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Abstract

We show that for finite-range, symmetric random walks on general
transient Cayley graphs, the expected occupation time of any given
ball of radius r is O(r5/2). We also study the volume-growth property
of the wired spanning forests on general Cayley graphs, showing that
the expected number of vertices in the component of the identity inside
any given ball of radius r is O(r11/2).

Résumé

On montre que toute marche aléatoire symétrique à pas bornés
sur un graphe de Cayley transitoire satisfait que l’espérance du temps
d’occupation d’une boule quelconque de rayon r vaut O(r5/2). On
étudie aussi la croissance du volume des fôrets recouvrantes câblées
dans les graphes de Cayley généraux, en montrant que l’espérance du
nombre de sommets appartenant à la composante connexe de l’identité
dans une boule quelconque de rayon r vaut O(r11/2).
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1 Introduction

Given a transient, symmetric random walk S starting from a vertex o in a
Cayley graph G = (V,E), let Lr :=

∣∣{t : St ∈ B(o, r)
}∣∣, where B(o, r) is the

set of vertices within graph distance r of o. Suppose for the moment that
S is simple random walk. If G has polynomial growth of degree D, then
Varopoulos’ estimate pt(o, x) . t−D/2 (see, e.g., [CGP01, Corollary 7.3]) yields
E[Lr] . r2 (see Remark 2.7). Here, a(t) . b(t) means that ∃ c > 0 such that

a(t) ≤ c b(t) for all t. Similarly, Varopoulos’ estimate pt(o, o) . e−ct
1/3

for
groups of exponential growth (see [CGP01, Corollary 7.4]) yields E[Lr] . r3

(see the proof of [BB07, Proposition 2.3]). When the walk escapes at a linear
rate, a simple argument (Lemma 2.1) shows that E[Lr] . r. In particular,
the linear bound holds for nonamenable Cayley graphs. We believe that the
following quadratic bound holds in general; to the best of our knowledge, this
is open.

Conjecture 1.1. For a symmetric random walk S on a transient Cayley
graph G, let Lr be the occupation time of B(o, r) defined as above. Then
E[Lr] . r2.

As an example of amenable Cayley graphs of exponential growth where
a quadratic bound is easy to establish, consider simple random walk on
lamplighter groups over any base group which has polynomial growth or,
more generally, any base group known to have quadratic occupation time: we
can bound the occupation time of balls in the Cayley graph of the lamplighter
group by the occupation time of balls of the projection of simple random walk
under the quotient map to the base group. In this paper, although we cannot
prove Conjecture 1.1, we establish a general 5/2-power bound for finite-range,
symmetric random walks (i.e., symmetric random walks whose jumps have
bounded support).

Theorem 1.2. Let G be a transient Cayley graph and V (r) := |B(o, r)|.
Then for every finite-range, symmetric random walk on G,

E[Lr] . r2
√

log V (r) . (1)

In particular, E[Lr] . r5/2.

By comparison, if τr denotes the first exit time of B(o, r) of a symmetric
random walk starting at o, it is known that

E[τr] . r2

2



for all Cayley graphs. (See Theorem 2.2 for a proof.)
Let G = (V,E) be an infinite graph. The wired spanning forest measure on

G is defined as the infinite-volume limit of the wired spanning tree measures
on a sequence of finite subgraphs exhausting G: Let V1 ⊂ V2 ⊂ · · · be finite
subsets of V whose induced subgraphs Gn are connected with

⋃∞
n=1 Vn = V .

Let µFn be the uniform spanning tree measure on Gn. Then as a probability
measure on edge configurations, µFn restricted to any finite subset of E
converges. This defines a unique probability measure µF on 2E, which we call
the free spanning forest. Another way of taking limits of spanning trees is
as follows. Suppose Gn are defined as above. Let GW

n be obtained from G
by identifying all the vertices outside Gn to one new vertex and µWn be the
uniform spanning tree measure on GW

n . Then µWn also has a limit µW , which
we call the wired spanning forest. These results are due to [Pem91]. The free
and wired spanning forests are the same if G is of polynomial growth or, more
generally, amenable [Pem91, BLPS01]. They can be different, such as on the
Cayley graph of a free group. See [BLPS01, LP16] for more details.

On Cayley graphs, the wired spanning forest (WSF) has a single component
if the graph has at most quartic growth; otherwise, there are infinitely many
components in the WSF [Pem91]. In the latter case, the geometry of the
WSF has intriguing behaviors. Let To be the component containing o in
the WSF of G. For Cayley graphs with polynomial growth of order at
least quartic, E

[
|To ∩ B(o, r)|

]
� r4, whereas nonamenable Cayley graphs

satisfy E
[
|To ∩B(o, r)|

]
� r2 [BLPS01, Section 13]. Here, a(t) � b(t) means

a(t) . b(t) and b(t) . a(t). In [BKPS04], the authors provided a detailed
analysis of the geometry of the WSF on Zd (d ≥ 5). Among other results,
they showed that the tree components have “stochastic dimension” 4. In this
paper, we extend the investigation of the volume-growth property of the WSF
to general Cayley graphs (Theorems 1.3 and 1.4).

Using a similar method as we use to prove Theorem 1.2, we show the
following upper bound:

Theorem 1.3. Let G be a Cayley graph and V (r) = |B(o, r)|. Then

E
[
|To ∩B(o, r)|

]
. r4 log3/2 V (r) . (2)

In particular, E
[
|To ∩B(o, r)|

]
. r11/2.

Let C(o, r) be the connected component of To ∩B(o, r) containing o. This
provides another way to measure the growth of the WSF. We show the
following upper bound in terms of the exit time τr for random walk:
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Theorem 1.4. Given a Cayley graph G of superpolynomial growth, let C(o, r)
be defined as above. Then there exists r0 such that

E
[
|C(o, r)|

]
≤ 4E2[τ6r] for r > r0 . (3)

Remark 1.5. As will be clear from our proof of (3), the constants involved
are not optimal.

For Cayley graphs of polynomial growth, we have E
[
|C(o, r)|

]
≤ E

[
|To ∩

B(o, r)|
]
. r4. Since E[τr] . r2 for all Cayley graphs, Theorem 1.4 implies

that E
[
|C(o, r)|

]
. r4 in general. We believe that E

[
|To ∩ B(o, r)|

]
�

E
[
|C(o, r)|

]
and hence E

[
|To ∩B(o, r)|

]
. r4 for general Cayley graphs.

Acknowledgments. We are grateful to Terry Tao for providing the reference
[BGT12]. We thank the referees for useful comments. This work was begun
while the third author was an intern in the Theory Group at Microsoft
Research, Redmond.

2 Occupation measure of random walks

2.1 Preliminaries

The only random walks S = (S0, S1, . . .) on groups that we consider are
those where for all t ≥ 1, the random variables S−1t−1St are independent and
identically distributed. Such a random walk is called symmetric if for all g,
we have P

[
S−10 S1 = g

]
= P

[
S−10 S1 = g−1

]
. We usually choose S0 to be the

identity, o.
Suppose Γ is a group generated by a finite subset X, i.e., every element

in Γ can be written as a product of elements in X ∪X−1. The Cayley graph
G associated to (Γ, X) is the unoriented graph with vertices Γ and edges{

[g, gx] : g ∈ Γ, x ∈ X
}

. Every Cayley graph is a connected, vertex-transitive
graph.

For a Cayley graph G, a vertex o ∈ G, and r > 0, let dG denote the graph
distance in G and B(o, r) := {v ∈ G : dG(o, v) ≤ r}. We call V (r) := |B(o, r)|
the volume function of G. Due to Gromov’s theorem [Gro81], it is well known
that either V (r) � rD for some D ∈ N or limr→∞ V (r)/rD =∞ for all D ∈ N.
In the former case, we say that G has polynomial growth of degree D. In the
latter case, we say that G has superpolynomial growth. These properties are
independent of the choice of the generating set X of G.
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Given a Cayley graph G with d := |X ∪X−1|, lazy simple random walk
on G is the Markov chain S = (St)

∞
t=0 on Γ with transition probabilities

p(g, gx) = 1/(2d) for x ∈ X ∪X−1 and p(g, g) = 1/2. We assume that the
identity is not an element of X.

The following facts concerning the occupation time Lr and the escape time
τr are not needed for the rest of the paper. We record them for completeness.

Lemma 2.1. Suppose St is a random walk on a Cayley graph G such that
lim inft→∞ dG(o, St)/t > 0 a.s. Then E[Lr] . r.

Proof. We may choose ε > 0 and t0 <∞ so that

Po[∀t ≥ t0 dG(o, St) > εt] > 1/2 .

Let s(r) := max{2r/ε, t0}. Then for every t, we have

P
[
∀m ≥ s(r) St+m /∈ B(o, r)

∣∣ St ∈ B(o, r)
]
> 1/2 ,

so E[Lr] < 2s(r).

Note that if Γ is a nonamenable group, then the hypothesis of Lemma
2.1 holds: [Kes59a, Kes59b] showed that there is some ρ < 1 such that for
all x ∈ Γ and all t ∈ N, we have pt(o, x) ≤ ρt. The result then follows from a
Borel–Cantelli argument.

The following argument was noted by Anna Erschler (personal communi-
cation, 2005).

Theorem 2.2. E[τr] . r2 for symmetric random walks on Cayley graphs.

Proof. Because of the linear bound on nonamenable Cayley graphs even
for occupation time (Lemma 2.1) and of the stochastic domination of τr
by Lr, it remains to show this bound on escape time when G is amenable.
Furthermore, we may assume that the support of the random walk generates
the group Γ, as otherwise we take the subgroup it generates. Let W be a
finite subset of the support of S1 such that W generates Γ. Because distances
in any Cayley graph of G differ from those in the Cayley graph generated
by W by a bounded factor, we may assume that G is in fact the Cayley
graph determined by W . We may also assume that the support of S1 is
contained in B(o, 2r) since if not, we may replace all jumps outside that
ball by staying in place; the new random walk leaves B(o, r) no earlier than
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the original random walk does. By [Mok95, KS97], there is a harmonic,
equivariant, Hilbert-space valued, nonconstant function φ on V (also see
[LP13, Theorem 3.1] for an explicit construction). Here, “equivariant” means
with respect to some affine isometric action of the group on the Hilbert
space. Let c := E

[
‖φ(S1) − φ(o)‖2

]
> 0. Let p∗ := min{p(o, x) : x ∈ W}.

Then ‖φ(x) − φ(y)‖2 ≤ c/p∗ when x and y are neighbors in G, whence

‖φ(x) − φ(y)‖ ≤
√
c/p∗ · dG(x, y) for all vertices x, y of G. In particular,

‖φ(x)−φ(o)‖ ≤ 3r
√
c/p∗ for x ∈ B(o, 3r). Since φ is harmonic, the sequence

of random variables ‖φ(Sn)−φ(o)‖2−cn forms a martingale, thus the optional-

stopping theorem gives E‖φ(Sτr)− φ(o)‖2 = cE[τr]. Since the support of S1

is within B(o, 2r) and τr is the exit time of B(o, r), the triangle inequality
gives Sτr ∈ B(o, 3r). Therefore

E[τr] ≤
(
3r
√
c/p∗

)2 · c−1 = 9r2/p∗ .

When the random walk has bounded jumps, a stronger result on the
distribution of τr follows from the main result of [LPS14].

2.2 Proof of Theorem 1.2

There are three main ingredients in our proof of Theorem 1.2. The first
ingredient is a bound for the return probability of lazy random walks using
the volume function V (r), which is obtained in [LO17] by spectral embedding:

Lemma 2.3. Given a vertex-transitive graph G, let pm(o, o) := P[Sm = o]
be the return probability of a lazy, finite-range, symmetric random walk, S.
Let V be the volume function defined as above. Then there exist constants
c ∈ (0, 1) and c′ <∞ such that

∀m ∈ N+ pm(o, o) ≤ c′m

∫ 1

0

e−λm

V
(
c/
√
λ
) dλ . (4)

Proof. Combine Lemma 3.5 and Theorem 6.1 in [LO17].

The second ingredient is immediate from the main result of [LP13] in the
amenable case and Lemma 2.1 in the nonamenable case:
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Lemma 2.4. Given a vertex-transitive graph G, let pm(o, o) := P[Sm = o]
be the return probability of a lazy, finite-range, symmetric random walk, S.
Then there exists a constant c <∞ such that

∀r, n ∈ N+

n∑
m=0

P
[
Sm ∈ B(o, r)

]
≤ cr
√
n .

The third ingredient is an important growth property of the volume
function of Cayley graphs of superpolynomial growth, established in [BGT12]:

Lemma 2.5. Suppose G is a Cayley graph of superpolynomial growth. Then
for all k ∈ N, there exists ck > 0 such that

for all a ≥ 1 and r ≥ 1,
V (ar)

V (r)
≥ cka

k . (5)

Proof. This is an immediate consequence of [BGT12, Corollary 11.2].

Corollary 2.6. Suppose G is a Cayley graph of superpolynomial growth of a
group, Γ. Let S be a lazy, finite-range, symmetric random walk on G whose
support generates Γ. Write pm(x, y) := Px[Sm = y]. Then there is a constant
c > 0 such that for all k ∈ N+, there is some c′′ > 0 (depending on k) such
that for all r,m ∈ N+ and all x, y ∈ Γ,

pm(x, y) ≤ c′′
(
m−k/2rk/V (r) + e−c

2m/r2
)
. (6)

Proof. Choose c as in (4). From the preceding two lemmas, we have

pm(x, y) ≤ pm(o, o) . m

∫ 1

0

e−λm

V
(
c/
√
λ
) dλ

= m

∫ c2/r2

0

e−λm

V
(
c/
√
λ
) dλ+m

∫ 1

c2/r2

e−λm

V
(
c/
√
λ
) dλ

.
m

V (r)

∫ c2/r2

0

λk/2rke−λm dλ+m

∫ 1

c2/r2
e−λm dλ

. m−k/2rk/V (r) + e−c
2m/r2 ,

where in the last line, we use the change of variable u := mλ. The implied
constants depend on k. This proves (6).
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Proof of Theorem 1.2. We may clearly assume that the support of the walk
generates the group, as otherwise we simply take the subgroup it generates
together with a Cayley graph of the subgroup. We may also assume that S is
lazy, i.e., p1(o, o) ≥ 1/2. We wish to show that

E[Lr] =
∞∑
m=0

P
[
Sm ∈ B(o, r)

]
. r2

√
log V (r) . (7)

Since the result is known for groups of polynomial growth, we assume G is of
superpolynomial growth. Write ϕ(m) for the right-hand side of (6). Then
∀m ∈ N and r > 0,

P
[
Sm ∈ B(o, r)

]
≤ ϕ(m)V (r) .

Set α := c−2, where c is as defined in (6). Put

Σ(1)
r :=

bαr2 log V (r)c∑
m=0

P
[
Sm ∈ B(o, r)

]
and

Σ(2)
r :=

∑
m>αr2 log V (r)

ϕ(m)V (r) .

By Lemma 2.4,
Σ(1)
r . r2

√
log V (r) .

Since
∞∑
m=0

P
[
Sm ∈ B(o, r)

]
. Σ(1)

r + Σ(2)
r ,

to prove (7), it suffices to show that Σ
(2)
r . r2. Choose k > 2 with Corollary

2.6 in mind. Now∑
m>αr2 log V (r)

m−k/2rk .
(
r2 log V (r)

)−k/2+1
rk . r2 . (8)

On the other hand,∑
m>αr2 log V (r)

V (r)e−c
2m/r2 . V (r)r2e−αc

2 log V (r) = r2 . (9)

Therefore, Σ
(2)
r . r2, as claimed.
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Remark 2.7. If G has polynomial growth, then we can separate the sum in
(7) at αr2 instead of at αr2 log V (r). The same argument as above combined
with the bounds V (r) � rD and p2m(o, o) � m−D/2 then gives a proof of the
quadratic bound on occupation time; one does not need Lemma 2.4, but only
the trivial bound that every probability is at most 1.

3 Volume growth of the WSF

Given a finite path P = 〈v0, v1, . . . , vn〉 in a graph G, we define the forward
loop erasure of P (denoted by LE[P ]) by erasing cycles in P chronologically.
More precisely, LE[P] is defined inductively as follows. The first vertex u0
of LE[P] is the vertex v0 of P. Supposing that uj has been set, let k be
the last index such that vk = uj. Set uj+1 := vk+1 if k < n; otherwise, let
LE[P] := 〈u0, . . . , uj〉. If S is a simple random walk on a Cayley graph G,
then LE[S] is called the loop-erased random walk (LERW). There is no trouble
defining the forward loop erasure of S a.s. if G is transient. For recurrent
Cayley graphs of quadratic growth, loop-erased random walk can be defined
by taking a limit (see [Law13, BLPS01]). We omit the details, because we
focus exclusively on transient graphs in the rest of the paper.

In [Wil96], Wilson discovered an algorithm for sampling uniform spanning
trees on finite graphs using loop-erased random walk. In [BLPS01], Wilson’s
algorithm was adapted to sample the WSF on transient graphs: Order
the vertex set V as V = (v1, v2, . . . ). Set T0 := ∅. Inductively, for each
n = 1, 2, . . . , run an independent simple random walk starting at vn. Stop the
walk when it hits Tn−1 if it does; otherwise, let it run indefinitely. Denote the
resulting path by Pn, and set Tn := Tn−1 ∪ LE[Pn]. According to [BLPS01,
Theorem 5.1] no matter the ordering of V , the resulting forest is always
distributed as the WSF on G. This method of generating the WSF is called
Wilson’s method rooted at infinity.

In fact, the theory of wired spanning forests extends to general networks,
i.e., general reversible random walks; see [BLPS01] or [LP16] for details. Thus,
we will prove the following extension of Theorem 1.3:

Theorem 3.1. Let G be a Cayley graph of a group Γ and V (r) := |B(o, r)|.
Consider the WSF on Γ corresponding to a finite-range symmetric random
walk S whose support generates Γ. Then

E
[
|To ∩B(o, r)|

]
. r4 log3/2 V (r) . (10)
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In particular, E
[
|To ∩B(o, r)|

]
. r11/2.

Proof. The polynomial-growth case is known when the WSF is generated
by simple random walk; the proof of its extension to finite-range symmetric
random walks will be clear following Remark 2.7. Thus, we assume G has
superpolynomial growth. We may further assume that S is lazy, since adding
laziness simply produces loops in the random walk paths, which are then
erased.

Let {Sv}v∈G be a family of independent random walks with the same
increment distribution as S but such that Sv starts from v. Let Pv be the law
of Sv. By Wilson’s algorithm rooted at infinity,

P[x ∈ To] ≤ P[∃y ∈ G ∃m ≥ k ≥ 0 So(k) = Sx(m− k) = y]

≤
∑
y∈G

∞∑
m=0

m∑
k=0

Po[Sk = y]Px[Sm−k = y] . (11)

By reversibility and the Markov property,∑
y∈G

Po[Sk = y]Px[Sm−k = y] = Po[Sm = x] .

Combined with (11), this leads to

P[x ∈ To] ≤
∞∑
m=0

(m+ 1)Po[Sm = x] .

Summing over x ∈ B(o, r), we arrive at

E
[
|To ∩B(o, r)|

]
≤

∞∑
m=0

(m+ 1)Po
[
Sm ∈ B(o, r)

]
.

Decomposing this last sum similarly to the proof of Theorem 1.2, we have
∞∑
m=0

(m+ 1)P[Sm ∈ B(o, r)] . Σ(3)
r + Σ(4)

r ,

where

Σ(3)
r :=

bαr2 log V (r)c∑
m=0

(m+ 1)Po
[
Sm ∈ B(o, r)

]
,

Σ(4)
r :=

∑
m>αr2 log V (r)

V (r)(m+ 1)ϕ(m) ,
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and ϕ is the right-hand side of (6). Using a very similar argument as in
Theorem 1.2, by choosing k > 4 and α := 2c−2, we obtain

Σ(3)
r . r4 log3/2 V (r) and Σ(4)

r . r4 ,

thus concluding the proof.

To prove Theorem 1.4, we first record an elementary fact concerning
simple random walk on Cayley graphs.

Lemma 3.2. Let G be a Cayley graph of superpolynomial growth and S be a
simple random walk starting from o ∈ G. For a vertex x ∈ G, let |x| denote
the graph distance from x to o. Then for every D > 0 there exists a positive
constant cD such that

Po[S hits x] ≤ cD
|x|D

. (12)

Proof. Indeed, by Lemma 2.3, for example,

Po[S hits x] ≤
∑
n≥|x|

pn(o, x) .
∑
n≥|x|

n−D−1 . |x|−D .

Proof of Theorem 1.4. Suppose the WSF is generated via Wilson’s algorithm
by first sampling a simple random walk S from o and then sampling simple
random walks from other vertices in a certain order. Let Rayo := LE[S] be
the infinite ray emanating from o in the WSF, Ray(o, r) := Rayo ∩ C(o, r),
and Nr := |Ray(o, r)|. We first claim that E[Nr] ≤ 2E[τ3r] for r large enough.

To verify this claim, we use the argument illustrated in Figure 1. Let
ρ0 := 0 and τ 02r := τ2r. For i ≥ 1, let

ρi := inf
{
t : t > τ i−12r , St ∈ LE[S(0, τ i−12r )] ∩B(o, r)

}
(13)

and

τ i2r := inf
{
t : t > ρi, St /∈ B(o, 2r)

}
. (14)

Since G has superpolynomial growth, by Lemma 3.2, conditioned on S[0, τ i−12r ],
the probability that S hits a certain point in B(o, r) after τ i−12r is bounded by
cr−4, where c depends only on G. Let Lr be the occupation measure of B(o, r)
as defined in Theorem 1.2. Then by conditioning on LE[S(0, τ i−12r )] ∩B(o, r)
and applying Theorem 1.2, we get

P[ρi <∞ | ρi−1 <∞] ≤ E
[
cr−4 |LE[S(0, τ i−12r )] ∩B(o, r)|

∣∣ ρi−1 <∞]
≤ cr−4 E[Lr] . r−1 .
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∞

o

B(o, r)

B(o, 2r + 1)

τ02r

τ12r

ρ1

ρ2

τ22r

Figure 1: Ev-
ery time S exits
B(o, 2r), there is
at least 1

2 chance
that afterwards it
never visits the ver-
tex set in B(o, r)
that is already
occupied by S. In
this figure, ξ = 3.
Note that the
dashed part does
not contribute to
LE[S] ∩ C(o, r).
Therefore Nr ≤∑ξ

i=0(τ
i
2r − ρi).

Therefore we may choose r large enough that

P[ρi <∞ | ρi−1 <∞] < 1/2 . (15)

Fix such an r. We have by the strong Markov property that

P[τ i2r − ρi > a | ρi <∞, Sρi = x] ≤ P[τ3r > a] (16)

for every a ≥ 0 and every x. Let ξ := inf{m : ρm =∞}. Then by (15) and

(16),
∑ξ−1

i=0 (τ i2r − ρi) is stochastically dominated by
∑ξ̃−1

i=0 τ
i
3r, where {τ i3r}i≥0

is a sequence of i.i.d. random variables with the same distribution as τ3r and
ξ̃ is an independent geometric random variable with mean 2.

Since LE[S] ∩ C(o, r) is covered by the set
⋃ξ−1
i=0 S[ρi, τ

i
2r] when S(0) = o,

we have

E[Nr] ≤ E
ξ̃−1∑
i=0

τ i3r = 2E[τ3r] ,

as claimed.
To bound |C(o, r)|, we need to bound the number of vertices in B(o, r)

that connect to Ray(o, r) through the WSF entirely inside B(o, r).
For x, v ∈ B(o, r), write x ∼C v for the event that v ∈ Ray(o, r) and x and

v are connected in C(o, r) via a path containing no vertices of Ray(o, r) other

12



than v. For all y ∈ B(o, r), let Ty be the hitting time of y for a simple random
walk. Let Py be the distribution of a simple random walk S starting from
y. Given {vj : 1 ≤ j ≤ N} ⊂ B(o, r), write A for the event that Ray(o, r) =
{vj : 1 ≤ j ≤ N}. For all 1 ≤ i ≤ N and {vj : 1 ≤ j ≤ N} ⊂ B(o, r),

P
[
y ∼C vi

∣∣ A] = Py
[
S hits Ray(o, r) at vi and LE[S(0, Tvi)] ⊂ B(o, r)

∣∣ A]
≤ Py

[
LE[S(0, Tvi)] ⊂ B(o, r)

]
= Pvi

[
LE[S(0, Ty)] ⊂ B(o, r)

]
,

(17)

where the last equality is by reversibility of LERW [Law13, Lemma 7.2.1].
Let Mv := |{y ∈ B(o, r) : y ∼C v}|. Then

E
[
Mvi

∣∣ A] ≤ ∑
y∈B(o,r)

Pvi
[
LE[S(0, Ty)] ⊂ B(o, r)

]
= Evi

[
|{y ∈ B(o, r) : LE[S(0, Ty)] ⊂ B(o, r)}|

]
≤ Eo

[
|{y ∈ B(o, 2r) : LE[S(0, Ty)] ⊂ B(o, 2r)}|

]
.

Let τ i4r, ρi, ξ be defined as in (13) but replacing B(o, r) and B(o, 2r) by
B(o, 2r) and B(o, 4r), respectively. Then

{
y ∈ B(o, 2r) : LE[S(0, Ty)] ⊂

B(o, 2r)
}

is covered by the set
⋃ξ−1
i=0 S[ρi, τ

i
4r] when S(0) = o. By the same

argument above that proved E[Nr] ≤ 2E[τ3r], we have

Eo
[
|{y ∈ B(o, 2r) : LE[S(0, Ty)] ⊂ B(o, 2r)}|

]
≤ 2E[τ6r] .

Therefore, writing Ray(o, r) = {vi : 1 ≤ i ≤ Nr}, we have

E
[
|C(o, r)|

]
= E

[
E
[ Nr∑
i=1

Mvi

∣∣∣ Ray(o, r)
]]

≤ 2E[τ6r]E[Nr] ≤ 4E[τ6r]
2 .
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