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To Be or Not to Be (in the Model)?

Consider the usual regression equation

Y = Xβ + ǫ (1)

with E(ǫ | X) = 0 and Cov(ǫ | X) = σ2I. Suppose that you are trying to decide whether

this model is correct; in particular, you are thinking of adding another variable, Z, which

would give the model

Y = Xγ + cZ + δ (2)

with E(δ | X,Z) = 0 and Cov(δ | X,Z) = τ2I. We also assume that the new design

matrix [X Z] has full rank.

You are concerned about omitted-variable bias in (1), but about endogeneity bias in

(2). See SM 4.5.5, 11, 13, 14 and 5.9.11. Usually you would prefer a correct model to an

incorrect one. However, what if both are correct? Recall that an optional exercise in the

notes to chapter 4 showed that if (Y,X, Z) are jointly normal, then both (1) and (2) are

correct. Here, we are considering only statistical correctness; causal correctness, the topic

of chapter 6, is another story. But we discuss briefly how causal issues lead to uncertainty

in choosing between (1) and (2), even when both are statistically correct. Suppose we

want to know the effect, if any, of X on Y . This might be specified by (1). But should we

control for Z, as might be specified by (2)? If X affects Y through Z, then we should not

control for Z. But if Z is a confounding variable for X and Y , then we should. We may

not know the answers to these questions, just as we may not know whether X causes Y .

These questions go beyond the purely statistical issues here.

There are two ways that both (1) and (2) can be correct, so that neither has a bias,

depending on whether c = 0 or c 6= 0. Here, we mean bias in estimating β for (1) and in

estimating γ in (2); if c = 0, then β = γ. Although both estimates would be unbiased, their

SEs may differ. To analyze the SEs, assume that indeed both (1) and (2) are correct. (Note

that we are not saying that (2) is correct for two different values of c; the assumptions in (2)

preclude that. Indeed, we have seen, for (1) say, that β is determined by the assumptions,

namely, Xβ = E(Y | X) and X has full rank, so Xβ determines β.)

If c = 0, then γ = β, δ = ǫ, and τ = σ. Also, E(ǫ | X,Z) = 0. In this case, the SEs of

each β̂k are smaller if we omit Z. Why should we expect something like this? Recall that

Ŷ = PcolX(Y ) for (1), so that given X , the random part of Ŷ equals PcolX(ǫ). Similarly,

the random part for (2) equals Pcol[X Z](δ) = Pcol[X Z](ǫ). Since the column space of X

1



Prof. Lyons M466: Introduction to Mathematical Statistics Spring 2013

and Z together is larger than the column space of X , we are taking more of the error for

(2) than for (1). If ǫ is normal, then the fact that taking more of the error leads to more

variability can be justified by our knowledge of orthogonal projections applied to normal

vectors.

To see that the SEs of each β̂k are smaller if we omit Z in general, i.e., whether or

not ǫ is normal, let β̂Z be the estimate when we do use Z in OLS. (We are still assuming

that c = 0.) Let Wk be the space spanned by all the columns of X except the kth. Then

SE(β̂k | X) =
σ

‖P⊥

Wk
X [k]‖

, (3)

where we are taking the orthogonal projection of the kth column of X , X [k], to the ortho-

complement of Wk, whereas

SE(β̂Z
k | X,Z) =

σ

‖P⊥

Wk,Z
X [k]‖

.

Since the span of Wk and Z is larger than Wk, the projection to its orthocomplement

is smaller. (See the handout on multicollinearity for these SE formulas.) One can also

prove that SE(a′β̂ | X) ≤ SE(a′β̂Z | X,Z) for every a, just as in the Gauss-Markov

theorem. (But that theorem doesn’t apply to prove this, since β̂Z uses Z, while the

theorem allows only estimators that depend on Y and X , nothing from outside the model.

Briefly, a proof is as follows: a′X ′Xa ≤ [a b]′[X Z]′[X Z][a b] for all a and b, whence

a′(X ′X)−1a ≥ [a 0]′
(
[X Z]′[X Z]

)−1
[a 0] for all a. Another proof proceeds by adding and

subtracting a′Xβ̂ in the fitted equation and then using orthogonal projection formulas for

the SEs.)

Now assume that c 6= 0. In this case, ǫ = X(γ−β)+cZ+δ, so E(Z | X) = X(β−γ)/c.

The SEs of γ̂ could be larger or smaller than those of β̂. For example, we could have Z = Y ,

c = 1, γ = 0, and δ = 0. We would have an exact fit and no error. For a less extreme

example, suppose that ǫ = Z + δ, where Z ∼ N(0, .99σ2I) and δ ∼ N(0, .01σ2I), with Z

and δ independent of each other and of X . Then γ = β, c = 1, and (2) has almost no error

compared to (1). For one more example, suppose that ǫ = η + δ, where η ∼ N(0, .99σ2I)

and δ ∼ N(0, .01σ2I), with η and δ independent of each other and of X . Now define

Z = Xβ/2 + η. Then γ = β/2 and c = 1; again the error in (2) is very small compared

to (1). On the other hand, if we interpolate between one of these examples and one where

c = 0 (such as a Z independent of (X, ǫ)), then we can get an example with c 6= 0 but with

larger SEs than for (1). So there is no general rule.

Note that in general,

SE(β̂Z
k | X,Z) =

τ

‖P⊥

Wk,Z
X [k]‖

. (4)
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Since τ2 = Var(Y1 | X,Z) ≤ Var(Y1 | X) = σ2, the numerator of (4) is no larger than that

of (3), while the denominator of (4) is also no larger than that of (3).

Thus, the comment on p. 251 for 4.5.14 that “putting another variable into the equa-

tion likely reduces the sampling error in the estimates” is not true when c = 0, but may

be true otherwise. The same holds for 4.5.11 and 5.9.11.
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