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ORDINAL RANKINGS ON MEASURES
ANNIHILATING THIN SETS

ALEXANDER S. KECHRIS AND RUSSELL LYONS

ABSTRACT. We assign a countable ordinal number to each probability mea-

sure which annihilates all H-sets. The descriptive-set theoretic structure of

this assignment allows us to show that this class of measures is coanalytic

non-Borel. In addition, it allows us to quantify the failure of Rajchman's con-

jecture. Similar results are obtained for measures annihilating Dirichlet sets.

A closet subset E of the unit circle T = R/Z is called an H-set if there exists a

sequence {n^} of positive integers tending to oo and an interval (i.e., a nonempty

open arc) 7 C T such that for all k and all x € E, n^x ^ I. These sets play a

fundamental role as examples of sets of uniqueness for trigonometric series [KL;

Z, Chapters IX, XII]. A (Borel) probability measure fj, on T is called a Rajchman

measure if fi(n) —* 0 as \n\ —> oo, where jx(n) = fTe(—nx)dn(x), e(x) = e2wix.

We denote by R the class of such measures. These measures have also been very

important to the study of sets of uniqueness. In particular, every Rajchman measure

annihilates every set of uniqueness, hence every H-set. After establishing these

relationships [Rl, R2], Rajchman conjectured that, in fact, the only measures

which annihilate all //"-sets are those in R. This, however, is false [LI, L2, L3,

L5]. Here, we shall quantify how distant Rajchman's conjecture is from the truth.

Given a class W of closed subsets of T, denote by <&?± the class of probability

measures on T which annihilate all sets in W: /i € W1- o VE € & {l^{E) = 0).

Thus R § H-1, where H denotes the class of //-sets. Denote by PROB(T) the

compact, metrizable space of (Borel) probability measures on T with the weak*

topology. It is easy to check that R is a Borel, in fact n° (i.e., F^s), subset of

this space. We establish in §3 that H-1 is a nj (i.e., coanalytic) but not Borel

subset of PROB(T). This is the first example of a natural class of measures of such

complexity known to the authors and it highlights the distinction between R and

H±.
Our method of proof actually provides quite a bit of further information on

the relationship between R and H-1. In §1, we assign to each \x £ H± a countable

ordinal number h(fi) which measures in some sense the complexity of the verification

that ii annihilates all //-sets. We show that h has certain definability properties,

namely, it is a nj-rank (see [KL]). In §3, using the techniques developed in [L3 and

L4], we prove that the rank h is unbounded in wi, the first uncountable ordinal;
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748 A. S. KECHRIS AND RUSSELL LYONS

that is, Vq < (Jj1 3(1 6 //x {h(/i) > a). It follows from the Boundedness Theorem

for nj-ranks (see [KL, V.l]) that Hx is not Borel.

Denote by //x the class of all /i € //x with h(n) < a. Thus //f C H£ C

• • • C H± C • • • C fi-J-... (a < /? < Wl), //x - Ua<Wl #* and //x $ H± for

each a < wi, so that {//„ } is a stratification of //x in a hierarchy of increasing

complexity. The "simplest" measures in //x are those in //x. In §2, we prove that

these include the Rajchman measures: R C //x. This bound gives quantitative

meaning to the statement that R is only a small part of //x. We also show that

another canonical class of measures in //x, the so-called quasisymmetric measures,

belong to //x . We do not know if they belong to //x. An interesting consequence of

these upper bounds is that the techniques in [L3] for proving measures to be in //x

are demonstrated to be more powerful in a quantitative sense than the traditional

techniques used (and amplified) in §2.

We conclude this paper by establishing, in §4, analogous results for the class

£>x of probability measures annihilating all Dirichlet sets. (Recall that a closed set

E C T is a Dirichlet set [LP] if there is a sequence of positive integers {rik} tending

to oo such that supl€E ||?2fc3;|| —► 0, where ||x|| = dist(z, Z).) £>x has been studied

before under the name S?i (see [HMP, pp. 212-215, 242-247]).

NOTE. After completion of this manuscript, we learned that B. Host, A. Lou-

veau, and F. Parreau established several months earlier than us that £>x is not

Borel; they used the characterization of Dx given on p. 243 of [HMP]. Their work

is unpublished.

1. A nj-rank on H±. Let K(T) be the space of closed subsets of T with the

standard Hausdorff metric. This is a compact space. As a subset of K(T), it is

verified in [KL, IV.2.7] that H is E^ (i.e., G6a).

We next compute the following upper bound for the complexity of //x.

PROPOSITION 1.1.   The set H3- is 11} (i.e., coanalytic) in the space PROB(T).

PROOF. Since H is Borel and

/J.GH-1 o\/E€ K(T)    [E<EH=> h{E) = 0]

for /i e PROB(T), it is enough to show that the relation

{(/i,£):/ie PROB(T)&£ e K{T)&ii{E) = 0}

is Borel (in fact, Gg) in the space PROB(T) x K(T). Now, if {Vn} is an open basis

for the topology of T which is closed under finite unions, then for \i G PROB(T)

and E € K{T),

fi(E) =0« \/m3n(E C Vn&ifi(T\Vn) > ^—^ J.

Since {E:E C V} is open in K(T) for each open KCT, while {fi: (i{V) > a} is

open in PROB(T) for each a € R and V open in T, the result follows.    □

Our main result is that H2- is not Borel, thus determining exactly the complexity

of//-1.

We will use below notation concerning finite sequences and trees as in [KL, IV. 1].

We denote by N* the set of positive integers. To define our rank h: H1- -»ui,we
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associate first to each pt G PROB(T), each / which is a rational interval in T, and

each e G Q+ = {x G Q: x > 0}, a tree T^e on SeqN* as follows:

T7-£ = {(n0lni,. • •, nk): Vt < k{nt G N*)&Vi < k{nl+1/nt > 2)k

H{{x € T:Vi < fc(n2x £ /)}) > e}.

Notice that if / D /' and £ > e', then T7'£ C T^'6'.

REMARK. The condition "ni+i/n2 > 2", instead of the expected one, "n*+1 >

n,", has the effect of thinning down the trees for normalization purposes. For

example, in Theorem 2.4 below, we obtain that h(fj.) = 1 for Rajchman measures,

rather than h(fi) < ui.

PROPOSITION 1.2. Let u G PROB(T). Then fi e //x o VJ "ie{T^E is well

founded).

PROOF. If for some /, e, T7'£ has an infinite branch n0,ni,ri2,..., then /j,(E) >

e > 0 for E = {x G T:Vi(riiX <£ I)}. As E € //, we have /z ^ //x. Conversely, if

H £ //x, let e G Q+, E E H be such that /x(£^) > e and let 0 < n0 < ni < ■ ■ ■ and

/ be such that rikX £ I for all k G N, x G E. By going to a subsequence, we can

assume that ni+i/rij > 2 for all i. Then (no,ni,... ,nfc) G T7'£ for all A:, i.e., T*'£

is not well founded.    □

For each well-founded tree T, we define its height, ht(T), as follows. First, for

each s G T, define its height in T, ht(s,T), by

ht(s,T) = 0 if s is terminal in T, i.e., has no proper extension in T,

ht(s,T) = sup{ht(SA(2/),T) + l:sA(y) G T)

= sup{ht(«, T) + l:t€T,t^s}    otherwise.

Then let ht(T) = ht(0,T).  (This definition is slightly different from that used in

[KL, V.l], where one defines ht(s,T) = 1 if s is terminal in T.)

For each fj, G Z/x, define the rank function h'(n) — sup{ht(T^,£) +1: / a rational

interval and e G Q+}. Clearly h': H± —► w\. We will show first that h'(n) is always

a limit ordinal, thus of the form w • a for some a < u)\. We will then define h(n)

by h'{fi) =u ■ h{fi).

LEMMA  1.3.   For each fj. G //x, h'(fi) is a limit ordinal.

PROOF. First notice that h'(fj,) > w for all \i G H±. Indeed, given any 0 <

no < n\ < ■ ■ ■ < n/t with ni+i/rii > 2, one can easily find / and e such that

(no,..., nk) G T^,e. To complete the proof, it is enough to show that if /j. G Z/x,

h'(ft) > u ■ a {a > 1), and N G N*, then h'(fj.) >u>-a + N. Since h'{n) > ui ■ a,

there are / and e with ht(T7'£) > u> ■ a. Fix next a sequence 0 < no < • • • < njv-i

with rti+i/rii > 2 and a rational interval /' C / such that /z({a;:Vz < N — 1

{ntx <£ /')} > 1 - t-/2.

We claim that if S = {{n)At eT^-.n > 2nAr_i}u{0}, thenht(5) > u-a. This is

because for some s G T^'e, we have ht(s,T^'e) = uj-a and thus sup{ht(sA(n), T7'£) +

1} = uj-a. Since the supremum is not attained and sA(n)At G T7'£ => (n)At G T7'£,

it follows that ht(S) >u-a.

Now let

T= {(n0,...,n^_i)As:s G 5}.
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Clearly ht(T) > w ■ a + N. We claim that T C T^e/2, thus ht(T7-£) > w ■ a + N

and we are done. Evidently, every element of a sequence (no,..., njv-i)As G S is

at least twice as big as its predecessor. Also, we have

fjt({x: n0x £ I'k ■ ■ • kn^-ix £ I')} > 1 — e/2

and, if (n0,... ,nN-i,nN,... ,nN+m) G T, then

H({x: n^x $. I'k ■ ■ ■ kriN+mX £ I'}

> n{{x: n^x £ Ik ■ ■ ■ knN+mx £ I}) > e.

Therefore

n{{x: nox $. I'k ■ ■ ■ kn,N+mx £ /'}) > e/2

and our proof is complete.    □

As mentioned before, we may now define h(/j.) for n G //x by h'(fj,) — u ■ h(n).

The following fact establishes the basic definability properties of this rank.

PROPOSITIN 1.4.   The rank h: Z/x -+ u)\ is a Ti\-rank on the nj set Hx.

PROOF. Recall that if X is a Polish space, P C X is a n} set in X and ip: P —> wi

is a rank on P, then we say <p is a nj-rank if, letting <p(x) = wi for all x £ P: we

have that the relations

x <"vy «*■ x G PSvp(x) < <p{y),

xK^yoxe Pk<p{x) < <p{y)        («• <p(x) < <p(y))

are n} (as subsets of X2).

A typical example of a n J-rank is the following (see [KL, V.l]): Identifying

trees on SeqN* with their characteristic functions, we can view them as members

of the space 2SeqN' (= {0, l}Se<»N*). Let WF C 2Se<>N* be the set of well-founded

trees on SeqN*. Then WF is n}. Moreover, the rank T i-> ht(T) is a nj-rank on

WF.
Going back to h now, notice that for /z, v G //x, h(fi) < h{u) <$ h'(fj.) < h'{v),

so it is enough to show that h! is a n\-rank on //x. Again let h'(fi) = U\ if fj, £ //x.

Then

fi <*h, v <* n G H±k h'(fi) < ti{v)

o li G H±k V/, e 3J, 6 [ht(T7l£) < ht(T**)]

o /x G //x& V/,£ 3J,<5 [T7'e G WF&ht(T7'£) < ht(T^)]

and

/j<j,c»|je //x& ft'(/i) < fc»

<*/i£ //x& 3J,6 V/,e [T^ G lff& ht(TM7'e) < ht(T^)].

Since n} sets are closed under countable intersections and unions as well as Borel

pre-images and ht is a n J-rank on WF, it is enough to show that for each fixed

pair /,£, the map /i i-> T/-£ is a Borel map from PROB(T) into 2SeqN*. Since

2SeqN* has the product topology, this reduces to showing that for each fixed s =

(no,..., rik) with 2n^ < n,+i, the set

{li G PROB(T): s G T1/} = {fi E PROB(T): n{F) > e},
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where F = f]i=0{x: riiX £ /}, is a Borel set. Since F is closed, let F = f]n Vn, Vn

decreasing and open in T. Then

//(F) > e o Ve' < £ Vn (n{Vn) > e'),

so actually this set is a G« and we are done.    □

2.   Measures of low rank. Let A = {/ G G(T):/ G ll{Z)} with \\f\\A =

||/||;i. For / G A, fj, G fl, and £ > 0, define

A/(/,£)=min|A/>0:  E   |/(n)| < £ 1

and

W (//,£) = mm{N > 0: |n| > /V =^ \fi(n)\ < £>.

We write (Tmf)(x) = f(mx). Thus, ||Tm/|U = ll/IU and N(Tmf,£) = mN(f,e)
for m > 1.

LEMMA 2.1.   For f,ge A and £ > 0,

PROOF.  Denote the terms on the right by A/r and JV2.  If |A: + l\ > Nt + N2,

then \k\ > ATj or |/| > N2. Therefore

E   \Tg(n)\=   E     E A*wo
\n\>N,-rN2 \n\>N,+N2   k+l = n

< E i/(*)tffli+ E i/(*woi<* □
|fc|>AT, |«|>JV2

LEMMA 2.2.  For f,geA, fiER, and

"MK'-wM^toihg))'
we have

\ff-Tngdii-[fdii-g(0)  <£.

PROOF. Indeed, we have

\f f-Tngdfi- f fd»g(0)  = Eff(-r)EA-0A(«r + 0

<E^-r)l|    E   l/H)A(nr + OI+   E   l/(-0A(nr-r/)|l
r*0 (|(|<n/2 |I|>n/2 J

< £

since if |/| < n/2 and r ^ 0, \nr + l\> n/2.    D
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LEMMA 2.3.   IfnGR,feA, 1/(0)1 < 1, H/IU > l,K>2,m1,m2,...,mKe

for 1 < j < K, then

f K
/ Y[Tmifd^-f{0)K  <£.

J   3 = 1

PROOF. Let Fk = n*=i TmJ. We shall show that

(2.1) || Fk+1dii- J Fkdn-f(0)  <-!

for 0 < k < K, where Fo = 1. Multiplying both sides by \f{0)\K~k~1 and adding

over k yields the desired inequality. Now (2.1) will follow if

mt+1>2ma,(^,^),^,_^pi)).

That m/t+i is at least twice the second term follows immediately from the hypoth-

esis. Thus, it suffices to show that

By repeated application of Lemma 2.1, we obtain

~   " " iV(Tmi/' 2hK\\f\\A) +N\T"»f> 2*K\\f\\A)

+N{Tm^2^K\\f\\A)+ "+N{TmJ'mm)

This implies the desired inequality.    D

THEOREM 2.4.   If n G R, then h(n) = 1; i.e., R C //x.

PROOF. We shall show that h'{n) < u>. Let / be a rational interval and £ G Q+.

Choose / G A so that 0 < / < 1, / = 1 on /c, and /(0) < 1. Then \\f\\A > 1 and

1/c < /. Choose K so that f(0)K < e/2 and choose

We claim that ht(T7-£) < L.   Indeed, if (m0,... ,m'L_1) G T7'£, then there is a

subsequence {m;}^=1 of {m'^fSg such that
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Thus

K

fi{x:\/i < L(m-z £ /)} <  / ] J lj.(rn,-x) d/t(z)
^  3=1

< /n/Kz)dMz)</(0)* + !<e,
■^    1

a contradiction.    □

Let us say that a probability measure // on T is quasisymmetric, or // G QS, if

for some C, whenever I\ and I2 are adjacent intervals on T of the same length,

fill < C ■ nh ■

(These measures are related to quasiconformal mappings; see [BA].) Note that

every // G QS is continuous. Examples include Riesz products (for background, see

[K, p. 107])
M = II (1 + Re{ake{nkx)})

k>l

with lim \ak\ < 1, nk+1/nk > 3, and either nk\nk+\ or nk+i/nk —► oo; we omit the

proof. We do not know whether QS C //x, but we now show that QS C //x.

THEOREM 2.5.   QSQH^j.

PROOF. Let n G QS, / C T be a rational interval, and £ G Q+. Denote

T~XI = {x: nx G /}. Then T"1/ consists of n equally spaced intervals separated by

the n intervals of T~lIc\ the ratio of the lengths of adjacent intervals is |/|/|/c| and

therefore the ratio of their //-measures is bounded by a constant, C, independent

of n. It follows that if A is a finite union of intervals, then

fi(AnT-1Ic)<2C'ii(AnT-1I)

for all large n. Let K be such that (2C7(1 + 2C'))K < e. We claim that ht(T7-£) <

w ■ K, which will complete the proof.
Indeed, if ht(T7'£) > ui ■ K, then there exist arbitrarily large m such that

ht((m),T7-£) > u ■ {K - 1). (Note that sAtAuAv G T^£ => tAv G T7'£.) Choose m0

such that

ht((m0),r7'£)>W-(/C-l)

and

H{T~IIC) < 2GV(T-01/).

In a similar fashion, we may find inductively mk (1 < k < K — 1) such that

ht((m0, mi,..., mfc),T7-£) > u ■ (K - 1 - *)

and

(2-2) niEu-i n T-i/c) < 2C'KEk-i n T-i/),

where

i=0
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Now (2.2) implies that

nEk<2C'{fiEk-1-tiEk),

or
2C"

»Ek - TTw,tEk-1-

Therefore
/    2G'    \K

which contradicts the fact that (mo,mi,... ,m^-i) G T7'£.    D

3. Measures of large rank. For each a < u>i, we shall construct a canonical

tree Ta of height a. Let & be the set of strictly increasing maps /: N* —► N*. Any

/ G & induces a map /* on trees in the obvious way. Given a < uj\, p g]0, 1[ and

/ G 9~, we shall construct a measure va,pj G //x with h'-rank at least a. This

shows that //x is not Borel.

Given a tree T, let

{T) = {n:3s (n G s G T)},

where, if s — (n0,ni,... ,nk), we write n G s <=> 3i < k (n = n,), and let (T)c =

N*\(T). Define fn(x) = x2" ■ 22"; note that if x and y are integral powers of 2

and n ^ m, then /n(x) 7^ fm{y)- For each limit ordinal a < wi, choose a bijection

0Q:a -» N.

We construct our canonical trees Ta by induction, beginnning with To = {0}. It

will turn out that (Ta) consists entirely of powers of 2. If T7 have been constructed

for 7 < a, let

J {(22)AS:SG/O*7>}U{0}    if a = 0+1,

0 ~ \ U0<JL(0)T0 if a is a limit.

It is clear that ht(TQ) = a.

Given a set A C N*, define the Bernoulli convolution

^a=   *   \b(0) + i<5(2-")l ,

where 6(x) represents the Dirac measure concentrated at x. For a < oji, p G]0,1[,

/ G SF, we construct preliminary measures fia,pj by induction. Let Ho.pj = S(0)

for all p,/. If /t-y,p,/ have been constructed for all 7 < a, p g]0, 1[, and / G !# ,

define

Ha.pJ = v/P>i°p,/ + (1 ~ V/P)A(/*Ta),

where
(0) (V(l3,y/P,fof0) if 0 = 0+1,

/iQ'p,/_ I    0*   »il3's/PJofga(0))    if « is a limit;

here, and below, we are using the notation (• • •) for subscripts.

Finally, define

ua,pJ = \f'Ta)c * Va,pJ-

The reader should have in mind the following probabilistic interpretation of

va,p,s-   First define i.i.d.   random variables Yn for n > 1 which take the values
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0, 1 each with probability 1/2. For A C N*, let YA = EngA^"2""- Let zp be
independent random variables for 0 < p < 1, independent also of {Fn}, which take

the values 0, 1 with probabilities y/p and 1 — ̂ /p, respectively. We define random

variables Xa,pj by induction. Let XotPj = 0. To define Xa,pj given X^^^g for

7 < a, first let {Xltq>g:^ < a,q G]0,1[,g G ̂ } be independent copies of {XltQtg}

which are also independent of {Zp} and {Yn}. Now define

Xa,pj = (1 - Zp)Xapf + ZpY(f.Ta),

where

x(0) _    i   Xfi.y/Pjofo if Q = /? + 1,

a'P'f     \  E/?<a X(P, y/P, f °fga (0))    if a is a limit.

Finally, define

Wa,p,/ = Xa,p,f + Y(f'Ta)c-

Then the distributions of YA,XaiPj,X^ ,, and WQ,P,/ are \A,fia,p,f,P-a i / and

^a.p./i respectively. One may show by induction that XatPj can be written in the

form

Xa.pJ = 2_^ ̂ ™2
n>l

for some {0, l}-valued random variables Un with Un = 0 if n ^ {f*Ta).

The following proposition shows that /*Ta C Tl/py'p. Combined with Theo-

rem 3.2, this shows that h'(va#j) > a.

PROPOSITION 3.1.  Va<uiVp g]0, 1[ V/ G & Vs G f*Ta

(3-1) Va,p,j{Es) = Ha,pj{Es) > p

and

(3-2) /'a.P./f^/Ta)1) = 1.

u//iere /or ACN*,

EA = |ieT:Vnei4(2n-1i^[§,l[j|.

PROOF. We proceed by induction. Condition (3.2) is easily established, so we

concentrate on (3.1). It is clear that va<pjEs = fia<pjEs. Now (3.1) is trivial

for a = 0, so suppose it holds for all 7 < a. If a = /? + 1 and s G f*Ta, then

s = {f{22))As0 for some s0 G (/ o fo)*T0. Therefore

Ma,p,/(FS) > v/p/i(/?, VP, / o /0)(FS)

> y/PI*<fi, y/P, f o f0)(ES0 n £(((/ o /o)*^)6))

= y/pii(P,y/pJof0)(ES0)     (by (3.2))

> y/Py/P = P

by the inductive hypothesis. On the other hand, if a is a limit and s G f*Ta, then

s € {f ° fga(0))*T0 for some /? < a. Therefore

/VP,/FS > v/paC,/7^ = n/pX/3- >/P./ ° fg«(0))(Es) > P-    □

It remains to prove that ^Q,p,/ G Z/x, for which we use the methods of [L3].
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Theorem 3.2. Vq < wi V»g]0, i[ V/g^" i>QiP)/ g//x.

PROOF. For a sequence {my} C Z, a measure /* G M(T), and measures <rXM G

M(T) (x G T), we shall write {rrij} ~ <rx,M if for all r G Z,

e(-rmjx) —► <Jx,M(r)    weak* in L°°(/z).

According to Theorem 13 of [L3], if rrij —* oo and {rrij} ~ aXi/i, then suppax,M =

T /i-a.e. iff /z annihilates all //-sets based on any subsequence of {rrij}.

By the method of proof of Theorem 16 of [L3], we see that to show that fQ,p,/ G

//x, it is enough to show that

suppcr(x, va,pj) = T    i/a>Pi/-a.e.

when {2ni~lx} ~ a(x,ua^pj) for some increasing sequence {n,} C (f*Ta); in

particular, we can take a > ui. Furthermore, by taking a subsequence, if necessary,

{e(-r2n->-1x)} has weak* limits in L°°(\{f.Ta]C) and L°°(fia^pj) as well, and

o~(x + y,va,Pj) = <r(z,*(fTay) * v{y,P-a,pj)    ^(fTay ®//Q,pJ-a.e. [{x,y)}

(see [L4]). It is easy to calculate that

a(x, X(fTa)') = -*{n:n>2}      a.e.

Hence it suffices to show that 3qy g]0, 1[ such that

(3.3) a(y,fxa,pj) = (l-qy)6(0)+qy8(2-1)    a.e.

Now

(3.4) supp//0,p,/= <      E     an2"":an = 0,1 > ,

[ne(f'Ta) J

whence (3.3) holds for some qy G [0,1]. Now qy — \ A(y.j-Q)-a.e., so it remains to

consider /i^°p,/-

We proceed by induction, beginning with the case of a limit ordinal a, which

includes the possibility that a — oj. Suppose first that {n,} intersects infinitely

many ((/ o fga(0))*T0).  Then we may assume that n3 G ((/ o fga(0l)YT0j) with

{Pj} distinct. Now if qy G {0,1} on a set of positive //^ pj-measure, then by

Theorem 13 of [L3] quoted above, there is an //-set based on a subsequence of

{2nJ-1} of positive p,a ---measure. By relabelling, we take this subsequence to be

the whole sequence. Furthermore, because of (3.4), we conclude that fra^pjE^ > 0

for either a = 0,1, where F<a> = f]]<00 E^\

E(f] = {x:2n'-lxel + [Q,\\}.

But FJa) are n^p ^-independent since {/3j} are distinct. Also,

and

^IfE^ =»{0j,y/pJofgam)(E<1))

>(l-p1/4)A(((/°/ga(/3j))*r/3j))(FJ1)) = (l-p1/4).1.
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Since E^ and Ej are complementary events, it follows that P-ajpjE^ = 0, a

contradiction.

Now in the second case, {n,} intersects only finitely many ((/ o fga(0))*T0).

Here we may then assume that all n3 G ((/ o fga{po))*T0o) for some /?o- We have

a{x + y, p,[°lf) = a{x, ii(0o, y/pj° fga(0o))) * a ( 2/'    *<a /*(/?» VpJ° fga(0)) )
^      0*00 '

a.e.   [(x,2/)] and by the inductive hypothesis, the first term on the right equals

q'xS(0) + (1 - q'x)6(±) with 0 < q'x < 1 a.e. [x\. Hence (3.3) holds with 0 < qx < 1.

Finally, in case a = /? + 1 is a successor ordinal, we have

o-{x, iia,pj) = <t{x, //(/?, y/p,f o /o))    //^ f-a.e.,

whence the desired result follows directly from the inductive hypothesis.    □

4. Measures annihilating Dirichlet sets. Every Dirichlet set is evidently

an //-set: DC//. Thus D1 2 Hx. It turns out that £>x is again n} non-Borel.

The method of proof is similar to that for Z/x, and we shall only outline it here.

First one checks that D is Borel, in fact n° (i.e., G«). Thus, £>x is nj. Given

// G PROB(T) and £ G Q+, we define a tree T£ on Seq(N* x Q+) as follows:

Tt ~ {((no,n>),(rci,ri),---,(rck,nfc)):V2 < k(nl+1 > 2ntkrt+1 < n)

kfi{x G T:Vi < /c(||ni:r|| < rt)} > £>.

Thus, jiED^VE (T£ is well founded). If we define

/l'D(/i)=sup{ht(r£) + l:£GQ+},

then h'D(fj.) is a limit ordinal, w ■ //£>(//). One proves as before that ho'- D1- —♦ to\ is

a n}-rank on Dx. Note that h > ho, so that all measures of h-rank one are also

of /irj-rank one.

We now construct measures of arbitrarily large /irj-rank. Given -4CN*, denote

Ai = {A; G N: 3n G A n < k < 2n}.

We define tQiPj by induction, using the notation of §3: let io,p,/ = 6(0) and

Ta,p,f = y/PT*lj + (1 ~ v^)A(/T„)2>

where
(0) (T{p,y/p,fof0) ifa = p+l,

Ta'P'f ~ I  /9*Qr^'V/P'/%a(/9))    if a is a limit.

Now set r)a<pj = )>((fTa)2)c * Ta,pJ- We claim that ?/Q,p,/ G £>x and h'D(r)atPj) >

a.

One first shows that if s G f*Ta, then

Va,p,f{x G T:Vn G s 2n~1x G [0,2"n[} > p.

Next, notice that // G Dx iff aXt)i ̂  <5(0) //-a.e. whenever {rrij} ~ (j.^ (see [L4]).

As before,

o-(a: + y,r?a,P,/) = <r(x, A(/.T(i)c) *a{y,TaiPj)    a.e. [(x,j/)].
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Suppose that the left-hand side is 6(0) on a set of positive measure. Then both

members of the right-hand side are Dirac measures on sets of positive measure

(since both are probability measures). Also, X(f*Ta)c is monotrochic (see the proof

of Proposition 6.4.5, p. 173, of [GM]), whence if a(x, ^(fTa)c) is a Dirac measure

on a set of positive A(f~Ta)c-measure and we denote \{x) = {a(x^(f'Ta)c))A{^),

then \x{x)\ = 1 A(/.Tcjc-a.e. Now there exist subsequences {m^}, {m"} of {m3}

such that m'j > m'j and

e(-(m'; - m'j)x) -> \ox^(\)\2    weak* in L°°(//)

for // = r]a)Pj, \(fTa)c, and Ta<pj (see Lemme 1.5, p. 17, of [HMP]). Thus, if

{m" — m'j} ~ o'x and ax^ is a Dirac measure on a set E of positive //-measure,

then a'x = 6(0) on almost all of E, where // is any of the above three measures.

Hence we may relabel m'' — m' as m,j without loss of generality. But now we have

X > 0, whence \(x) = 1 a.e., so that ^(f"Ta)c{mj) —► 1, which is the same as

m3 = a.j2ni for some n3 G (f*Ta) and a3 G Z with a32~n> —► 0. An inductive

argument shows that for such {mj}, o(y,Ta,pj) ^ 6(0) a.e., which contradicts our

supposition and completes the proof that r)a,Pj G £>x.
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