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Perolation Perturbations in

Potential Theory and Random Walks

by Itai Benjamini, Russell Lyons, and Oded Shramm

Abstrat. We show that on a Cayley graph of a nonamenable group, a.s.

the in�nite lusters of Bernoulli perolation are transient for simple random

walk, that simple random walk on these lusters has positive speed, and that

these lusters admit bounded harmoni funtions. A prinipal new �nding

on whih these results are based is that suh lusters admit invariant random

subgraphs with positive isoperimetri onstant.

We also show that perolation lusters in any amenable Cayley graph a.s.

admit no nononstant harmoni Dirihlet funtions. Conversely, on a Cayley

graph admitting nononstant harmoni Dirihlet funtions, a.s. the in�nite

lusters of p-Bernoulli perolation also have nononstant harmoni Dirihlet

funtions when p is suÆiently lose to 1. Many onjetures and questions are

presented.

x1. Introdution.

The question of whether various potential-theoreti properties of graphs and manifolds

are preserved under perturbations or approximations has been studied for more than a

deade. For example, invariane under quasi-isometries of transiene (i.e., the existene

of nononstant positive superharmoni funtions) or of existene of harmoni funtions in

ertain lasses has been studied by Kanai (1986), T. Lyons (1987), Salo�-Coste (1992),

Soardi (1993), Benjamini and Shramm (1996a), Thm. 3.5, and Holopainen and Soardi

(1997).

In this paper, we study perturbations of graphs that are more radial than quasi-

isometries and that are random. Namely, edges are deleted at random to form a perolation

subgraph ! and the behavior of simple random walk hX(t)i on ! is examined (where

eah neighbor of X(t) in ! is equally likely to be X(t+ 1)).
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We reall some de�nitions. Given a graph G =

�

V (G); E(G)

�

and p 2 [0; 1℄, the

random subgraph !

p

formed by deleting eah edge independently with probability 1� p is

alled p-Bernoulli bond perolation. The ritial probability p



(G) is the in�mum

over all p 2 [0; 1℄ suh that there is positive probability for the existene of an in�nite

onneted omponent in !

p

. The onneted omponents of !

p

are also alled lusters.

In the ase that G is an amenable Cayley graph, Burton and Keane (1989) show that p-

Bernoulli perolation has a.s. at most one in�nite luster. For bakground on perolation,

espeially in Z

d

, see Grimmett (1989). Following earlier work of Grimmett and Newman

(1990) on the diret produt of a regular tree and Z, a general study of perolation on

disrete groups was initiated in Benjamini and Shramm (1996b). One phenomenon that

was onjetured there to be general was a onverse to the Burton and Keane result, namely,

that on any nonamenable group, for some p, there are a.s. in�nitely many in�nite lusters

in !

p

. This led to the de�nition

p

u

(G) := inf

n

p : P[!

p

has exatly one in�nite luster℄ = 1

o

:

Thus, p

u

(G) = p



(G) when G is an amenable Cayley graph. H�aggstr�om and Peres (1998)

show that on a Cayley graph G, for every p > p

u

, there is exatly one in�nite luster a.s. in

p-Bernoulli perolation. It is known that p

u

< 1 in many ases besides amenable groups,

e.g., �nitely presented groups with one end (Babson and Benjamini 1999) and Kazhdan

groups (Lyons and Shramm 1998).

The uniqueness phase of Bernoulli perolation is the range of p where there is

preisely one in�nite luster a.s.; the nonuniqueness phase is the range of p where there

is more than one in�nite luster a.s.

The unique in�nite perolation luster of superritial Bernoulli perolation on a

graph, if there is suh, an be viewed as a random perturbation of the graph. It is then

natural to ask whih properties of the graph are inherited by suh a perolation luster.

After presenting further de�nitions and reviewing some bakground in Setion 2, we

begin by studying in Setion 3 purely geometri aspets of perolation lusters, namely,

how the isoperimetri onstant �

E

(G) (see Setion 2) behaves under perolation. If ! is

a random on�guration of Bernoulli perolation on a Cayley graph G, then, of ourse,

�

E

(!) = 0 a.s. However,

Theorem 1.1. If G is a nonamenable Cayley graph and ! is a random on�guration of

Bernoulli perolation on G, then a.s. every in�nite luster of ! ontains a subgraph !

0

with

�

E

(!

0

) > 0.

(See Theorem 3.9.) In fat, we show in Theorem 3.10 that one an further require !

0

to
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be a tree. Note that ! is a random variable, representing the on�guration; in the sequel,

we shall often say, however, that ! is a \perolation".

The theorem raises the following question about perolation in Z

d

. Reall that the

isoperimetri dimension of a graph G is the supremum of all s suh that

inf

�

j�

E

V

1

j

s

jV

1

j

s�1

: V

1

� V (G); 0 < jV

1

j <1

�

> 0 :

Question 1.2. Let ! be superritial Bernoulli perolation in Z

d

. Is it true that for every

� > 0, a.s. ! ontains a subgraph with isoperimetri dimension at least d � �? Does it

ontain a subgraph with isoperimetri dimension d?

It is well known that if G is nonamenable, then the speed of simple random walk

hX(t)i on G is positive, i.e.,

lim

t!1

dist

G

�

X(0); X(t)

�

t

> 0 a.s. ;

whih results from the fat that the spetral radius is less than 1 (Kesten 1959); see

Setion 2. We prove the following extension in Setion 4 as a onsequene of (a more

preise version of) Theorem 1.1:

Theorem 1.3. Let G be a nonamenable Cayley graph and ! be Bernoulli perolation on

G. Let hX(t)i be simple random walk on !. Given that the luster K of X(0) is in�nite,

we have a.s. that the speed of X is positive.

(See Theorem 4.4.)

We onjeture the following generalization:

Conjeture 1.4. If G is a Cayley graph on whih simple random walk has positive speed,

then a.s., simple random walk on eah in�nite luster of p-Bernoulli perolation has positive

speed.

There are (nontransitive) graphs on whih simple random walk has zero speed, but for

whih Bernoulli perolation a.s. produes lusters where simple random walk has positive

speed. An example is a binary tree with a opy of Z attahed to every vertex.

Conjeture 1.5. If G is a Cayley graph on whih simple random walk has zero speed,

then a.s., simple random walk on every luster of Bernoulli perolation also has zero speed.

Any possible ounterexample would have to be amenable and of exponential growth by

Lemma 4.6 below.
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The speed of random walk is related to other probabilisti behavior through the follow-

ing theorem due to the work of Avez (1974), Derrienni (1980), Kaimanovih and Vershik

(1983), and Varopoulos (1985). Reall that a funtion F : V (G)! R is alled harmoni

if F (x) =

P

y�x

F (y)= deg

G

x for all x 2 V .

Theorem 1.6. (Speed, Entropy, and Bounded Harmoni Funtions) The follow-

ing onditions are equivalent for a given Cayley graph:

(i) the speed of simple random walk is zero;

(ii) the asymptoti entropy of simple random walk is zero;

(iii) there are no nononstant bounded harmoni funtions.

Furthermore, Kaimanovih (1990) extended the equivalene of (ii) and (iii) to many

random walks in a random environment (RWRE) that have a stationary measure; the

extension to inlude (i) is easy (Lemma 4.6). Sine simple random walk restrited to

perolation lusters has an equivalent invariant measure (see Lemma 4.1), our onjetures

and results about the speed of random walk have some alternative formulations in terms

of entropy and bounded harmoni funtions.

Transiene holds more generally, of ourse, than positive speed. Transiene of the

in�nite lusters of Bernoulli perolation in Z

d

, d > 2, was established in Grimmett, Kesten

and Zhang (1993) (see Benjamini, Pemantle and Peres (1998) for a di�erent proof). De

Masi, Ferrari, Goldstein and Wik (1989) proved an invariane priniple for simple random

walk on the superritial luster in Z

2

.

Conjeture 1.7. If G is a transient Cayley graph, then a.s. every in�nite luster of

Bernoulli perolation on G is transient.

The nonamenable ase follows from Theorem 1.3; a slight extension is:

Theorem 1.8. Let G be a Cayley graph suh that the ball of radius n has ardinality at

least �

n

for all n, where � > 1. Then a.s., every in�nite luster of p-Bernoulli perolation

on G is transient when p > 1=�.

(See Theorem 4.9.)

In Setion 5, we study the existene of nononstant harmoni Dirihlet funtions on

the perolation lusters of Cayley graphs. A funtion F : V (G)! R is alled Dirihlet if

P

x

P

y�x

jF (x)� F (y)j

2

< 1. Reall that O

HD

denotes the lass of graphs that do not

admit any nononstant harmoni Dirihlet funtions. As we shall see below, the piture in

the nonamenable situation is rather involved and our understanding is far from omplete.

In the amenable ase, we have
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Theorem 1.9. If G is an amenable Cayley graph and ! is Bernoulli perolation, then a.s.

every luster of ! is in O

HD

.

(See Theorem 5.5.)

Medolla and Soardi (1995) proved that amenable transitive graphs are in O

HD

(see

Remark 7.5 of Benjamini, Lyons, Peres, and Shramm (1998) for a short proof via uniform

spanning forests). Soardi (1993) proved that O

HD

is invariant under quasi-isometries.

(See Lyons and Peres (1998) for a simple proof due to Shramm.)

Our proof of Theorem 1.9 uses the uniform spanning forest measures and their on-

netion to harmoni Dirihlet funtions as presented in BLPS (1998). Suh an ingredient

an be motivated as follows: In order to study the inuene of geometri properties on

potential-theoreti behavior, it is useful to have a geometri representation of the potential-

theoreti objets. The uniform spanning forest ahieves this by representing the analyti

spae of harmoni Dirihlet funtions by a random geometri objet. The relevant de�ni-

tions and properties are given in Setion 5.

A positive answer to the following question would extend Theorem 1.9:

Question 1.10. Let G be a Cayley graph, and suppose that G 2 O

HD

. Let ! be Bernoulli

perolation on G in the uniqueness phase. Does it follow that a.s. the in�nite luster of !

is in O

HD

? We do not know the answer even in the ase that G is the diret produt of a

tree and Z or is a lattie in hyperboli spae H

d

(d > 3).

In the nonuniqueness phase of Bernoulli perolation on a (nonamenable) Cayley graph

G, the in�nite lusters are not in O

HD

(Corollary 4.7).

In the other diretion, for graphs admitting nononstant harmoni Dirihlet funtions,

we believe:

Conjeture 1.11. Let G be a Cayley graph, G =2 O

HD

. Then a.s. all in�nite lusters of

p-Bernoulli perolation are not in O

HD

.

We an prove this for p suÆiently large:

Theorem 1.12. Let G be a Cayley graph. If G =2 O

HD

, then there is some p

0

< 1 suh

that for every p > p

0

, almost surely no in�nite luster of p-Bernoulli perolation is in

O

HD

.

(See Theorem 5.7.)

The last setion of our paper disusses questions onerning the speed of simple ran-

dom walk on a graph and a variant of the isoperimetri onstant, alled anhored expan-

sion. The anhored expansion onstant might be useful in studying the speed of simple

random walk on in�nite perolation lusters and other graphs as well.
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Although in the above theorems, only Cayley graphs are mentioned, we work in the

greater generality of transitive graphs. Similarly, we disuss perolation proesses that are

muh more general than Bernoulli perolation.

Aknowledgments. We thank the organizers of the Cortona onferene, Vadim A.

Kaimanovih, Massimo A. Piardello, Laurent Salo�-Coste, and Wolfgang Woess, for a

most enjoyable and produtive meeting. We thank Yuval Peres for omments on an earlier

version of this paper.

x2. Notation and Bakground.

Graph terminology, isoperimetri onstant and ends. We use the letter G to denote

a graph and � to denote a losed subgroup of the automorphism group Aut(G) of G. The

verties and edges of G will be denoted V (G) and E(G), respetively. When there is an

edge in G joining verties u; v, we write u � v. The degree deg v = deg

G

v of a vertex

v 2 V (G) is the number of edges inident with it. A tree is a onneted graph with no

yles. A forest is a graph whose onneted omponents are trees. The distane between

two verties v; u 2 V (G) is denoted by dist(v; u) = dist

G

(v; u), and is the least number of

edges of a path in G onneting v and u.

For a set of verties V

1

� V (G), let �

E

V

1

denote the set of edges in E(G) that have

one endpoint in V

1

and one endpoint in V (G) � V

1

. The graph G is amenable if there

is a sequene of �nite vertex subsets V

1

� V

2

� � � � � V

n

� � � � � V (G), suh that

S

n

V

n

= V (G) and j�

E

V

n

j=jV

n

j ! 0 as n ! 1. Here and in the sequel, jAj denotes the

ardinality of a set A. The (edge) isoperimetri onstant of a graph G, also known as

the Cheeger onstant, is de�ned by

�

E

(G) := inf

�

j�

E

V

0

j=jV

0

j : ; 6= V

0

� V (G); jV

0

j <1

	

:

An in�nite set of verties V

0

� V (G) is end-onvergent if for every �nite K � V (G),

there is a omponent of G � K that ontains all but �nitely many verties of V

0

. Two

end-onvergent sets V

0

; V

1

are equivalent if V

0

[ V

1

is end-onvergent. An end of G is an

equivalene lass of end-onvergent sets.

Spetral radius, speed and entropy. Given v; u 2 V (G), let p

t

(v; u) be the probability

that simple random walk starting at v will be at u at time t. The spetral radius �(G)

is de�ned by

�(G) := lim sup

t!1

p

t

(v; u)

1=t
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and does not depend on the hoie of v and u. Dodziuk's (1984) disrete version of

Cheeger's inequality states that if G has bounded degrees and �

E

(G) > 0, then �(G) < 1.

The speed of a random walk X starting at o 2 V (G) is

� = �(X) := lim

t!1

dist

�

o;X(t)

�

=t

when the limit exists. The lim inf speed is de�ned by

�

�

= �

�

(X) := lim inf

t!1

dist

�

o;X(t)

�

=t :

If G has bounded degrees and �(G) < 1, then there are onstants � > 0 and � < 1 suh

that

P

h

dist

�

o;X(t)

�

< �t

i

6 �

t

;

beause the probability that the random walk is inside the ball of radius �t about o is

bounded by the number of verties in the ball times the probability that X is at the most

likely vertex. Consequently, in this situation, �

�

> 0 a.s.

The entropy of a probability measure � on a �nite or ountable set A is de�ned to

be

H(�) :=

X

x2A

��(x) log�(x) :

Let �

t

denote the distribution of the loation X(t) of a random walk X at time t. If

lim

t

H(�

t

)=t exists, it is alled the asymptoti entropy of the random walk. If hX(t)i

is simple random walk on a Cayley graph, then the asymptoti entropy exists. In fat,

the Subadditive Ergodi Theorem ensures the existene of lim

t

�t

�1

log�

t

�

X(t)

�

a.s. and

in L

1

; see Derrienni (1980). The same is true for stationary RWRE, as observed by

Kaimanovih (1990). Similar reasoning applies to graphs with a transitive unimodular

automorphism group (Kaimanovih and Woess 1998).

For further information about random walks, spetral radius, harmoni funtions, et.,

see Kaimanovih and Vershik (1983) and Woess (1994).

Automorphism groups, unimodularity, and the Mass-Transport Priniple. Let

� � Aut(G) be a subgroup of automorphisms of G with the topology of pointwise on-

vergene. We say that � is (vertex) transitive if for every v; u 2 V (G), there is a  2 �

with u = v. The graph G is transitive if Aut(G) is transitive. Reall that every losed

subgroup � � Aut(G) has a unique (up to a onstant saling fator) Borel measure that,

for every  2 �, is invariant under left multipliation by ; this measure is alled (left)

Haar measure. The group � is unimodular if Haar measure is also invariant under

right multipliation.

7



Most of our theorems onern perolation that is invariant under a transitive unimod-

ular losed subgroup of Aut(G). For example, when G is the (right) Cayley graph of �

and � ats by left multipliation, then � � Aut(G) is (obviously) losed, unimodular, and

transitive. If G is an amenable graph, then every losed transitive subgroup of Aut(G) is

unimodular (Soardi and Woess 1990).

Several illustrations of the signi�ane of unimodularity an be found in Benjamini,

Lyons, Peres, and Shramm (1999). The most important one seems to be that when

� � Aut(G) is unimodular, the Mass-Transport Priniple takes the following simple form:

Theorem 2.1. (Mass-Transport Priniple) Let G be a graph with a transitive uni-

modular losed automorphism group � � Aut(G). Let o 2 V (G) be an arbitrary base point.

Suppose that � : V (G)� V (G)! [0;1℄ is invariant under the diagonal ation of �. Then

X

v2V (G)

�(o; v) =

X

v2V (G)

�(v; o) : (2:1)

See BLPS (1999) for a disussion of this priniple and for a proof. In fat, � is

unimodular i� (2.1) holds for every suh �. Hene, (2.1) an be taken as a de�nition of

unimodularity.

Perolation terminology. A bond perolation ! on G is a random subset of E(G).

For a more preise de�nition, given a set A, let 2

A

be the olletion of all subsets � �

A, equipped with the �-�eld generated by the events fa 2 �g, where a 2 A. A bond

perolation ! on G is then a random variable whose distribution is a probability measure

P on 2

E(G)

. Similarly, a site perolation is given by a probability measure on 2

V (G)

,

while a (mixed) perolation is given by a probability measure on 2

V (G)[E(G)

that is

supported on subgraphs of G. If ! is a bond perolation, then !̂ := V (G) [ ! is the

assoiated mixed perolation. In this ase, we shall often not distinguish between ! and

!̂, and think of ! as a subgraph of G. Similarly, if ! is a site perolation, there is an

assoiated mixed perolation !̂ := ! [

�

E(G)\ (!� !)

�

, and we shall often not bother to

distinguish between ! and !̂.

Let p 2 [0; 1℄. Then the distribution of p-Bernoulli bond perolation ! on G is

the produt measure on 2

E(G)

that satis�es P[e 2 !℄ = p for all e 2 E(G). Similarly, one

de�nes p-Bernoulli site perolation on 2

V (G)

.

If v 2 V (G) and ! is a perolation on G, the omponent (or luster) K(v) of v in

! is the set of verties in V (G) that an be onneted to v by paths ontained in !.

Suppose that � is an automorphism group of a graph G. A perolation on G is

�-invariant if its distribution P is invariant under eah automorphism in �.
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Insertion tolerane and omponent indistinguishability. Given a set Z, an element

z 2 Z, and a subset ! 2 2

Z

, let �

z

! := ! [ fzg. A probability measure P on 2

Z

is insertion tolerant if P[�

z

A℄ > 0 for every z 2 Z and every measurable A � 2

Z

satisfying P[A℄ > 0. For example, p-Bernoulli bond perolation is insertion tolerant when

p > 0.

Let G be graph and � a losed transitive subgroup of Aut(G). Let ! be a �-invariant

bond perolation. We say that ! has indistinguishable omponents if for every mea-

surable A � 2

V (G)

� 2

E(G)

that is invariant under the diagonal ation of �, almost surely,

for all in�nite omponents C of !, we have (C; !) 2 A, or for all in�nite omponents C,

we have (C; !) =2 A. (That is, whether (C; !) 2 A does not depend on C, but may depend

on !.)

The following is from Lyons and Shramm (1998):

Theorem 2.2. (Component Indistinguishability) Let G be a graph with a transi-

tive unimodular losed automorphism group � � Aut(G). Every �-invariant, insertion-

tolerant, bond perolation proess on G has indistinguishable omponents.

For example, this shows that in p-Bernoulli bond perolation on a Cayley graph of a

nonamenable group, almost surely, either all in�nite lusters are transient, or all lusters

are reurrent. In fat, as indiated by Theorem 1.3, a.s. all in�nite lusters are transient.

Similar statements hold for site and mixed perolations.

x3. Geometry of Perturbations of Nonamenable Graphs.

Let G be an in�nite graph and K a �nite subgraph of G. Set

�

K

:=

1

jV (K)j

X

v2V (K)

deg

K

v ;

where deg

K

v is the degree of v in K. De�ne

�(G) := sup

�

�

K

: K � G is �nite

	

:

Note that when all verties in G have degree d, the isoperimetri onstant of G satis�es

�

E

(G) = d� �(G) :

Let T be a regular tree and o 2 V (T ) be some base point. H�aggstr�om (1997) has

shown that when ! is an automorphism-invariant perolation on T and E[deg

!

o℄ > �(T ),
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there are in�nite lusters in ! with positive probability. In BLPS (1999), it was shown

that the same result applies to transitive graphs with a unimodular automorphism group.

In Theorem 3.2, we extend this result and show that with the same assumptions but with

a strit inequality E[deg

!

o℄ > �(G), with positive probability, there is a subgraph in !

with �

E

> 0. This will be used to prove

Theorem 3.1. (Uniqueness Gives a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular losed automorphism group � � Aut(G), and suppose that

�

E

(G) > 0. Let ! be a �-invariant perolation in G that has a.s. exatly one in�nite

omponent. Then (on a larger probability spae) there is a perolation !

0

� ! suh that

!

0

6= ; and �

E

(!

0

) > 0 a.s. Moreover, the distribution of the pair (!

0

; !) is �-invariant.

In the following, if K � G is a subgraph and v 2 V (G) is not in K, then we set

deg

K

v := 0.

As we indiated, the proof of Theorem 3.1 is based on the following more quantitative

result.

Theorem 3.2. (High Marginals Give a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular losed automorphism group � � Aut(G). Let ! be a �-

invariant (nonempty) perolation in G. Let h > 0 and suppose that

E[deg

!

o j o 2 !℄ >

�

�(G) + 2h

�

: (3:1)

Then there is (on a larger probability spae) a perolation !

0

� ! suh that !

0

6= ; and

�

E

(!

0

) > h with positive probability. Moreover, the distribution of the pair (!

0

; !) is �-

invariant.

Proof. Given any subgraph ! of G, we de�ne perolations !

n

on ! indutively as follows.

Set !

0

:= !. Suppose that !

n

has been de�ned. Let �

n

be a (1=2)-Bernoulli site perolation

on G, independent of !

0

; : : : ; !

n

. Let 

n

be the union of the �nite omponents K of �

n

\!

n

that satisfy

j�

E(!

n

)

Kj

jKj

< h ;

where �

E(!

n

)

K denotes the set of edges of !

n

onneting K to its omplement. Now set

!

n+1

:= !

n

� 

n

. Finally, de�ne

!

0

:=

1

\

n=0

!

n

:

For future use, write �(h; !) := !

0

.

10



Most of the proof will be devoted to showing that !

0

6= ; with positive probability,

but �rst we verify that �

E

(!

0

) > h. Indeed, let W be a �nite nonempty set of verties

in G, let F be the set of all edges of G inident with W , and let F

0

� F . Suppose that

jF

0

j=jW j < h. To verify that �

E

(!

0

) > h a.s., it is enough to show that the probability

that W � !

0

and !

0

\ F = F

0

is zero. If !

n

\ F = F

0

for some n, then a.s. there is some

m > n suh that W is a omponent of �

m

. Now either W 6� !

m

, in whih ase W 6� !

0

, or

W � !

m

, in whih ase W is not ontained in !

m+1

, hene not in !

0

. On the other hand,

if !

n

\ F 6= F

0

for every n, then also !

0

\ F 6= F

0

. Consequently �

E

(!

0

) > h a.s.

Now set

D

n

:= E deg

!

n

o ; D

1

:= E deg

!

0

o ;

�

n

:= P[o 2 !

n

℄ ; �

1

:= P[o 2 !

0

℄ :

Our goal is to prove the inequality

D

n+1

> D

n

� (�

n

� �

n+1

)

�

�(G) + 2h

�

: (3:2)

This will be ahieved through use of the Mass-Transport Priniple. Observe that

�

n

� �

n+1

= P[o 2 

n

℄ :

Fix n and de�ne the random funtion m : V (G) � V (G) ! [0;1) as follows. For every

vertex v 2 V (G), let K(v) be the omponent of v in 

n

, whih we take to be ; if v =2 

n

.

Let v; u 2 V . If u =2 

n

, set m(v; u) := 0. If v 2 K(u), let m(v; u) := deg

!

n

v=jK(u)j.

Otherwise, let m(v; u) be jK(u)j

�1

times the number of edges in !

n

that onnet v to a

vertex in K(u). Note that v and u need not be adjaent in order that m(v; u) 6= 0. Clearly,

Em(v; u) is invariant under the diagonal ation of � on V (G)� V (G). Consequently, the

Mass-Transport Priniple implies that

X

v2V (G)

Em(o; v) =

X

v2V (G)

Em(v; o) :

A straightforward alulation shows that

X

v2V (G)

m(o; v) = deg

!

n

o� deg

!

n+1

o ;

while, if o 2 

n

, we have that

P

v2V (G)

m(v; o) is equal to twie the number of edges of !

n

inident with K(o), divided by jK(o)j. The number of edges of G with both endpoints in

K(o) is at most �(G)jK(o)j=2, and, by onstrution, j�

!

n

K(o)j < hjK(o)j. Hene

X

v2V (G)

m(v; o) < �(G) + 2h (3:3)

11



when o 2 

n

and

P

v2V (G)

m(v; o) = 0 otherwise. Therefore,

D

n

�D

n+1

= E[deg

!

n

o� deg

!

n+1

o℄ =

X

v2V (G)

Em(v; o)

6 (�(G) + 2h)P[o 2 

n

℄ = (�(G) + 2h)(�

n

� �

n+1

) ;

whih is the same as (3.2).

Indution and (3.2) give

D

n

> D

0

� �

0

�

�(G) + 2h

�

+ �

n

�

�(G) + 2h

�

;

taking a limit as n!1 yields the inequality

D

1

> D

0

� �

0

�

�(G) + 2h

�

+ �

1

�

�(G) + 2h

�

: (3:4)

This gives D

1

> 0, beause (3.1) is equivalent to D

0

� �

0

�

�(G) + 2h

�

> 0. Consequently,

!

0

6= ; with positive probability.

Remark 3.3. (The Density of !

0

) The following lower bound for �

1

is a onsequene

of (3.4) and the inequality �

1

deg

G

o > D

1

:

P[o 2 !

0

℄ = �

1

>

D

0

�

�

�(G) + 2h

�

�

0

deg

G

o�

�

�(G) + 2h

�

= P[o 2 !℄

�

1�

deg

G

o�E[deg

!

o j o 2 !℄

�

E

(G)� 2h

�

: (3:5)

Remark 3.4. (A Weak Inequality Suffies) In fat, in plae of (3.1), it is enough

to assume the weak inequality E[deg

!

o j o 2 !℄ >

�

�(G) + 2h

�

. The reason is that the

inequality (3.3) is strit when o 2 

n

, whih implies that (3.4) is strit when D

1

6= D

0

.

Theorem 3.5. (Threshold for a Forest) If ! is a forest a.s., then Theorem 3.2 is

true when �(G) is replaed by 2.

Proof. In a �nite tree K � G, we have �

K

< 2. Hene the proof of Theorem 3.2 applies

with 2 replaing �(G) everywhere.

Proof of Theorem 3.1. Fix a base point o 2 V (G). Let !

�

be the in�nite omponent of

!. Conditioned on !, for every vertex v 2 V (G), let �(v) be hosen uniformly among the

verties of !

�

losest to v, with all �(v) independent given !, and for edges e = [v; u℄ 2

E(G), let �(e) be hosen uniformly among shortest paths in !

�

joining �(v) and �(u), with

all �(e) independent given all �(v) and !. For integers j, let �

j

be the set of edges e 2 E(G)

12



suh that �(e) is ontained within a ball of radius j about one of the endpoints of e. Then

�

1

� �

2

� � � � are �-invariant bond perolations on G with

S

j

�

j

= E(G). Consequently,

E deg

�

j

o ! deg

G

o as j ! 1. For eah j, hoose independently a random sample of

�(h; �

j

) and denote it �

j

. By (3.5), we have that P[�

j

6= ;℄! 1. Let J := inffj : �

j

6= ;g.

Then J < 1 a.s. Set !

0

:= � (�

J

). Sine �

E

(�

J

) > h a.s., we have also �

E

�

�(�

J

)

�

> 0 a.s.

Suppose that G is transitive, �

E

(G) > 0, and ! is, say, Bernoulli perolation on G

that has a.s. more than one in�nite omponent. Then Theorem 3.1 does not apply to !.

However, as observed by Burton and Keane (1989), insertion tolerane shows that there

are a.s. omponents of ! with at least three ends. Hene the next theorem does apply.

Theorem 3.6. (A Forest with �

E

> 0 Inside Many-Ended Perolation) Let G

be a graph with a transitive unimodular losed automorphism group � � Aut(G), and let

! be a �-invariant perolation on G. Suppose that a.s., there are omponents of ! with at

least three ends. Then there is (on a larger probability spae) a random forest F � ! with

�

E

(F) > 0, F 6= ; a.s., and the distribution of the pair (F; !) is �-invariant.

We shall need the following two lemmas from BLPS (1999). Reall that K(x) denotes

the omponent of x in !.

Lemma 3.7. (Ends, p



and Degrees) Let G be a graph with a transitive unimodular

losed automorphism group � � Aut(G). Let ! be a �-invariant perolation on G that has

in�nite omponents with positive probability. If

(i) some omponent of ! has at least three ends with positive probability,

then

(ii) some omponent of ! has p



< 1 with positive probability and

(iii) for every vertex x, E

�

deg

!

x

�

�

jK(x)j =1

�

> 2.

If ! is a forest a.s., then the three onditions are equivalent.

Lemma 3.8. (Trimming to a Forest) Let G be a graph with a transitive unimodular

losed automorphism group � � Aut(G). Let ! be a �-invariant perolation on G suh that

a.s. there is a omponent of ! with at least three ends. Then (on a larger probability spae)

there is a random forest F � ! suh that the distribution of the pair (F; !) is �-invariant

and a.s. whenever a omponent K of ! has at least three ends, there is a omponent of

K \ F that has in�nitely many ends.

Proof of Theorem 3.6. By Lemma 3.8, there is a random forest F

0

� ! with some ompo-

nents having in�nitely many ends a.s. and the distribution of (F

0

; !) is �-invariant. Let

13



F

00

be the union of the in�nite omponents of F

0

. By Lemma 3.7, E[deg

F

00

o j o 2 F

00

℄ > 2.

Given !, for eah j, let �

j

be an independent sample of �(1=j;F

00

). Put F := �

J

, where

J := inffj : �

j

6= ;g <1 a.s.: Clearly, J <1 with positive probability. If the set A of !

where J = 1 had positive probability, then we would obtain a ontradition to what has

just been proved by noting that A is �-invariant and by onditioning on A.

We an now dedue the following extension of Theorem 1.1:

Theorem 3.9. Let G be a graph with a transitive unimodular losed automorphism group

� � Aut(G), and suppose that �

E

(G) > 0. Let ! be a �-invariant perolation on G that

has in�nite lusters a.s. Then in eah of the following ases (on a larger probability spae)

there is a perolation !

0

� ! suh that !

0

6= ;, �

E

(!

0

) > 0 a.s., and the distribution of the

pair (!

0

; !) is �-invariant:

(i) ! is Bernoulli perolation;

(ii) ! has a unique in�nite luster a.s.;

(iii) ! has a luster with at least three ends a.s.;

(iv) E[deg

!

o j o 2 !℄ > �(G) and ! is ergodi.

Proof. In Bernoulli perolation, if there is more than one in�nite luster, then there is a

luster with at least three ends by insertion tolerane and ergodiity. Consequently, (i)

follows from (ii) and (iii). Parts (ii){(iv) follow from Theorems 3.1, 3.6, and 3.2.

Although it will not be needed in the sequel, we note that Theorem 3.1 an be strength-

ened as follows.

Theorem 3.10. (A Forest in the Uniqueness Regime with �

E

> 0) Let G be a

graph with a transitive unimodular losed automorphism group � � Aut(G), and suppose

that �

E

(G) > 0. Let ! be a �-invariant perolation on G that has a.s. exatly one in�nite

omponent. Then (on a larger probability spae) there is a random forest F � ! with F 6= ;

and �

E

(F) > 0 a.s., and the distribution of the pair (F; !) is �-invariant.

Proof. Let !

0

� ! be as in Theorem 3.1. Sine �

E

(!

0

) > 0, Theorem 13.7 from BLPS

(1998) onstruts a perolation !

00

� !

0

suh that a.s. !

00

has all omponents with in�nitely

many ends and the distribution of (!

00

; !) is �-invariant. By Lemma 3.8, there is a forest

F

0

� !

00

suh that some tree in F

0

has in�nitely many ends a.s. and the distribution of

(F

0

; !) is �-invariant. Let F

00

be the union of the in�nite omponents of F

0

. By Lemma 3.7,

E[deg

F

00

o j o 2 F

00

℄ > 2. The proof is ompleted as for Theorem 3.6.

Applying Theorem 3.10 to the ase where ! = G a.s., we obtain an invariant random

forest in G with �

E

(F) > 0. This is related to the result of Benjamini and Shramm (1997)

14



whih says that every bounded-degree graph with �

E

> 0 ontains a tree T with �

E

(T ) > 0.

In fat, the latter result an be used to extend our theory to the non-transitive setting as

follows.

Corollary 3.11. (The Non-Transitive Case) Let G be a graph of bounded degree

with �

E

(G) > 0. Then there is some p

0

< 1 suh that p-Bernoulli bond perolation on G

has a subgraph with �

E

> 0 a.s. whenever p > p

0

.

Proof. By the result of Benjamini and Shramm (1997) mentioned above, there is a tree

T � G with �

E

(T ) > 0. Let T

3

be the 3-regular tree. There is a map � that takes

V (T

3

) into V (T ), takes every edge e = [v; u℄ 2 E(T

3

) to a path of bounded length �(e)

in T joining �(v) to �(u), and when e; e

0

2 E(T

3

) are distint, the orresponding paths

�(e); �(e

0

) are edge-disjoint. Consequently, p-Bernoulli perolation on T an be pulled

bak via � to a bond perolation ! on T

3

in whih the events fe 2 !g (e 2 E(T

3

)) are

mutually independent. Moreover, P[e 2 !℄ > 1�k(1�p), where k is the maximum length

of a path �(e

0

), e

0

2 E(T

3

). Consequently, ! dominates

�

1 � k(1 � p)

�

-Bernoulli bond

perolation !

0

on T

3

. By Theorem 3.5, when 3

�

1 � k(1 � p)

�

> 2, there is with positive

probability, and therefore a.s., a subgraph !

00

� !

0

with �

E

(!

00

) > 0. Now �(!

00

) is the

required subgraph of !.

x4. Speed and Transiene.

In this setion, we prove that in many ases, simple random walk on the in�nite

omponents of invariant perolation on a nonamenable transitive graph G has positive

speed.

Let ! be a perolation on G. It will be useful to onsider delayed simple random

walk Z = Z

!

on !, de�ned as follows. Set Z(0) := o, where o 2 V (G) is some �xed base

point. If n > 0, onditioned on hZ(0); : : : ; Z(n)i and !, let Z

0

(n+1) be hosen from Z(n)

and its neighbors in E(G) with equal probability. Set Z(n + 1) := Z

0

(n + 1) if the edge

[Z(n); Z

0

(n+ 1)℄ belongs to !; otherwise, let Z(n+ 1) := Z(n).

For any sequene hz(0); z(1); : : :i, let Sz be the shifted sequene hSz(0);Sz(1); : : :i

de�ned by Sz(n) := z(n+ 1) and let S(z; !) := (Sz; !). For  2 �, we set

(w; !) := (w; !) ;

where (w)(n) := 

�

w(n)

�

.

The following lemma is from Lyons and Shramm (1998); it generalizes similar lemmas

in Lyons and Peres (1998) and in H�aggstr�om (1997).
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Lemma 4.1. (Stationarity of Random Walk) Let G be a graph with a transitive

unimodular losed automorphism group � � Aut(G). Let o 2 V (G) be some base point.

Let (�; 2

E(G)

) be a �-invariant perolation proess on G; let ! denote the perolation on-

�guration. Let b�

o

be the joint law of ! and delayed simple random walk on !, as de�ned

above. Then b�

o

[A℄ = b�

o

[SA℄ for every �-invariant A � V

Z

� 
. In other words, the

restrition of b�

o

to the �-invariant �-�eld is S-stationary.

Let �

0

be the measure on subgraphs ! � G whose Radon-Nikodym derivative with

respet to � is deg

!

o=E

�

[deg

!

o℄. Let b�

0

o

be the joint law of ! and simple random walk

(non-delayed) on ! starting at o. Then the restrition of b�

0

o

to the �-invariant �-�eld is

S-stationary.

Lemma 4.2. (Speed Exists and is Not Random) Let G be a graph with a transitive

unimodular losed automorphism group � � Aut(G). Let ! be a �-invariant perolation

on G. Then the speed � of delayed simple random walk on ! exists and is an !-measurable

random variable (possibly zero).

If ! has indistinguishable omponents and is ergodi, then, onditioned on jK(o)j =1,

� is equal a.s. to a onstant.

The same statements hold for simple random walk in plae of delayed simple random

walk.

Proof. Let f

n

(

^

Z) := dist

G

(o; Z(n)). Then

f

n+m

(

^

Z) 6 f

n

(

^

Z) + f

m

(S

n

^

Z)

by the triangle inequality. Consequently, the Subadditive Ergodi Theorem shows that the

speed

� = �(

^

Z) = lim

n!1

f

n

(

^

Z)=n = lim

n!1

dist

G

�

o; Z(n)

�

=n

exists a.s.

To show that the speed �(

^

Z) depends only on ! and not on the path of the random

walk a.s., de�ne F (

^

Z) to be the variane, onditioned on !, of the speed of an independent

random walk starting from Z(0). By L�evy's 0-1 Law, F (S

n

^

Z) onverges to zero a.s. But

by stationarity, the distribution of F (S

n

^

Z) is the same for all n. Hene, it is 0.

The statement onerning indistinguishable omponents is a onsequene of the de�-

nition.

The same proof applies to simple random walk sine the measures � and �

0

of

Lemma 4.1 are mutually absolutely ontinuous.

Our main tool to onvert the geometri information of Setion 3 to probabilisti in-

formation is the following:
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Theorem 4.3. (Speed When There is a Subgraph with �

E

> 0) Let G be a graph

with a transitive unimodular losed automorphism group � � Aut(G). Let !

0

� ! be

perolations on G suh that the distribution of the pair (!

0

; !) is �-invariant. Suppose that

!

0

6= ; and �

E

(!

0

) > 0 a.s. Then simple random walk on ! has positive speed a.s. on the

event that K(o) \ !

0

6= ;.

Proof. Let V

�

be the verties of !

0

that are in the !-omponent of o, and let Z be delayed

simple random walk on ! starting at o. Note that given !, Z is reversible with uniform

stationary distribution. Given ! and !

0

with o 2 !

0

, there is an indued walk Z

�

on

V

�

de�ned as follows. Set t

0

:= 0. Sine the transformed

^

Z is stationary (Lemma 4.1),

the Poinar�e reurrene theorem (see, e.g., Petersen (1983), p. 34) shows that onditioned

on o 2 !

0

, there is a.s. some �rst time t

1

> 0 suh that Z(t

1

) 2 !

0

. (Stritly speaking,

Lemma 4.1 does not apply when there is an extra \senery" !

0

, but the lemma extends

easily to this situation; see Lyons and Shramm (1998).) Indutively, for k > 0, let t

k

be

the �rst time t > t

k�1

suh that Z(t) 2 !

0

. De�ne Z

�

(k) := Z(t

k

). Then given ! and !

0

with o 2 !

0

, Z

�

is just the Markov hain Z indued on the states V

�

. In partiular, it is

reversible with the same stationary distribution on V

�

, i.e., uniform.

We laim that, given ! and !

0

with o 2 !

0

, the spetral radius �(Z

�

) is less than 1

a.s. Given two verties u

�

; v

�

2 V

�

, let p

�

(u

�

; v

�

) denote the transition probability of the

Markov hain Z

�

. Let G

�

be the graph whose verties are V

�

and whose edges [u

�

; v

�

℄ are

those pairs with p

�

(u

�

; v

�

) > 0. Note that there is some positive lower bound  > 0 for

p

�

(u

�

; v

�

) whenever [u

�

; v

�

℄ 2 !

0

. Consequently,

inf

(

1

jK

�

j

X

e

�

2�

E

K

�

p

�

(e

�

) : K

�

� V (G

�

) is �nite

)

> �

E

(!

0

) > 0 :

Sine the stationary distribution is uniform, this implies that �(Z

�

) < 1 a.s. (see, e.g.,

Kaimanovih (1992)), as laimed.

Fix any �

0

< 1 suh that �(Z

�

) < �

0

with positive probability, and let A be the event

that o 2 !

0

and �(Z

�

) < �

0

. Then, for some � < 1 and all v 2 V (G),

P

�

Z(t

k

) = v

�

�

!; !

0

�

6 �

k

on A ;

whih gives

P

�

Z(t

k

) = v

�

�

A

�

6 �

k

: (4:1)

Sine the number of verties v 2 V (G) with dist

G

(o; v) < r is bounded by (deg

G

o)

r+1

, by

summing (4.1) over all suh verties, we get

P

h

dist

G

�

o; Z(t

k

)

�

< r

�

�

A

i

6 �

k

(deg

G

o)

r+1

:
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Let � be suh that (deg

G

o)

�

= 1=�, and hoose r := (�=2)k � 1. Then

P

h

dist

G

�

o; Z(t

k

)

�

< �k=2� 1

�

�

A

i

6 �

k=2

: (4:2)

By the Borel-Cantelli lemma, it follows that

lim inf

k!1

dist

G

�

o; Z(t

k

)

�

=k > �=2

a.s. on A. Also, the ergodi theorem ensures that lim t

k

=k <1 a.s., whene

lim inf

k!1

dist

G

�

o; Z(t

k

)

�

=t

k

> 0

a.s. on A and hene a.s. when K(o) \ !

0

6= ;. This shows that the speed of Z is positive

a.s. when K(o) \ !

0

6= ; by Lemma 4.2. By the obvious oupling of delayed random walk

and simple random walk, it follows that also the speed of simple random walk is positive

a.s. when K(o) \ !

0

6= ;.

Theorem 4.4. (Speed) Let G be a graph with a transitive unimodular losed automor-

phism group � � Aut(G), and suppose that �

E

(G) > 0. Let ! be a �-invariant perolation

on G. Then simple random walk on some in�nite luster of ! has positive speed with

positive probability in eah of the following ases:

(i) ! is Bernoulli perolation that has in�nite omponents a.s.;

(ii) ! has a unique in�nite luster a.s.;

(iii) ! has a luster with at least three ends with positive probability;

(iv) E[deg

!

o j o 2 !℄ > �(G).

Proof. This follows from Theorems 3.9 and 4.3.

In ase G is a tree, (iii) and (iv) of this theorem were established by H�aggstr�om (1997).

In ase the perolation is ergodi and has indistinguishable omponents, like Bernoulli

perolation, we have the stronger onlusion that simple random walk has positive speed

on every in�nite omponent a.s.

Remark 4.5. It does not suÆe in Theorem 4.4 to drop in (i) the assumption that ! is

Bernoulli. For example, if ! is the wired uniform spanning forest (see Setion 5), then

every omponent is a tree with one end (BLPS (1998)), whene is reurrent.

In order to derive additional onsequenes of Theorem 4.4, we now extend Theo-

rem 1.6:
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Lemma 4.6. Let G be a graph with a transitive unimodular losed automorphism group

� � Aut(G). Let ! be a �-invariant bond perolation on G. The following are equivalent:

(i) the speed of simple random walk X(t) on K(o) is zero a.s. in the G-metri:

lim

t!1

dist

G

�

X(t)

�

=t = 0 ;

(ii) the speed of simple random walk X(t) on K(o) is zero a.s. in the !-metri:

lim

t!1

dist

!

�

X(t)

�

=t = 0 ;

(iii) the asymptoti entropy of simple random walk on K(o) is zero a.s.;

(iv) there are no nononstant bounded harmoni funtions on K(o) a.s.

Proof. Beause of Lemma 4.1, the equivalene of (iii) and (iv) follows from Kaimanovih

and Woess (1998). Clearly, (ii) implies (i). We show that (i) implies (iii) implies (ii).

Assume (i). Fix ! suh that the speed on K(o) is zero. Let �

!

t

denote the law of X(t)

on K(o). Let B

r

denote the ball of radius br in G entered at o. Given � > 0, hoose

t

0

large enough that for all t > t

0

, we have �

!

t

(B

t�

) > 1 � �. Let D := deg

G

o. Then for

t > t

0

, onavity of log gives the inequality

X

x2B

t�

��

!

t

(x) log�

!

t

(x) 6 �

!

t

(B

t�

) log

�

jB

t�

j=�

!

t

(B

t�

)

�

6 log

�

D

t�

=(1� �)

�

:

Similarly,

X

x=2B

t�

��

!

t

(x) log�

!

t

(x) =

X

x2B

t

�B

t�

��

!

t

(x) log�

!

t

(x) 6 � log(D

t

=�) :

Sine this holds for all t > t

0

and � was arbitrary, (iii) follows.

Now assume that (ii) does not hold. Let A

`

be the event that the speed is at least `,

and note thatA

`

is ! measurable, by Lemma 4.2. Then by the famous bound of Varopoulos

(1985) and Carne (1985), we have

lim

t!1

�

1

t

log�

!

t

�

X(t)

�

> `

2

=2

on A

`

. In other words, (iii) does not hold.

Corollary 4.7. Let G be a graph with a transitive unimodular losed automorphism group

� � Aut(G). Suppose that G is nonamenable. Let ! be any �-invariant, ergodi, insertion
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tolerant perolation that has more than one in�nite omponent a.s. Then every in�nite

omponent of ! admits nononstant bounded harmoni Dirihlet funtions.

Proof. By Theorem 2.2 and ergodiity, it suÆes to establish the existene of nononstant

bounded harmoni Dirihlet funtions on K(o) with positive probability.

We know from insertion tolerane and ergodiity that there are in�nitely many in�nite

omponents a.s. By insertion tolerane again, we also have that some, hene all, in�nite

omponents have at least three ends. By Theorem 4.4, all in�nite omponents are transient.

By insertion tolerane, it follows that with positive probability, K(o) has a �nite subset K

whose removal breaks K(o) into at least two transient omponents. In suh a ase, K(o)

has nononstant bounded harmoni Dirihlet funtions (e.g., the probability that a simple

random walk starting at v eventually stays in a �xed transient omponent of K(o)�K is

suh, as a funtion of v). See Soardi (1994), Theorems 4.20 and 3.73. This establishes our

goal.

In order to prove transiene in ertain amenable ases, we shall use:

Lemma 4.8. (Transiene of Big Trees) If T is any loally �nite tree with p



(T ) < 1,

then simple random walk is transient on T .

Proof. By Lyons (1990), the branhing number of T is 1=p



(T ) and this is the ritial value

for transiene of biased random walk on T . Sine this is larger than 1, it follows that, in

partiular, simple random walk is transient.

For a Cayley graph G, let �

n

be the number of elements of G at distane n from o.

It is evident that h�

n

i is submultipliative, whene the growth rate gr(G) := lim �

1=n

n

=

inf �

1=n

n

exists.

Theorem 4.9. (Transiene Above the Reiproal Growth Rate) Let G be a

Cayley graph with gr(G) > 1, and let p 2 (1=gr(G); 1). Then simple random walk is

transient on every in�nite luster of p-Bernoulli perolation a.s.

Proof. Let ! be p-Bernoulli perolation. By ergodiity and indistinguishability of ompo-

nents, it suÆes to prove transiene of K(o) with positive probability. As shown in Lyons

(1995), there is a tree T � G with p



(T ) = 1=gr(G). This means that the omponent !

0

of

o in ! \ T has p



(!

0

) < 1 with positive probability, whene by Lemma 4.8, ! is transient

with positive probability. By Rayleigh monotoniity, the same is true of the omponent of

o in G.

The following onjeture would imply Conjeture 1.5 (by taking ! := G and using

Lemma 4.6):
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Conjeture 4.10. (Monotoniity of Entropy) Let G be a graph with a transitive

unimodular losed automorphism group � � Aut(G). Let ! and !

0

be two �-invariant

perolations on G suh that !

0

� !. Then the asymptoti entropy of delayed simple random

walk on !

0

is at most the asymptoti entropy of delayed simple random walk on !.

The following onjeture for �nite graphs an be shown to imply Conjeture 4.10.

Conjeture 4.11. Let G be a �nite graph and C : E(G)! R

+

. Consider the ontinuous-

time (reversible) Markov hain hX(t)i on V (G) whose transition rate from u to v is C(u; v).

Let h

t

(v; C) be the entropy of X(t) when X(0) = v and h

t

(C) :=

P

v2V (G)

h

t

(v; C). Then

for all t, given two funtions C

0

and C with C

0

(e) 6 C(e) for all e 2 E(G), we have

h

t

(C

0

) 6 h

t

(C).

Here is an equivalent formulation of this onjeture. Given a matrix B, let H(B) be

the sum of �b

i;j

log b

i;j

over all entries b

i;j

of the matrix. Let A

n

be the spae of n � n

real symmetri matries with non-negative o�-diagonal terms and with eah row summing

to zero. Then a reformulation of Conjeture 4.11 is that H(expA) is (weakly) monotone

inreasing in the o�-diagonal entries of A, where A ranges in A

n

.

x5. Harmoni Dirihlet Funtions.

In this setion, we study the existene of nononstant harmoni Dirihlet funtions on

perolation omponents.

We �rst desribe the spanning forest measures we use. A spanning tree of a �nite

graph is a subgraph without yles that is onneted and inludes every vertex of the graph.

Motivated by some questions of R. Lyons, Pemantle (1991) showed that if an in�nite graph

G is exhausted by �nite subgraphs G

n

, then the uniform distributions on the spanning

trees of G

n

onverge weakly to a measure supported on spanning forests* of G. We all

this the free uniform spanning forest (FSF), sine there is another natural onstrution

where the exterior of G

n

is identi�ed to a single vertex (\wired") before passing to the limit.

This seond onstrution, whih we all the wired uniform spanning forest (WSF), was

impliit in Pemantle's paper and was made expliit by H�aggstr�om (1995). Both measures

are onentrated on the set of forests, all of whose trees are in�nite. See BLPS (1998) or

Lyons (1998) for an exposition and more details. For onveniene, we will use the symbols

FSF and WSF also for the uniform measure on spanning trees of a �nite graph. For the

* In graph theory, \spanning forest" usually means a maximal subgraph without yles, i.e., a spanning

tree in eah onneted omponent. We mean, instead, a subgraph without yles that ontains every

vertex.
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proof of Theorem 5.7, we shall have need of one more measure on in�nite transient graphs,

the oriented wired spanning forest, denoted OWSF. We refer to BLPS (1998) for its

de�nition. For our purposes, it is enough to know that it is the same as WSF, exept that

eah edge in the forest is oriented in suh a way that there is exatly one outgoing edge

from eah vertex. All these measures, FSF, WSF, and OWSF, are invariant under Aut(G).

We typially denote the random spanning forest by F.

The following three lemmas are taken from BLPS (1998):

Lemma 5.1. (O

HD

Criterion) For any (onneted) graph G, we have FSF = WSF i�

G 2 O

HD

.

Write E

G

WSF

, E

G

FSF

for expetation with respet to the random spanning forests on G.

Lemma 5.2. (Domination) For any graph G, we have E

G

FSF

[deg

F

v℄ > E

G

WSF

[deg

F

v℄ for

every v 2 V , with equality for every v i� FSF =WSF.

Lemma 5.3. (WSF-Expeted Degree) In any in�nite transitive graph G, the WSF-

expeted degree of every vertex is 2.

The following lemma is from BLPS (1999):

Lemma 5.4. (Small Trees and Expeted Degree) Let � be a losed unimodular

subgroup of Aut(G) that ats transitively on G and let ! be the on�guration of a �-

invariant perolation on G. Fix a vertex o. Let F

o

be the event that K(o) is an in�nite

tree with �nitely many ends, and let F

0

o

be the event that K(o) is a �nite tree.

(i) If P [F

o

℄ > 0, then E

�

D(o)

�

�

F

o

�

= 2.

(ii) If P [F

0

o

℄ > 0, then E

�

D(o)

�

�

F

0

o

�

< 2.

Fix any base point o 2 V (G) and let A

o

be the event that K(o) is in�nite. Let E

refer to the probability measure of the perolation. Extending the notation above, we

write E

!

FSF

and E

!

WSF

for expetation with respet to the free and wired spanning forest

measures on ! (given !).

Theorem 5.5. (O

HD

Stability when Amenable) Let G be an amenable graph with

a transitive automorphism group � � Aut(G) and ! a �-invariant perolation. Then a.s.

every omponent of ! is in O

HD

.

Proof. We show that the measures FSF and WSF oinide on K(o) a.s. given A

o

. By the

argument in Burton and Keane (1989), a.s. no omponent in any invariant perolation on

G an have more than 2 ends. Applying this to the perolations given by taking the FSF
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or the WSF of eah omponent (independently for eah omponent) of ! in onjuntion

with Lemma 5.4, we obtain that

E

�

E

!

WSF

[deg

F

o℄

�

�

A

o

�

= 2 = E

�

E

!

FSF

[deg

F

o℄

�

�

A

o

�

:

Hene, the result follows from Lemma 5.2.

Lemma 5.6. (Expeted Degree for Reurrent Trees) Let G be a graph with a

transitive unimodular losed automorphism group � � Aut(G). Let ! be a �-invariant

random forest in G. Suppose that a.s. all omponents of ! are reurrent. Then E[deg

!

o℄ 6

2.

Proof. This follows from Lemmas 3.7, 5.4, and 4.8.

Theorem 5.7. (:O

HD

Stability when High Marginals) Let G be a graph with a

transitive unimodular losed automorphism group � � Aut(G). If G =2 O

HD

, then there

is some p

0

< 1 suh that for every �-invariant bond perolation ! with inf

e2E

P[e 2 !℄ >

p

0

, some omponent of ! is not in O

HD

with positive probability. If ! is ergodi and

has indistinguishable omponents, then the same hypotheses imply that a.s., no in�nite

omponent of ! is in O

HD

.

Proof. We show that p

0

:= 2=E

G

FSF

[deg

F

o℄ works.

First, p

0

< 1 by Lemmas 5.1, 5.2, and 5.3. Let T

o

be the event that K(o), the

omponent of o in !, is transient. We laim that

P[T

o

℄ > 0 (5:1)

and

E

�

E

!

WSF

[deg

F

o℄

�

�

T

o

�

= 2 < E

�

E

!

FSF

[deg

F

o℄

�

�

T

o

�

: (5:2)

This suÆes for the �rst statement by Lemma 5.2. The seond statement then follows by

ergodiity.

Let F

0

be the union of omponents of F that are ontained in reurrent omponents

of !. Lemma 5.6 implies that if P[T

o

℄ < 1, then E

!

FSF

[deg

F

o j o 2 F

0

℄ 6 2, whih means

E

!

FSF

[deg

F

o j :T

o

℄ 6 2. Consequently, (5.1) and the inequality in (5.2) will be established

one we prove

E

�

E

!

FSF

[deg

F

o℄

�

> p

0

E

G

FSF

[deg

F

o℄ = 2 :

Now

E

!

FSF

[deg

F

o℄ =

X

x�o

P

!

FSF

�

[o; x℄ 2 F

�

=

X

x�o

[o;x℄2!

P

!

FSF

�

[o; x℄ 2 F

�

: (5:3)
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Let B

n

be the ball of radius n entered at o in G. By Kirhho�'s theorem and Rayleigh's

monotoniity priniple (see Lyons and Peres (1998) or BLPS (1998)), for eah n and eah

e 2 !,

P

!\B

n

FSF

[e 2 F℄ > P

B

n

FSF

[e 2 F℄ :

Taking a limit as n!1, we obtain

P

!

FSF

[e 2 F℄ > P

FSF

[e 2 F℄

by the de�nition of the FSF, whene (5.3) gives

E

!

FSF

[deg

F

o℄ >

X

x�o

[o;x℄2!

P

G

FSF

[e 2 F℄ :

Taking expetation, we obtain

E

�

E

!

FSF

[deg

F

o℄

�

> E

"

X

x�o

1

[o;x℄2!

P

G

FSF

�

[o; x℄ 2 F

�

#

=

X

x�o

P

�

[o; x℄ 2 !

�

P

G

FSF

�

[o; x℄ 2 F

�

>

X

x�o

p

0

P

G

FSF

�

[o; x℄ 2 F

�

= p

0

E

G

FSF

[deg

F

o℄ ;

as desired.

For the equality in (5.2), we use the oriented wired spanning forest, OWSF, on eah

transient omponent of !, hosen independently on eah omponent. Let '(x; y) be the

probability that (K(x) is transient and that) [x; y℄ belongs to the oriented wired spanning

forest of !. Sine OWSF is �-invariant, ' is invariant under the diagonal ation of �,

whene the Mass-Transport Priniple says that

X

x

'(o; x) =

X

x

'(x; o) :

The left-hand side is the expeted outdegree of o, whih is P[T

o

℄. Hene, the right-hand

side, the expeted in-degree of o, is also P[T

o

℄. This shows that E

�

E

!

WSF

[deg

F

o℄

�

�

T

o

�

= 2.

Example 5.8. It does not suÆe in Theorem 5.7 to assume merely that the omponents

of ! are in�nite. For example, if ! is given by the WSF, then every omponent is a tree
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with one end (BLPS (1998)), whene is reurrent and in O

HD

. However, as stated in

Conjeture 1.11, we believe that this is suÆient for Bernoulli perolation.

Example 5.9. The hypothesis that � be unimodular annot be omitted in Theorem 5.7.

For example, let G be a regular tree of degree 3 and � be an end of G. Let � be the group

of automorphisms of G that �x �. Let H

n

, n 2 Z, be the horoyles with respet to �.

(More preisely, �x a base point o 2 V , let hv

m

i be a sequene onverging to �. Then a

vertex v is in H

n

i� dist(v

m

; v)� dist(v

m

; o) = n for all but �nitely many m.) To de�ne

!, we �rst de�ne a perolation �. Given any p

0

< 1, for eah n independently, let all the

edges joining H

n

to H

n+1

be in � with probability p

0

. Eah omponent of � is a �nite

tree a.s. For eah omponent K of �, let n(K) be the largest n suh that K \ H

n

6= ;.

Choose an edge joining K \H

n(K)

to H

n(K)+1

at random uniformly among all suh edges

and independently for eah K; let �

0

be the set of the hosen edges (over all K). Now let

! := � [ �

0

. Eah omponent of ! is a tree with exatly one end, so is reurrent and in

O

HD

. Yet G =2 O

HD

.

Question 5.10. Does Theorem 5.7 hold for Bernoulli perolation when the unimodularity

assumption is omitted?

x6. Anhored Expansion and Stability.

Cheeger's inequality relates the isoperimetri onstant, whih is geometri, to the

spetral radius, whih governs the exponential deay of return probabilities of simple ran-

dom walk or Brownian motion. We disuss a geometri onstant that we hope an replae

the isoperimetri onstant in graphs and manifolds that are not uniformly expanding.

Consider, for example, the hyperboli spae H

n

and perturb the metri on an ex-

tremely sparse sequene of balls with radii growing very slowly to in�nity; for instane,

pik the enter of the n-th ball at distane e

n

from a �xed origin, and let logn be its radius.

If we modify the metri inside these balls so that it is at on sub-balls of half the radius,

we get a manifold with zero isoperimetri onstant. Many properties of M (suh as the

existene of nononstant bounded harmoni funtions or the speed of Brownian motion),

are, however, unhanged from H

n

.

Definition 6.1. Fix some base point o 2 G. Call

�

�

E

(G) := lim

n!1

inf

�

j�

E

Sj

jSj

: o 2 S � V (G); S is onneted; n 6 jSj <1

�
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the anhored expansion onstant of G. Note that �

�

E

(G) is independent of the hoie

of the base point o and that �

�

E

(G) > �

E

(G).

By attahing a sequene of paths of length 1; 2; : : : at a very sparse sequene of verties

of a binary tree, we get an example of a graph G for whih �

�

E

(G) > �

E

(G) = 0.

Isoperimetri quantities suh as this, where the set S is required to ontain a �xed

vertex o, were introdued in greater generality by Thomassen (1992). He used the word

\rooted" instead of \anhored".

Benjamini and Shramm (1996) show that �

E

(G) is related to p



(G); in fat, their

proof of Thm. 2 shows that p



(G) 6 (1 + �

�

E

(G))

�1

.

When the isoperimetri onstant �

E

(G) of a bounded degree (not neessarily tran-

sitive) graph is positive, Dodziuk's (1984) disrete version of Cheeger's inequality gives

an upper bound � < 1 for the spetral radius �(G), where � depends on �

E

(G) and the

maximum degree in G. In turn, this implies that the lim inf speed �

�

of simple random

walk X starting at a base point o 2 V (G) is positive almost surely.

By analogy, we make the following

Conjeture 6.2. Let G be a bounded degree graph with �

�

E

(G) > 0. Then �

�

> 0 with

positive probability.

It might even be the ase that �

�

E

(G) > 0 implies �

�

> 0 a.s. In fat, after seeing an

earlier draft of this paper, Virag (1998) proved that the limsup speed is positive when G

is a tree of bounded degree with �

�

E

(G) > 0. He also has shown that whenever �

�

E

(G) > 0,

there is a subgraph G

0

of G with �

E

(G

0

) > 0.

Thomassen (1992) has shown that if a graph satis�es a weaker type of anhored

isoperimetri inequality, then it is transient; Conjeture 6.2 has a stronger hypothesis and

a stronger onlusion.

The motivation for looking at �

�

E

(G) is that �

�

E

is more stable than �

E

under random

perturbations of G. For example, let G be an in�nite graph of bounded degree and pik

a probability distribution P on the stritly positive integers. Replae eah edge e 2 G by

a path of length L

e

, where L

e

is distributed aording to P, and all L

e

(e 2 E(G)) are

independent. Let G

P

denote the random graph obtained in this way. If P has a bounded

support, then �

E

(G) > 0 implies �

E

�

G

P

�

> 0, while if P has unbounded support then,

almost surely, �

E

�

G

P

�

= 0.

Question 6.3. Does �

E

(G) > 0 imply that �

�

E

�

G

P

�

> 0 a.s. when P is the geometri

distribution on the positive integers? What about other distributions P with �nite mean?

Can this be settled in the ase where G is a regular tree?
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It is not hard to onstrut P and G suh that �

E

(G) > 0 while �

�

E

�

G

P

�

= 0 a.s. (Take

G to be a binary tree and P to have a fat tail.)

Lyons, Pemantle, and Peres (1995) proved that simple random walk on a random

perturbation of any regular tree, with P the geometri distribution, has positive speed

almost surely. More generally, simple random walk has positive speed on every superritial

Galton-Watson tree a.s. given nonextintion.

Question 6.4. Is �

�

E

(T ) > 0 a.s. for superritial Galton-Watson trees given nonextin-

tion?

Question 6.5. If �

E

(G) > 0 and ! is Bernoulli perolation on G, must every in�nite

omponent K of ! have �

�

E

(K) > 0 a.s.?

After seeing an earlier draft of this paper, answers to the last three questions have

largely been provided by Chen and Peres (1998). That is, Questions 6.3 and 6.4 were an-

swered ompletely and Question 6.5 was answered aÆrmatively for p-Bernoulli perolation

when p is suÆiently lose to 1.
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