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Unsolved Problems Concerning Random Walks on Trees

by Russell Lyons, Robin Pemantle, and Yuval Peres

Abstract. We state some unsolved problems and describe relevant examples
concerning random walks on trees. Most of the problems involve the behav-
ior of random walks with drift: e.g., is the speed on Galton-Watson trees
monotonic in the drift parameter? These random walks have been used in
Monte-Carlo algorithms for sampling from the vertices of a tree; in general,
their behavior reflects the size and regularity of the underlying tree. Random
walks are related to conductance. The distribution function for the conduc-
tance of Galton-Watson trees satisfies an interesting functional equation; is
this distribution function absolutely continuous?

§1. Introduction.
To explore the structure of irregular trees, we consider nearest-neighbor random walks on

them. The behavior of simple random walk gives some information about the structure,

but more can be gleaned by considering the one-parameter family of random walks RWλ

described below. That is, the behavior of such random walks on spherically symmetric

trees is easy to analyze and quite regular. The results we describe and questions we pose

concern the similarity of other trees, such as family trees of Galton-Watson processes, to

spherically symmetric trees.

By a tree, we mean an undirected, connected, locally finite graph without cycles;

one distinguished vertex is called the root. For any vertex v, the number of edges on the

unique simple path between v and the root is called the level of v and denoted |v|. The

vertices at level |v|+ 1 that are adjacent to v are called the children of v.

For λ ≥ 0, the λ-biased random walk on a rooted tree T , denoted RWλ, is the

time-homogeneous Markov chain {Xn} on the vertices of T such that if u is a vertex

with k children v1, . . . , vk and a parent u∗, then P[Xn+1 = vi|Xn = u] = 1/(k + λ) for
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i = 1, . . . , k and P[Xn+1 = u∗|Xn = u] = λ/(k + λ); from the root all transitions to its

children are equally likely, and we fix the initial state X0 to be the root.

If T is a regular tree where every vertex has m children, then it is clear that RWλ is

transient for λ < m and recurrent for λ ≥ m; moreover, in the former case, the law of large

numbers implies that the walk escapes from the root at a positive “speed” (formally defined

in the next section). Generalizing this, Lyons (1990) showed that the critical parameter for

transience of RWλ on a general tree is exactly the exponential of the Hausdorff dimension

of the tree boundary (defined in the next paragraph). However, determining on which

trees RWλ has positive speed is more subtle and is one of the subjects of this article.

An infinite self-avoiding path from the root of a tree T is called a ray. The space

of rays is called the boundary of T and denoted ∂T . This space has a natural metric,

where the distance between two rays is e−n if they have exactly n edges in common. (As

usual, this metric then yields a notion of Hausdorff dimension dimH for sets and measures

on ∂T .) It is convenient to use this metric also between rays and vertices by identifying

each vertex v with the self-avoiding path from the root to v. In the resulting metric, any

transient nearest-neighbor Markov chain on the vertices of a tree T must converge to a

ray of T . The hitting measure on the boundary is then called harmonic measure for the

chain.

Galton-Watson trees (family trees of Galton-Watson processes with mean number of

offspring m > 1) are very close to regular trees in many respects (see, e.g., Pemantle and

Peres (1995)), yet exhibit persistent random irregularities which are detected even by the

simple random walk (see below). For these trees, the critical parameter is the mean m

and the critical process RWm is recurrent (Lyons (1992), Theorem 4.2). For simplicity, we

shall consider below only the case in which the probability of no children, p0, is zero.

The set of self-avoiding walks on a lattice has a natural tree structure; Berretti and

Sokal (1985) suggested that biased random walks on this tree can be used to obtain almost

uniform samples from the set of self-avoiding walks of a given length. Refinements of this

idea are in Lawler and Sokal (1988), Sinclair and Jerrum (1989) and Randall (1994). These

papers are primarily concerned with recurrent walks, while we will discuss the transient

case; the behavior of RWλ near the critical parameter is of special interest from both

perspectives. The value of the critical parameter, which is the growth rate of the number

of self-avoiding walks, is not explicitly known.

Conductance of trees from their roots to infinity are intimately related to properties

of random walks. In particular, in Section 4, we discuss the functional equation for the

conductance of Galton-Watson trees.

2



§2. The Speed of Biased Random Walks.

Given any random process Xn with values in the set of vertices of a tree, its speed is

defined to be

lim inf
n→∞

|Xn|
n

We denote the speed of RWλ on T by speed(λ, T ). In general, this is a random variable, but

in all the explicit examples discussed below, the limit exists and is almost surely constant.

If the tree is evident from the context, we omit it from the notation.

Let T be the family tree of a Galton-Watson process with offspring distribution

{pk}k≥0 and mean m =
∑

kpk > 1. Assume that p0 = 0. In Lyons, Pemantle and

Peres (1994b), it is shown that speed(λ, T ) is a.s. a constant which depends only on λ and

the offspring distribution, and this constant is positive for all 0 ≤ λ < m.

Question 2.1 Is the speed of RWλ on Galton-Watson trees monotonic nonincreasing in

the parameter λ?

Of course, this is true in the deterministic case where pk = 1 for some k. In general,

however, no proof, nor indeed much evidence, is known. At first sight, it seems that

speed(λ, T ) should be nonincreasing in λ for any tree T , but this is wrong, as the following

two examples attest. In fact, these examples show that the speed is not monotonic on

multitype Galton-Watson trees.

Example 2.1. Binary tree with pipes: Let T be a binary tree to every vertex of

which is joined a unary tree, which we refer to as a pipe; see Figure 2.1. This is also a

deterministic 2-type Galton-Watson tree, in which a particle of type 1 has one child of type

1 and a particle of type 2 has a child of type 1 and two children of type 2. Simple random

walk on T spends an infinite expected time in each pipe which it enters, whence its speed

is zero. Yet simple random walk on T is transient: this can be seen either by restricting

one’s attention to the times when the walk is not on a pipe; or by using the fact that the

walk is reversible and hence, by Rayleigh’s principle (see, e.g., Doyle and Snell (1984)),

transience on the subgraph of the binary tree implies transience on the whole graph T . On

the other hand, for λ > 1, the expected time RWλ spends on each pipe it visits is finite,

whence its speed is positive provided RWλ has positive speed on a binary tree, i.e., λ < 2.

Indeed, it is easy to calculate that for 1 ≤ λ ≤ 2, the speed is

(2− λ)(λ− 1)

λ2 + 3λ− 2
, (2.1)

which is maximized at λ = 4/3.
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Figure 2.1.

Example 2.2. A covering tree: Let T be the tree described in Figure 2.2. Then T is

the universal covering tree of the graph G shown in Figure 2.3. The tree T may be viewed

as a deterministic, irreducible, multi-type Galton-Watson tree with 33 types. We claim

that the speed of simple random walk on T is less than the speed of RW4/3. This is seen

as follows.

A

BB B

B

B B

A

BB B

A

Figure 2.2. Three trees are shown, one with root of type A and one with root of type

B. In all cases, the long edges are of length 31. The full tree T is obtained

by adding a copy of the tree of type A to the leaf of type A in the first tree

and a copy of the tree of type B to each of the leaves of type B of the first

tree, and repeating ad infinitum.

Figure 2.3. The curved edges each have 30 vertices of degree 2 that are not drawn.
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Let V be the number of vertices in G and E the number of edges. The path of simple

random walk on T projects to the path of simple random walk on G. When the walk is at

a vertex of degree d in T , its distance from the root has expected increment (d−2)/d. The

stationary distribution for simple random walk on G is {deg(v)/(2E) ; v ∈ G}, whence the
speed of simple random walk on T is

∑

v∈G

deg(v)

2E

deg(v)− 2

deg(v)
=

E − V

E
. (2.2)

In the present case, this turns out to be 1/17.

By (2.1), the speed of RW4/3 on the binary tree with pipes is also 1/17. It is easy to

see that the speed of RW4/3 on T is strictly greater than this.

Example 2.3. The Fibonacci tree: We present a calculation of speed on the Fibonacci

tree, a special case of a deterministic 2-type Galton-Watson tree, but more complicated

than the binary tree with pipes. Namely, a type 1 particle has one child of type 2; while a

type 2 particle has two children, one of type 1 and one of type 2. For 0 ≤ λ < (
√
5+ 1)/2,

let Ci(λ) denote the probability that a walk started at a particle of type i will never visit

its parent. Then

C1(λ) =

{

1 +
λ

C2(λ)

}−1

and C2(λ) =

{

1 +
λ

C1(λ) + C2(λ)

}−1

, (2.3)

whence

C1(λ) =

√
λ+ 1− λ√
λ+ 1

and C2(λ) =
√
λ+ 1− λ .

Let pi(λ) be the probability that a walk started at a vertex of type i never visits its parent

nor returns to its starting point. Then

p1(λ) =
1

λ+ 1
C2(λ) =

√
λ+ 1− λ

λ+ 1
,

p2(λ) =
1

λ+ 2
(C1(λ) + C2(λ)) =

1 + (1− λ)
√
λ+ 1√

λ+ 1(2 + λ)
.

Let πi(λ) be the limiting frequency of visits to vertices of type i. These exist by a standard

“regeneration” argument: Each time the walking particle reaches a type 1 vertex v it has

never visited before, it has a fixed chance p1(λ) of continuing to the child of v and never

returning to v. The portions of the random walk between these occurrences are i.i.d.; their

length has finite mean, so the strong law of large numbers yields an almost surely constant

asymptotic frequency of visits to each type of vertex. We have the following equations:

π1(λ) + π2(λ) = 1 ,
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speed(λ) = π1(λ)p1(λ) + π2(λ)p2(λ) ,

speed(λ) = π1(λ)
1− λ

1 + λ
+ π2(λ)

2− λ

2 + λ
.

The last equation comes from the fact that the distance from the root has expected incre-

ment (i−λ)/(i+λ) when the walk is at a vertex of type i, via the strong law for martingale

differences (see Feller (1970), Section VII.9).

Figure 2.4. Part of the Fibonacci tree.

Solving these equations, we obtain

π1(λ) =

√
λ+ 1

2 + λ+
√
λ+ 1

,

π2(λ) =
λ+ 2

2 + λ+
√
λ+ 1

,

speed(λ) =
(
√
λ+ 1 + 2)(

√
λ+ 1− λ)√

λ+ 1(2 + λ+
√
λ+ 1)

.

It is easy to verify from this formula that speed(λ) is strictly monotonic for 0 ≤ λ <

(
√
5+ 1)/2. Note that since speed(1) = 1/(3 +

√
2) is irrational, T is not the covering tree

of any finite undirected graph (see (2.2)), even if the tree were infinitely extended in the

“negative” direction so that the root had degree 3. Also, harmonic measure for RWλ is a

Markov measure with transitions governed by the Ci(λ), whence different values of λ give

mutually singular harmonic measures.

There is a natural one-to-one correspondence between unit flows on a tree T and Borel

probability measures on ∂T , where the flow into a vertex v equals the measure of the set of

rays through v; additivity of the measure is equivalent to the Kirchhoff equations holding

for the flow. We use this correspondence without further comment below.
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Example 2.4. The repeated filtering method: We now describe a general method

that, given any pair 0 < λ1 < λ2 (even when both are less than 1), produces a tree for

which the speed of RWλ1
is less than the speed of RWλ2

.

Let Tf be a tree such that RWλ2
is transient and the harmonic measures θ(λ) of RWλ

are singular for λ1 and λ2. Such a tree was given in Example 2.3 for λ1 < λ2 < (1+
√
5)/2 ;

a simple modification of Tf works for larger values of λ2. Also, almost every tree produced

by a Galton-Watson process with mean larger than λ2 has this property, as shown in

Lyons, Pemantle and Peres (1996). Thus, given ε > 0, we may choose N sufficiently large

so that there are complementary subsets A1, A2 of level N of Tf with θ(λi)(Ai) > 1 − ε.

There is also an M sufficiently large so that if Bi denotes the vertices at level M that are

descendants of those in Ai, then the chance that the first visit of RWλi to level M is in

Bi is at least 1 − ε. Choose K1 > 2λ2 and K2 > K1λ2/λ1. (The first inequality ensures

that the expected number of returns to the root of RWλ2
on the K1-ary tree is at most

2, while the second inequality makes the speed of RWλ2
on the K2-ary tree greater than

the speed of RWλ1
on the K1-ary tree.) Now build a tree T ′ by taking the first M levels

of Tf and adding dλ2/εe copies of the regular Ki-ary tree to each vertex in Bi. Then the

harmonic measure of Ai for RWλi on T ′ is more than 1− 3ε provided M is large enough.

Truncate T ′ after n levels, add to each leaf a copy of the first n levels of T ′, and so on

ad infinitum, thus constructing a tree T . If n is sufficiently large, then T clearly has the

following property: For i = 1, 2 , on almost all trajectories of RWλi , at least proportion

1− 4ε of the vertices have Ki children. Thus the speed of RWλ2
on T is greater than the

speed of RWλ1
on T if ε is small enough.

The next two questions involve smoothness of and estimates for speed(λ, T ) on Galton-

Watson trees.

Question 2.2: Is speed(λ, T ) a real-analytic function of λ ∈ (0,m) for Galton-Watson

trees T?

In certain examples of random walks on matrix groups (Ruelle 1979, Peres 1992), the

speed, measured as a top Lyapunov exponent, is known to depend analytically on param-

eters even though it cannot be calculated explicitly; the techniques of those papers (the

implicit function theorem and polynomial approximation) may be applicable to Question

2.2.

Question 2.3: Let 0 < λ < m. Is speed(λ, T ) ≤ (m−λ)/(m+λ) a.s. for Galton-Watson

trees of mean offspring m > 1?

The upper bound here is the speed on an m-ary tree. This inequality is true for λ = 1
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by the explicit formula in Lyons, Pemantle, and Peres (1995). A more ambitious question

in this direction, which is unresolved even for λ = 1, is in Question 3.5. Examples due

to R. Kenyon (personal communication to Y. Peres, Nov. 1994) show that∗ the following

strengthening of the inequality in Question 2.3 is not valid for general trees, even for those

produced by multitype Galton-Watson processes: speed(λ, T ) ≤ speed(λ, T ∗) if T ∗ is a

spherically symmetric tree with the same level sizes as T .

Most results on Galton-Watson processes have natural extensions to the multitype

case. We have not found such an extension for the speed formula of simple random walk.

Question 2.4: Is there an explicit formula for the speed of simple random walk on a

(supercritical, irreducible) multitype Galton-Watson tree?

§3. Dimension of Harmonic Measures and Approximately Uniform Sampling.

Fix a nondegenerate offspring distribution with a finite mean m = E[Z] > 1 and

p0 = 0. A natural measure on the boundary of a Galton-Watson tree T is the weak limit

as n→∞ of the uniform measure on the nth level of T . (In general, the a.s. existence of

this weak limit is a consequence of the Seneta-Heyde theorem.) Call this measure “limit

uniform measure” and denote it by UNIFT .

Under the assumption that E[Z log2 Z] is finite, it was shown by Hawkes (1981) that

the boundary of the Galton-Watson tree has Hausdorff dimension logm a.s. and, moreover,

the limit uniform flow UNIFT has dimension logm almost surely. The moment assumption

on the offspring distribution was weakened to E[Z logZ] < ∞ in Lyons, Pemantle and

Peres (1995).

Question 3.1: What is the dimension of UNIFT when E[Z logZ] =∞?

More generally, consider a measurable functionM on trees that assigns to each infinite

tree T a measure M(T ) on its boundary. The descendant tree of a child of the root can be

naturally identified with a subset of ∂T . Call M a consistent flow rule if, given such a

descendant tree T ′ of positive M(T )-measure, the measure obtained by conditioning M(T )

to T ′ is precisely M(T ′).

Examples of consistent flow rules are the equally splitting flow (the flow entering a

vertex v is split equally among its children), the limit uniform flow, and harmonic measure

for RWλ (for any 0 < λ < m). (In fact, the harmonic measure for RW0 is the equally

splitting flow.)

∗ In the published version of this article, we mistakenly said that the examples show that the inequality
in Question 2.3 is not valid for general trees. In fact, B. Virág has a 1998 preprint establishing this
inequality, as well as that in Question 3.5, for general trees.
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Question 3.2: Is it true, as we conjecture, that for every consistent flow rule M 6=
UNIF a.s., the Hausdorff dimension satisfies dimH(M(T )) < logm a.s.?

This conjecture was also made by V. Kaimanovich (personal communication, Cornell,

April 1993). Under a further hypothesis, a version of this is proved in Lyons, Pemantle

and Peres (1995). In particular, it is shown there that the dimension of harmonic measure

for simple random walk on the boundary of T is a.s. less than logm; this is extended to

RWλ in Lyons, Pemantle and Peres (1996).

Denote the Hausdorff dimension of harmonic measure for RWλ on the tree T

by dim(λ, T ). Given an offspring distribution for Galton-Watson trees, this is a.s. constant

in T .

Question 3.3: Is dim(1, T ) for a Galton-Watson tree T a.s. greater than E[logZ]?

F. Ledrappier (personal communication, Cornell, April 1993) asked us this question

since the dimension of the equally splitting flow on T equals E[logZ]. A more general

question is:

Question 3.4: For 0 ≤ λ < m, is dim(λ, T ) for a Galton-Watson tree T monotonic

nondecreasing in the parameter λ? Is it strictly increasing?

Let T be any tree. By the result of Lyons (1990) quoted earlier, RWλ is recurrent on

the subtree of T corresponding to any closed subset of ∂T of dimension less than log λ.

That is, dim(λ, T ) ≥ log+ λ on any tree T for all λ < dimH ∂T . From Lyons (1994),

Corollary 4.3, it follows that this inequality is strict when T is the covering tree of a

(directed or undirected) graph. However, the repeated filtering method, described in the

previous section, shows that there are trees T for which dim(λ, T ) is not monotonic in λ.

It was shown in Lyons, Pemantle and Peres (1995) that for almost all nondegenerate

Galton-Watson trees T , there exists a subtree T ′ such that dimH(∂T ′) = dim(1, T ) and

such that the trajectory of simple random walk on T is confined to T ′ with overwhelming

probability. The proof is quite robust and extends to RWλ and many other trees (see

Lyons, Pemantle and Peres (1996)). This motivates a sharpening of Question 2.3:

Question 3.5: For 0 < λ < m, is

speed(λ, T ) ≤ exp(dim(λ, T ))− λ

exp(dim(λ, T )) + λ
(3.1)

a.s. on Galton-Watson trees, T?
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This is unresolved even for simple random walk.∗ However, we can show that dim(λ, T )

is monotonic and (3.1) holds for many trees. This is illustrated by the Fibonacci tree:

Example 2.3 on the Fibonacci tree continued: In this case, the dimension of

harmonic measure is simply the entropy of the two-state Markov chain in which state 1

leads deterministically to state 2 and the transition probabilities from state 2 to state

i ∈ {1, 2} are proportional to Ci(λ) given in (2.3). (This follows from the well-known

relation between Hölder exponents and Hausdorff dimension and the Shannon-McMillan-

Breiman Theorem; see, e.g., Billingsley (1965).) Thus, we find that

dim(λ, T ) =
1 +

√
λ+ 1

2 +
√
λ+ 1

log(1 +
√
λ+ 1)−

√
λ+ 1

(2 +
√
λ+ 1)

log
√
λ+ 1 .

This is easily shown to be monotonic for 0 ≤ λ < (
√
5 + 1)/2 and quite close to constant,

going from 2(log 2)/3 ≈ 0.46 up to log
(

(
√
5 + 1)/2

)

≈ 0.48. Figure 3.1 shows that the

inequality (3.1) holds for the Fibonacci tree.

The next question is the only vague one in this note; it is included because it is of wide

interest and some of the approaches proposed so far involve RWλ. See Sinclair and Jerrum

(1989) for motivation and background. Note that the gap dim ∂T − dim(λ, T ) measures

how far from uniform is the last visit to the nth level of T as n→∞.

Question 3.6: What is the most efficient procedure to sample (approximately) uniformly

from the leaves of a (non-regular) finite tree?

§4. A Functional Equation for the Conductance of a Galton-Watson Tree.

Given a tree T , form a new tree T∆ by joining the root of T to a new vertex, ∆. The

probability, γ(T ), that simple random walk on T∆ started at the root of T will never visit

∆ is easily expressed via C(T ), the effective conductance of T (from its root to infinity)

when the edges of T have unit conductance:

γ(T ) =
C(T )

1 + C(T ) .

The conductance is also a key tool in analyzing other properties of simple random walk on

T , such as its Hausdorff dimension (see Lyons, Pemantle and Peres (1995)). Now

γ(T ) =

∑

|x|=1 γ(T (x))

1 +
∑

|x|=1 γ(T (x))
. (4.1)

∗ As noted in a previous footnote, B. Virág has a 1998 preprint establishing this inequality for general
trees.
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0 1.61.41.210.80.60.40.20

0

1

0.8

0.6

0.4

0.2

0

Dimension Bound for Speed

Figure 3.1. The dimension bound on the speed of the Fibonacci tree, Equation (3.1).

Thus, if {pk} is the offspring distribution of a Galton-Watson process, then the recursive

structure of Galton-Watson trees gives that the c.d.f. Fγ of γ satisfies

F (s) =











∑

k pkF
∗k

(

s

1− s

)

, if s ∈ (0, 1);

0, if s ≤ 0;
1, if s ≥ 1 .

(4.2)

Of course, the c.d.f. of C(T ) is Fγ(x/(1 + x)) for x ≥ 0. We shall assume that p0 = 0.

Theorem 4.1. The functional equation (4.2) has exactly two solutions, Fγ and the Heav-

iside function 1[0,∞). Define the operator on c.d.f.’s

K :F 7→
∑

k

pkF
∗k

(

s

1− s

)

(s ∈ (0, 1)) .
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For any initial c.d.f. F with F (0) = 0 and F (1) = 1 other than the Heaviside function, we

have weak convergence under iteration to Fγ :

lim
n→∞

Kn(F ) = Fγ .

In order to prove this, we require the following lemma.

Lemma 4.2. Let T be a tree without leaves on which simple random walk is transient and

let T (k) be the finite subtree of the first k generations. From T (k), form the finite tree

T [k,R] by adding to each leaf an edge of resistance R. Then

R(T [k,R]) ≤ R(T ) + o(R/k)

uniformly in R ≥ 0 as k → ∞, where R denotes effective resistance from the root to the

boundary of a tree and the edges of T have unit resistance.

Proof. Let I be the unit current flow on T . (This is the flow corresponding to the harmonic

measure for simple random walk (Lyons 1990, §4).) Then R(T ) equals the energy of I:

R(T ) =
∑

|x|≥1

I(x)2 <∞ . (4.3)

Since

I(x)2 =
(

∑

I(y)
)2

≥
∑

I(y)2 ,

where the summations extend over the children y of x, it follows that
∑

|x|=k I(x)
2 decreases

in k, whence from (4.3), that
∑

|x|=k

I(x)2 = o

(

1

k

)

.

Since R(T [k,R]) is the minimum energy of unit flows on T [k,R], we have

R(T [k,R]) ≤
∑

0<|x|≤k

I(x)2 +
∑

|x|=k

I(x)2R ≤ R(T ) + o

(

R

k

)

.

Proof of Theorem 4.1. Let GW denote the law of the family trees of our Galton-Watson

process. The fact that there are only the two solutions mentioned of the functional equation

(4.2) is a consequence of the convergence of Kn. To establish this convergence, let RF (x) be

a collection of i.i.d. random variables indexed by the vertices x ∈ T and independent ofGW

so that 1/(RF (x) + 1) has c.d.f. F . Write νFT for the law of 〈RF (x)〉x∈T . For a tree T , let

T [n,RF ] be as described in Lemma 4.2. Thus, Kn(F ) is the νFT ×GW-distribution function
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of the conductance of the tree T∆[n,RF ], i.e., the c.d.f. of γ(T [n,RF ]). In particular (and

as can be seen directly), if F1 ≤ F2, then Kn(F1) ≤ Kn(F2). We shall compare F to two

other distributions: to F∞ := 1[1,∞), so that KnF∞ is the distribution of γ(T [n, 0]); and

to Fε := (1 − ε)1[0,∞) + ε1[ε/(1+ε),∞). Thus, F ≥ F∞ and, provided F 6= 1[0,∞), for all

sufficiently small ε > 0, we have F ≤ Fε. By definition, γ(T ) = limn→∞ γ(T [n, 0]), whence

Fγ = limn→∞Kn(F∞) weakly. Therefore, all weak limit points of {KnF} are bounded

below by Fγ .

On the other hand, let Tn be the nth level of T and let T
(n)

be the finite subtree of

T consisting of those vertices one of whose descendants x ∈ T n has Rε(x) <∞, where we

write Rε := RFε
for simplicity; by definition, if Rε(x) <∞, then Rε(x) = 1/ε. Also write

νεT := νFε

T . We may assume that ε is so small that p1 + ε < 1. Let δ > 0 be so small that

mδ(p1 + ε)(1−δ) < 1. Let n0 be sufficiently large that for n ≥ n0, we have

R(T [kn, jn + 1/ε]) ≤ R(T ) + εδ2
jn + 1/ε

kn
, (4.4)

where kn := dδne and jn := n− kn; such an n0 exists by Lemma 4.2. We have

νεT

(

T (kn) 6⊆ T
(n)
)

≤
∑

|x|=kn

νεT (x /∈ T
(n)

)

=
∑

|x|=kn

(1− ε)|T (x)∩T
n| .

Therefore,

E

[

νεT

(

T (kn) 6⊆ T
(n)
)

]

≤ E



E

[

∑

|x|=kn

(1− ε)|T (x)∩T
n|

∣

∣

∣

∣

T kn
]





= E
[

|T kn | · fjn(1− ε)
]

= mknfjn(1− ε) .

Here, fj denotes the j-fold composition of f with itself. Since

fj(1− ε) = o((p1 + ε)j)

as j →∞, we have that for all large n,

E
[

νεT

(

T (kn) 6⊆ T
(n)
)]

< δ

by choice of δ. Now when n is at least n0 and T (kn) ⊆ T
(n)

, we have

γ(T [n,Rε])
−1 = 1 +R(T [n,Rε]) = 1 +R(T

(n)
[n, 1/ε]) ≤ 1 +R(T [kn, jn + 1/ε])

≤ 1 +R(T ) + εδ2
jn + 1/ε

kn
≤ γ(T )−1 +

(

ε+
1

n

)

δ
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by (4.4). Hence for all large n,

KnFε(s) ≤ Fγ(s+ δ) + δ .

Since δ can be chosen arbitrarily small, this shows that all weak limit points of KnFε,

hence of KnF , are bounded above by Fγ .

Question 4.1: Is Fγ absolutely continuous? In other words, does the effective conductance

of a Galton-Watson tree have an absolutely continuous distribution?

We believe so: Theorem 4.1 provides a method of calculating Fγ . Using it, we have

calculated some examples numerically. From the graphs (Figures 4.1 and 4.2), it appears

that the derivative of the distribution function is well behaved.

Note how these figures reflect the stochastic self-similarity of the Galton-Watson trees.

Consider, for example, Figure 4.1. Roughly speaking, the peaks represent the number of

generations with no branching. For example, note that the full binary tree has conductance

1, whence its γ value is 1/2. Thus, the tree with one child of the root followed by the full

binary tree has conductance 0.5 and γ value 1/3. The wide peak at the right of Figure 4.1

is thus due entirely to those trees which begin with two children of the root; the nth peak

to the left of it is due to n generations without branching.

x
0 0.50.40.30.20.10

0

5

4

3

2

1

0

df12:   50 iterations, mesh=2003

Figure 4.1. The apparent GW-density of γ(T ) for f(s) = (s+ s2)/2.
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x
0 0.60.50.40.30.20.10

0

3.5

3

2.5

2

1.5

1

0.5

0

df123:   20 iterations, mesh=1200

Figure 4.2. The apparent GW-density of γ(T ) for f(s) = (s+ s2 + s3)/3.
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