg

!

o j o 2 !℄ > �(G).

Proof. This follows from Theorems 3.9 and 4.3.

In 
ase G is a tree, (iii) and (iv) of this theorem were established by H�aggstr�om (1997).

In 
ase the per
olation is ergodi
 and has indistinguishable 
omponents, like Bernoulli

per
olation, we have the stronger 
on
lusion that simple random walk has positive speed

on every in�nite 
omponent a.s.

Remark 4.5. It does not suÆ
e in Theorem 4.4 to drop in (i) the assumption that ! is

Bernoulli. For example, if ! is the wired uniform spanning forest (see Se
tion 5), then

every 
omponent is a tree with one end (BLPS (1998)), when
e is re
urrent.

In order to derive additional 
onsequen
es of Theorem 4.4, we now extend Theo-

rem 1.6:
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Lemma 4.6. Let G be a graph with a transitive unimodular 
losed automorphism group

� � Aut(G). Let ! be a �-invariant bond per
olation on G. The following are equivalent:

(i) the speed of simple random walk X(t) on K(o) is zero a.s. in the G-metri
:

lim

t!1

dist

G

�

X(t)

�

=t = 0 ;

(ii) the speed of simple random walk X(t) on K(o) is zero a.s. in the !-metri
:

lim

t!1

dist

!

�

X(t)

�

=t = 0 ;

(iii) the asymptoti
 entropy of simple random walk on K(o) is zero a.s.;

(iv) there are no non
onstant bounded harmoni
 fun
tions on K(o) a.s.

Proof. Be
ause of Lemma 4.1, the equivalen
e of (iii) and (iv) follows from Kaimanovi
h

and Woess (1998). Clearly, (ii) implies (i). We show that (i) implies (iii) implies (ii).

Assume (i). Fix ! su
h that the speed on K(o) is zero. Let �

!

t

denote the law of X(t)

on K(o). Let B

r

denote the ball of radius br
 in G 
entered at o. Given � > 0, 
hoose

t

0

large enough that for all t > t

0

, we have �

!

t

(B

t�

) > 1 � �. Let D := deg

G

o. Then for

t > t

0

, 
on
avity of log gives the inequality

X

x2B

t�

��

!

t

(x) log�

!

t

(x) 6 �

!

t

(B

t�

) log

�

jB

t�

j=�

!

t

(B

t�

)

�

6 log

�

D

t�

=(1� �)

�

:

Similarly,

X

x=2B

t�

��

!

t

(x) log�

!

t

(x) =

X

x2B

t

�B

t�

��

!

t

(x) log�

!

t

(x) 6 � log(D

t

=�) :

Sin
e this holds for all t > t

0

and � was arbitrary, (iii) follows.

Now assume that (ii) does not hold. Let A

`

be the event that the speed is at least `,

and note thatA

`

is ! measurable, by Lemma 4.2. Then by the famous bound of Varopoulos

(1985) and Carne (1985), we have

lim

t!1

�

1

t

log�

!

t

�

X(t)

�

> `

2

=2

on A

`

. In other words, (iii) does not hold.

Corollary 4.7. Let G be a graph with a transitive unimodular 
losed automorphism group

� � Aut(G). Suppose that G is nonamenable. Let ! be any �-invariant, ergodi
, insertion
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tolerant per
olation that has more than one in�nite 
omponent a.s. Then every in�nite


omponent of ! admits non
onstant bounded harmoni
 Diri
hlet fun
tions.

Proof. By Theorem 2.2 and ergodi
ity, it suÆ
es to establish the existen
e of non
onstant

bounded harmoni
 Diri
hlet fun
tions on K(o) with positive probability.

We know from insertion toleran
e and ergodi
ity that there are in�nitely many in�nite


omponents a.s. By insertion toleran
e again, we also have that some, hen
e all, in�nite


omponents have at least three ends. By Theorem 4.4, all in�nite 
omponents are transient.

By insertion toleran
e, it follows that with positive probability, K(o) has a �nite subset K

whose removal breaks K(o) into at least two transient 
omponents. In su
h a 
ase, K(o)

has non
onstant bounded harmoni
 Diri
hlet fun
tions (e.g., the probability that a simple

random walk starting at v eventually stays in a �xed transient 
omponent of K(o)�K is

su
h, as a fun
tion of v). See Soardi (1994), Theorems 4.20 and 3.73. This establishes our

goal.

In order to prove transien
e in 
ertain amenable 
ases, we shall use:

Lemma 4.8. (Transien
e of Big Trees) If T is any lo
ally �nite tree with p




(T ) < 1,

then simple random walk is transient on T .

Proof. By Lyons (1990), the bran
hing number of T is 1=p




(T ) and this is the 
riti
al value

for transien
e of biased random walk on T . Sin
e this is larger than 1, it follows that, in

parti
ular, simple random walk is transient.

For a Cayley graph G, let �

n

be the number of elements of G at distan
e n from o.

It is evident that h�

n

i is submultipli
ative, when
e the growth rate gr(G) := lim �

1=n

n

=

inf �

1=n

n

exists.

Theorem 4.9. (Transien
e Above the Re
ipro
al Growth Rate) Let G be a

Cayley graph with gr(G) > 1, and let p 2 (1=gr(G); 1). Then simple random walk is

transient on every in�nite 
luster of p-Bernoulli per
olation a.s.

Proof. Let ! be p-Bernoulli per
olation. By ergodi
ity and indistinguishability of 
ompo-

nents, it suÆ
es to prove transien
e of K(o) with positive probability. As shown in Lyons

(1995), there is a tree T � G with p




(T ) = 1=gr(G). This means that the 
omponent !

0

of

o in ! \ T has p




(!

0

) < 1 with positive probability, when
e by Lemma 4.8, ! is transient

with positive probability. By Rayleigh monotoni
ity, the same is true of the 
omponent of

o in G.

The following 
onje
ture would imply Conje
ture 1.5 (by taking ! := G and using

Lemma 4.6):
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Conje
ture 4.10. (Monotoni
ity of Entropy) Let G be a graph with a transitive

unimodular 
losed automorphism group � � Aut(G). Let ! and !

0

be two �-invariant

per
olations on G su
h that !

0

� !. Then the asymptoti
 entropy of delayed simple random

walk on !

0

is at most the asymptoti
 entropy of delayed simple random walk on !.

The following 
onje
ture for �nite graphs 
an be shown to imply Conje
ture 4.10.

Conje
ture 4.11. Let G be a �nite graph and C : E(G)! R

+

. Consider the 
ontinuous-

time (reversible) Markov 
hain hX(t)i on V (G) whose transition rate from u to v is C(u; v).

Let h

t

(v; C) be the entropy of X(t) when X(0) = v and h

t

(C) :=

P

v2V (G)

h

t

(v; C). Then

for all t, given two fun
tions C

0

and C with C

0

(e) 6 C(e) for all e 2 E(G), we have

h

t

(C

0

) 6 h

t

(C).

Here is an equivalent formulation of this 
onje
ture. Given a matrix B, let H(B) be

the sum of �b

i;j

log b

i;j

over all entries b

i;j

of the matrix. Let A

n

be the spa
e of n � n

real symmetri
 matri
es with non-negative o�-diagonal terms and with ea
h row summing

to zero. Then a reformulation of Conje
ture 4.11 is that H(expA) is (weakly) monotone

in
reasing in the o�-diagonal entries of A, where A ranges in A

n

.

x5. Harmoni
 Diri
hlet Fun
tions.

In this se
tion, we study the existen
e of non
onstant harmoni
 Diri
hlet fun
tions on

per
olation 
omponents.

We �rst des
ribe the spanning forest measures we use. A spanning tree of a �nite

graph is a subgraph without 
y
les that is 
onne
ted and in
ludes every vertex of the graph.

Motivated by some questions of R. Lyons, Pemantle (1991) showed that if an in�nite graph

G is exhausted by �nite subgraphs G

n

, then the uniform distributions on the spanning

trees of G

n


onverge weakly to a measure supported on spanning forests* of G. We 
all

this the free uniform spanning forest (FSF), sin
e there is another natural 
onstru
tion

where the exterior of G

n

is identi�ed to a single vertex (\wired") before passing to the limit.

This se
ond 
onstru
tion, whi
h we 
all the wired uniform spanning forest (WSF), was

impli
it in Pemantle's paper and was made expli
it by H�aggstr�om (1995). Both measures

are 
on
entrated on the set of forests, all of whose trees are in�nite. See BLPS (1998) or

Lyons (1998) for an exposition and more details. For 
onvenien
e, we will use the symbols

FSF and WSF also for the uniform measure on spanning trees of a �nite graph. For the

* In graph theory, \spanning forest" usually means a maximal subgraph without 
y
les, i.e., a spanning

tree in ea
h 
onne
ted 
omponent. We mean, instead, a subgraph without 
y
les that 
ontains every

vertex.
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proof of Theorem 5.7, we shall have need of one more measure on in�nite transient graphs,

the oriented wired spanning forest, denoted OWSF. We refer to BLPS (1998) for its

de�nition. For our purposes, it is enough to know that it is the same as WSF, ex
ept that

ea
h edge in the forest is oriented in su
h a way that there is exa
tly one outgoing edge

from ea
h vertex. All these measures, FSF, WSF, and OWSF, are invariant under Aut(G).

We typi
ally denote the random spanning forest by F.

The following three lemmas are taken from BLPS (1998):

Lemma 5.1. (O

HD

Criterion) For any (
onne
ted) graph G, we have FSF = WSF i�

G 2 O

HD

.

Write E

G

WSF

, E

G

FSF

for expe
tation with respe
t to the random spanning forests on G.

Lemma 5.2. (Domination) For any graph G, we have E

G

FSF

[deg

F

v℄ > E

G

WSF

[deg

F

v℄ for

every v 2 V , with equality for every v i� FSF =WSF.

Lemma 5.3. (WSF-Expe
ted Degree) In any in�nite transitive graph G, the WSF-

expe
ted degree of every vertex is 2.

The following lemma is from BLPS (1999):

Lemma 5.4. (Small Trees and Expe
ted Degree) Let � be a 
losed unimodular

subgroup of Aut(G) that a
ts transitively on G and let ! be the 
on�guration of a �-

invariant per
olation on G. Fix a vertex o. Let F

o

be the event that K(o) is an in�nite

tree with �nitely many ends, and let F

0

o

be the event that K(o) is a �nite tree.

(i) If P [F

o

℄ > 0, then E

�

D(o)

�

�

F

o

�

= 2.

(ii) If P [F

0

o

℄ > 0, then E

�

D(o)

�

�

F

0

o

�

< 2.

Fix any base point o 2 V (G) and let A

o

be the event that K(o) is in�nite. Let E

refer to the probability measure of the per
olation. Extending the notation above, we

write E

!

FSF

and E

!

WSF

for expe
tation with respe
t to the free and wired spanning forest

measures on ! (given !).

Theorem 5.5. (O

HD

Stability when Amenable) Let G be an amenable graph with

a transitive automorphism group � � Aut(G) and ! a �-invariant per
olation. Then a.s.

every 
omponent of ! is in O

HD

.

Proof. We show that the measures FSF and WSF 
oin
ide on K(o) a.s. given A

o

. By the

argument in Burton and Keane (1989), a.s. no 
omponent in any invariant per
olation on

G 
an have more than 2 ends. Applying this to the per
olations given by taking the FSF
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or the WSF of ea
h 
omponent (independently for ea
h 
omponent) of ! in 
onjun
tion

with Lemma 5.4, we obtain that

E

�

E

!

WSF

[deg

F

o℄

�

�

A

o

�

= 2 = E

�

E

!

FSF

[deg

F

o℄

�

�

A

o

�

:

Hen
e, the result follows from Lemma 5.2.

Lemma 5.6. (Expe
ted Degree for Re
urrent Trees) Let G be a graph with a

transitive unimodular 
losed automorphism group � � Aut(G). Let ! be a �-invariant

random forest in G. Suppose that a.s. all 
omponents of ! are re
urrent. Then E[deg

!

o℄ 6

2.

Proof. This follows from Lemmas 3.7, 5.4, and 4.8.

Theorem 5.7. (:O

HD

Stability when High Marginals) Let G be a graph with a

transitive unimodular 
losed automorphism group � � Aut(G). If G =2 O

HD

, then there

is some p

0

< 1 su
h that for every �-invariant bond per
olation ! with inf

e2E

P[e 2 !℄ >

p

0

, some 
omponent of ! is not in O

HD

with positive probability. If ! is ergodi
 and

has indistinguishable 
omponents, then the same hypotheses imply that a.s., no in�nite


omponent of ! is in O

HD

.

Proof. We show that p

0

:= 2=E

G

FSF

[deg

F

o℄ works.

First, p

0

< 1 by Lemmas 5.1, 5.2, and 5.3. Let T

o

be the event that K(o), the


omponent of o in !, is transient. We 
laim that

P[T

o

℄ > 0 (5:1)

and

E

�

E

!

WSF

[deg

F

o℄

�

�

T

o

�

= 2 < E

�

E

!

FSF

[deg

F

o℄

�

�

T

o

�

: (5:2)

This suÆ
es for the �rst statement by Lemma 5.2. The se
ond statement then follows by

ergodi
ity.

Let F

0

be the union of 
omponents of F that are 
ontained in re
urrent 
omponents

of !. Lemma 5.6 implies that if P[T

o

℄ < 1, then E

!

FSF

[deg

F

o j o 2 F

0

℄ 6 2, whi
h means

E

!

FSF

[deg

F

o j :T

o

℄ 6 2. Consequently, (5.1) and the inequality in (5.2) will be established

on
e we prove

E

�

E

!

FSF

[deg

F

o℄

�

> p

0

E

G

FSF

[deg

F

o℄ = 2 :

Now

E

!

FSF

[deg

F

o℄ =

X

x�o

P

!

FSF

�

[o; x℄ 2 F

�

=

X

x�o

[o;x℄2!

P

!

FSF

�

[o; x℄ 2 F

�

: (5:3)
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Let B

n

be the ball of radius n 
entered at o in G. By Kir
hho�'s theorem and Rayleigh's

monotoni
ity prin
iple (see Lyons and Peres (1998) or BLPS (1998)), for ea
h n and ea
h

e 2 !,

P

!\B

n

FSF

[e 2 F℄ > P

B

n

FSF

[e 2 F℄ :

Taking a limit as n!1, we obtain

P

!

FSF

[e 2 F℄ > P

FSF

[e 2 F℄

by the de�nition of the FSF, when
e (5.3) gives

E

!

FSF

[deg

F

o℄ >

X

x�o

[o;x℄2!

P

G

FSF

[e 2 F℄ :

Taking expe
tation, we obtain

E

�

E

!

FSF

[deg

F

o℄

�

> E

"

X

x�o

1

[o;x℄2!

P

G

FSF

�

[o; x℄ 2 F

�

#

=

X

x�o

P

�

[o; x℄ 2 !

�

P

G

FSF

�

[o; x℄ 2 F

�

>

X

x�o

p

0

P

G

FSF

�

[o; x℄ 2 F

�

= p

0

E

G

FSF

[deg

F

o℄ ;

as desired.

For the equality in (5.2), we use the oriented wired spanning forest, OWSF, on ea
h

transient 
omponent of !, 
hosen independently on ea
h 
omponent. Let '(x; y) be the

probability that (K(x) is transient and that) [x; y℄ belongs to the oriented wired spanning

forest of !. Sin
e OWSF is �-invariant, ' is invariant under the diagonal a
tion of �,

when
e the Mass-Transport Prin
iple says that

X

x

'(o; x) =

X

x

'(x; o) :

The left-hand side is the expe
ted outdegree of o, whi
h is P[T

o

℄. Hen
e, the right-hand

side, the expe
ted in-degree of o, is also P[T

o

℄. This shows that E

�

E

!

WSF

[deg

F

o℄

�

�

T

o

�

= 2.

Example 5.8. It does not suÆ
e in Theorem 5.7 to assume merely that the 
omponents

of ! are in�nite. For example, if ! is given by the WSF, then every 
omponent is a tree
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with one end (BLPS (1998)), when
e is re
urrent and in O

HD

. However, as stated in

Conje
ture 1.11, we believe that this is suÆ
ient for Bernoulli per
olation.

Example 5.9. The hypothesis that � be unimodular 
annot be omitted in Theorem 5.7.

For example, let G be a regular tree of degree 3 and � be an end of G. Let � be the group

of automorphisms of G that �x �. Let H

n

, n 2 Z, be the horo
y
les with respe
t to �.

(More pre
isely, �x a base point o 2 V , let hv

m

i be a sequen
e 
onverging to �. Then a

vertex v is in H

n

i� dist(v

m

; v)� dist(v

m

; o) = n for all but �nitely many m.) To de�ne

!, we �rst de�ne a per
olation �. Given any p

0

< 1, for ea
h n independently, let all the

edges joining H

n

to H

n+1

be in � with probability p

0

. Ea
h 
omponent of � is a �nite

tree a.s. For ea
h 
omponent K of �, let n(K) be the largest n su
h that K \ H

n

6= ;.

Choose an edge joining K \H

n(K)

to H

n(K)+1

at random uniformly among all su
h edges

and independently for ea
h K; let �

0

be the set of the 
hosen edges (over all K). Now let

! := � [ �

0

. Ea
h 
omponent of ! is a tree with exa
tly one end, so is re
urrent and in

O

HD

. Yet G =2 O

HD

.

Question 5.10. Does Theorem 5.7 hold for Bernoulli per
olation when the unimodularity

assumption is omitted?

x6. An
hored Expansion and Stability.

Cheeger's inequality relates the isoperimetri
 
onstant, whi
h is geometri
, to the

spe
tral radius, whi
h governs the exponential de
ay of return probabilities of simple ran-

dom walk or Brownian motion. We dis
uss a geometri
 
onstant that we hope 
an repla
e

the isoperimetri
 
onstant in graphs and manifolds that are not uniformly expanding.

Consider, for example, the hyperboli
 spa
e H

n

and perturb the metri
 on an ex-

tremely sparse sequen
e of balls with radii growing very slowly to in�nity; for instan
e,

pi
k the 
enter of the n-th ball at distan
e e

n

from a �xed origin, and let logn be its radius.

If we modify the metri
 inside these balls so that it is 
at on sub-balls of half the radius,

we get a manifold with zero isoperimetri
 
onstant. Many properties of M (su
h as the

existen
e of non
onstant bounded harmoni
 fun
tions or the speed of Brownian motion),

are, however, un
hanged from H

n

.

Definition 6.1. Fix some base point o 2 G. Call

�

�

E

(G) := lim

n!1

inf

�

j�

E

Sj

jSj

: o 2 S � V (G); S is 
onne
ted; n 6 jSj <1

�
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the an
hored expansion 
onstant of G. Note that �

�

E

(G) is independent of the 
hoi
e

of the base point o and that �

�

E

(G) > �

E

(G).

By atta
hing a sequen
e of paths of length 1; 2; : : : at a very sparse sequen
e of verti
es

of a binary tree, we get an example of a graph G for whi
h �

�

E

(G) > �

E

(G) = 0.

Isoperimetri
 quantities su
h as this, where the set S is required to 
ontain a �xed

vertex o, were introdu
ed in greater generality by Thomassen (1992). He used the word

\rooted" instead of \an
hored".

Benjamini and S
hramm (1996) show that �

E

(G) is related to p




(G); in fa
t, their

proof of Thm. 2 shows that p




(G) 6 (1 + �

�

E

(G))

�1

.

When the isoperimetri
 
onstant �

E

(G) of a bounded degree (not ne
essarily tran-

sitive) graph is positive, Dodziuk's (1984) dis
rete version of Cheeger's inequality gives

an upper bound � < 1 for the spe
tral radius �(G), where � depends on �

E

(G) and the

maximum degree in G. In turn, this implies that the lim inf speed �

�

of simple random

walk X starting at a base point o 2 V (G) is positive almost surely.

By analogy, we make the following

Conje
ture 6.2. Let G be a bounded degree graph with �

�

E

(G) > 0. Then �

�

> 0 with

positive probability.

It might even be the 
ase that �

�

E

(G) > 0 implies �

�

> 0 a.s. In fa
t, after seeing an

earlier draft of this paper, Virag (1998) proved that the limsup speed is positive when G

is a tree of bounded degree with �

�

E

(G) > 0. He also has shown that whenever �

�

E

(G) > 0,

there is a subgraph G

0

of G with �

E

(G

0

) > 0.

Thomassen (1992) has shown that if a graph satis�es a weaker type of an
hored

isoperimetri
 inequality, then it is transient; Conje
ture 6.2 has a stronger hypothesis and

a stronger 
on
lusion.

The motivation for looking at �

�

E

(G) is that �

�

E

is more stable than �

E

under random

perturbations of G. For example, let G be an in�nite graph of bounded degree and pi
k

a probability distribution P on the stri
tly positive integers. Repla
e ea
h edge e 2 G by

a path of length L

e

, where L

e

is distributed a

ording to P, and all L

e

(e 2 E(G)) are

independent. Let G

P

denote the random graph obtained in this way. If P has a bounded

support, then �

E

(G) > 0 implies �

E

�

G

P

�

> 0, while if P has unbounded support then,

almost surely, �

E

�

G

P

�

= 0.

Question 6.3. Does �

E

(G) > 0 imply that �

�

E

�

G

P

�

> 0 a.s. when P is the geometri


distribution on the positive integers? What about other distributions P with �nite mean?

Can this be settled in the 
ase where G is a regular tree?
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It is not hard to 
onstru
t P and G su
h that �

E

(G) > 0 while �

�

E

�

G

P

�

= 0 a.s. (Take

G to be a binary tree and P to have a fat tail.)

Lyons, Pemantle, and Peres (1995) proved that simple random walk on a random

perturbation of any regular tree, with P the geometri
 distribution, has positive speed

almost surely. More generally, simple random walk has positive speed on every super
riti
al

Galton-Watson tree a.s. given nonextin
tion.

Question 6.4. Is �

�

E

(T ) > 0 a.s. for super
riti
al Galton-Watson trees given nonextin
-

tion?

Question 6.5. If �

E

(G) > 0 and ! is Bernoulli per
olation on G, must every in�nite


omponent K of ! have �

�

E

(K) > 0 a.s.?

After seeing an earlier draft of this paper, answers to the last three questions have

largely been provided by Chen and Peres (1998). That is, Questions 6.3 and 6.4 were an-

swered 
ompletely and Question 6.5 was answered aÆrmatively for p-Bernoulli per
olation

when p is suÆ
iently 
lose to 1.
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