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Abstract. We study the minimal polynomial growth rate of finitely generated
groups in the following sense. We prove that there exist positive numbers εd such

that if G is a group either of polynomial growth of degree d, or of non-polynomial

growth, then that growth is at least εdn
d. If G is nilpotent, it suffices to assume that

the degree is at least d. We indicate an application for random walks on groups.

The growth rate of finitely generated groups is one of the most basic topics
in geometric group theory. There are three fundamental classifications of groups
in this sense: those of polynomial growth, those of exponential growth, and the
rest, called intermediate growth. These classes are all invariant under change of
generators. It is known that there are groups of exponential growth whose rate of
growth on the exponential scale is arbitrarily small for certain sets of generators,
whereas some classes of groups are known to have uniformly exponential growth
rate over all generating sets: for such a group, there is a constant c > 1 such that
for every generating set, its ball of radius n has at least cn elements; moreover,
the same c > 1 sometimes exists for an entire class of groups. See, e.g., [BT]
for results and history of exponential growth. There is much less knowledge for
groups of intermediate growth: it is not even known whether there are such groups
whose balls of radius n have asymptotically fewer than ec

√
n elements. We study

polynomial growth. This class breaks up into further classes, because if balls grow
like a polynomial in the radius, then the degree of the polynomial is invariant under
change of generators. We prove that not only is there a lower bound on the growth
rate when changing generators, but even when changing groups: there exist positive
numbers εd such that if G is a group either of polynomial growth of degree d, or of
non-polynomial growth, then that growth is at least εdn

d. As far as we are aware,
this question has not been treated in the literature before, although it is possible
that some people may have known some version of our results. Because bounds on
the growth of groups are often used in probability theory, we give an application of
our results to random walks.
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We next establish some notation. All groups in this note are assumed to be
finitely generated. Given such a group G and a finite system X of generators for it,
we let sn(G) = sn(G,X) be the number of elements of G that can be expressed as a
product of at most n elements from X ∪X−1. If there exist numbers C and d such
that sn(G) ≤ Cnd for all n, then G is said to be of polynomial growth. In that case,
the growth degree deg(G) of G is the infimum of the numbers d for which another
number C can be found such that the inequality above is satisfied. This degree is
independent of the generator system X, and can be characterized equivalently by

deg(G) := lim sup log sn(G)
logn . A celebrated theorem of Gromov states that a finitely

generated group G has polynomial growth (if and) only if G is virtually nilpotent.
If G does not have polynomial growth, then, given any numbers C and d, the
inequality sn(G) > Cnd holds for infinitely many n. In other words, the upper
limit above is infinite. Unproven statements about growth that are made below
can be found in [Ma]. However, we have given more details than customary for
algebraists in order that our proofs be more easily understood by probabilists.

In particular, we recall that if G is nilpotent of class cl(G) = c with lower
central series G = γ1(G) B γ2(G) B · · · B γc(G) B γc+1(G) = {1}, then the growth
degree can be expressed as r :=

∑c
i=1 ir(i), where r(i) is the torsion-free rank

of γi(G)/γi+1(G), i.e., the number of infinite factors in the decomposition of this
quotient as a direct sum of cyclic groups. A virtually nilpotent group has the same
growth degree as its nilpotent, finite-index subgroups. The formula shows that the
degree is an integer. Part of our proof mimics a part of the proof of that formula;
see, e.g., [Ma], p. 48. We fix a finite set X = {x1, . . . , xi, . . . } of generators of G,
and all lengths are computed with respect to this set. Several times we will use the
simple fact that if F is a normal subgroup of G, then sn(G,X) ≥ sn(G/F,XF ).

Theorem 1. Given an integer d > 0, there exists a number εd > 0 such that for
all groups G with generating sets X, if the growth of G with respect to X is either
polynomial of degree d or non-polynomial, then sn(G,X) ≥ εdnd for all n ≥ 1.

An explicit expression for εd follows from our proof. We begin with two lemmas.
Write l(z) for the length of z with respect to the generating system X, i.e., the

smallest number of terms from X ∪X−1 needed to write z as a product.

Lemma 2. If G is nilpotent and torsion-free, then r(i) ≥ 1 for 1 ≤ i ≤ c := cl(G),
and if G is not cyclic, then r(1) ≥ 2.

Proof. Suppose that r(i) = 0 for some i, and let i be the maximum such. If
i = c, then γc(G) is finite, hence trivial, contrary to the definition of c. Suppose
that i = c − 1. Let z1, . . . , zs ∈ G be a set of elements whose images generate
γc−1(G)/γc(G). They have finite order modulo γc(G) by assumption. For any
x ∈ G, [x, zt] is central, whence [x, zt]

k = [x, zkt ] = [xk, zt] for all integers k and
t ≤ s. Therefore, γc(G) is generated by commutators [xi, zj ] of finite order. Thus
also r(c) = 0, contrary to the choice of i. For a general i < c−1, dividing out γi+2(G)
and applying the same argument shows that if r(i) = 0, then also r(i + 1) = 0,
contrary to the choice of i.

Now assume that r(1) = 1. Then we can choose the set X such that only one of
the xi has infinite order modulo γ2(G). It follows that all the commutators [xi, xj ]
have finite order in γ2(G)/γ3(G). Since the images of these commutators generate
that factor group, we find that r(2) = 0. By the previous part, that means that G
is free abelian of rank r(1), i.e., infinite cyclic.
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Lemma 3. Let G be nilpotent of class c and degree d. Then there exists a set Z of
generators of γc(G) such that if z ∈ Z has an infinite order, then l(zn) ≤ (3d−1)n1/c

for all n ≥ 1.

Proof. For any set Z of generators, we have l(zn) ≤ n. Hence, the abelian case
(c = 1) is trivial, and we assume that c > 1. The proof is by induction on d. The
case d = 1 is trivial. We may assume that γc(G) is infinite, the conclusion being
vacuous otherwise. Then deg

(
G/γc(G)

)
= d − cr(c) with r(c) ≥ 1. By induction,

there exists a set P of generators of γc−1(G)/γc(G) that satisfies our requirements
in G/γc(G), and we can find a set Y of elements of G that map onto the set P
and whose lengths in G equal the lengths of their images in G/γc(G). Then γc(G)
is generated by the commutators of elements of Y by elements of X, and we take
these commutators to constitute Z.

Let x ∈ X and y ∈ Y , and put z := [x, y] ∈ Z ⊆ γc(G). Now suppose that
z has infinite order. Then so does the image p of y in G/γc(G) (if yk ∈ γc(G),
then zk = 1). Given n, let the integer m satisfy 2n1/c ≥ m > n1/c, and write
n = qmc−1 + s with q ≥ 0 and 0 ≤ s < mc−1. Then 0 ≤ q < m. By induction
applied to p ∈ G/γc(G), there exist two elements u and v of lengths ≤ Bm, with

B ≤ 3d−cr(c) − 1, such that ym
c−1

= ut, ys = vw, and t, w ∈ γc(G). Then

zn = (zm
c−1

)qzs = [xq, ut][x, vw] = [xq, u][x, v] has length at most 4Bm+ 2q+ 2 ≤
(4B + 4)m ≤ (8B + 8)n1/c ≤ (3d − 1)n1/c because cr(c) ≥ 2.

Write δd := 2−d
2

3−d
3

.

Proof of Theorem 1. Since d ≥ 1, the groupG is infinite and satisfies sn(G) ≥ 2n+1:
a path 1 = z0, z1, . . . , z2n from 1 to a point at distance 2n from 1 in the Cayley
graph of G yields 2n + 1 elements in the ball of radius n about zn. Thus for
d = 1 we may take ε1 = 2. We proceed by induction on d. If G is abelian, then
d = deg(G) = r(1) and X contains d independent elements that generate a free
abelian group H of rank d, hence sn(G) ≥ sn(H) > 2dnd/d!. We now assume that
G is not abelian, and at first we also assume that it is nilpotent, say of class c > 1.
We claim that sn(G) ≥ δdnd.

Let F be the torsion subgroup of G. Then F is finite, G and G/F have the
same growth degree, and sn(G) ≥ sn(G/F ). Thus it suffices to consider G/F , i.e.,
we may assume that G is torsion-free. Choose a set Z as in Lemma 3, let z 6= 1
be in Z, and write N := 〈z〉. Then deg(G/N) = d − c ≤ d − 1. By the lemma,
the powers zi (1 ≤ i ≤ nc) produce nc elements of length ≤ (3d − 1)n, and the
induction hypothesis supplies us with at least δd−cn

d−c elements of G of length ≤ n
that are all different modulo N . The products of these two sets of elements yield at
least δd−cn

d ≥ δd−1nd elements of length at most 3dn. That is, s3dn(G) ≥ δd−1nd.
It follows that sn(G) ≥ δd−1

(
n

2·3d
)d ≥ δdnd, as claimed.

Next assume only that G is virtually nilpotent. By Theorem 9.8 of [Ma], G
contains two normal subgroups, L and N , with L E N , such that L is finite, N/L
is nilpotent, and G/N is finite of index at most g(d), where g(d) is the maximal
order of the finite subgroups of GL(n,Z), and depends only on d. An upper bound
for g(d) was given already by Minkowski in 1887 [Mi]. One such bound is (2d)!
(see equation (16) on p. 175 of [Ne]; see also [Fe] and the remarks about g(d) on
pp. 88–89 of [Ma]).

Again it suffices to prove the result for G/L, whence we assume that L = 1.
Choose a set A of representatives for the cosets of N such that the length of each
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a ∈ A is at most g(d)− 1 (see the proof of Proposition 2.3 in [M]). Then N can be
generated by elements of the form axb−1 (a, b ∈ A and x ∈ X) of length at most
hd := 2g(d) − 1. By the previous part, N contains at least δd · ( n

2hd
)d elements of

length at most n. Thus we can take ζd := δd
(2hd)d

to play the role of εd for virtually

nilpotent groups.
Finally, if G is not virtually nilpotent, then it does not have polynomial growth.

By [ST], there exists a number Nd, depending only on d, such that sn(G) ≥ nd for

all n ≥ Nd. Take ηd to be the minimum of the numbers sk(G)
kd

for k = 1, 2, . . . , Nd
and all such G; then ηd ≥ 2/Nd−1

d because sk(G) ≥ 2k + 1. Thus, we may
take εd := min{ζd, ηd}. Although [ST] do not give an explicit value for Nd,
they say that one can be deduced from their proof and that they believe that
Nd = dexp{exp{100d100}}e works.

Sometimes we know that G is of polynomial growth, but have only a lower bound
for the degree. For that case we can prove

Theorem 4. For a positive integer d, if G is a finitely generated nilpotent group
of growth degree at least d, then sn(G) ≥ δb7d/4cnd for all n ≥ 1.

Proof. If d = 1, then G is infinite, so sn(G) ≥ n, and δ1 < 1, whence the desired
inequality holds. Thus we assume that d ≥ 2. Write r := deg(G). If r = d or if
G is abelian, the claim follows from the proof of Theorem 1. Let F be the torsion
subgroup of G. Then deg(G/F ) = deg(G) and sn(G) ≥ sn(G/F ), whence we may
assume that G is non-abelian and torsion-free. Then for c := cl(G), the inequality
r ≥ 1 +

∑c
i=1 i = 1 + c(c+ 1)/2 holds by Lemma 2, implying that c <

√
2r − 2.

Since r(1) ≥ 2 by Lemma 2, G has the free abelian group of rank 2 as a factor
group, and the theorem holds if d = 2. Now let d = 3. If r(1) ≥ 3, then G has
a factor group isomorphic to the free abelian group of rank 3, implying sn(G) ≥
δ3n

3. If r(1) = 2, then G can be generated by elements x1, x2, . . . , xt, of which
only x1 and x2 have infinite order modulo G′ = γ2(G). Then all commutators
[xi, xj ], i < j, except possibly [x1, x2], have finite order modulo γ3(G) ⊇ γ2(G)′.
If that last commutator also has a finite order, then the finitely generated abelian
group G′/γ3(G) is finite, contrary to Lemma 2. Thus that commutator has an
infinite order, and r(2) = 1. Then deg(G/γ3(G)) = 4, and sn(G) ≥ δ4n

4 ≥ δ5n
3 =

δb7d/4cn
3.

This takes care of the case d = 3, so assume that d ≥ 4. Then our claim holds
if r ≤ 7, so we assume that r ≥ 8. Let 1 6= x ∈ γc(G), and N = 〈x〉. Then
deg(G/N) = r − c. Suppose that r − c < d. If r equals 8 or 9, the inequality
c <
√

2r − 2 shows that c ≤ 3, and in both cases d > (4/7)r. For r ≥ 10, we have
c <
√

2r − 2 < (3/7)r. Then again d > (4/7)r, and sn(G) ≥ δrnr ≥ δb7d/4cnd in all
cases. It remains to establish the cases where r − c ≥ d. These cases follow from
an immediate induction on r, namely, sn(G) ≥ sn(G/N) ≥ δb7d/4cnd.

A similar proof establishes the following version of Theorem 4.

Theorem 5. Given a number α > 1, there exists an (explicitly computable) number
K = K(α) such that if G is a finitely generated nilpotent group of growth degree at
least d ≥ K, then sn(G) ≥ δbαdcnd for all n ≥ 1.

Proof. Choose K = K(α) such that if r ≥ K, then r −
√

2r − 2 ≥ r/α. We may
assume that G is torsion-free. The theorem is clear for r ≤ bαdc. With the previous
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notations, the inequality c <
√

2r − 2 holds. If r − c < d, then r ≤ αd, and our
claim holds. Finally, by induction it holds, as above, for r − c ≥ d.

Unfortunately, we could not establish some natural extensions of our results.
Does Theorem 4 hold without the assumption that G is nilpotent, i.e., assuming
only that G has polynomial growth? For each n, what is the minimum of sn(G,X)
over all groups G of growth degree d or of growth degree at least d? Which (G,X)
attain that minimum? Do our results extend to vertex-transitive graphs?

We now give an application to probability of the above lower bounds. Given
(G,X), define ∆ := |X ∪X−1|. Assume that 1 /∈ X. Consider lazy simple random
walk on G, the Markov chain whose transition probabilities from y ∈ G to z ∈ G
are

p(y, z) =


1/(2∆) if z ∈ y(X ∪X−1),

1/2 if y = z,

0 otherwise.

We write pt(y, z) for the t-step transition probabilities. The following is a special
case of Corollary 6.6 of [LOG]:

Proposition 6. If C, d > 0 are such that sn(G,X) ≥ Cnd for all n ≥ 1, then for
all y, z ∈ G and t ≥ 1,

pt(y, z) ≤ pt(y, y) ≤ 8d(d+5)/2∆d/2

Ced/2
t−d/2.

Combining this with our previous theorems above yields several corollaries, such
as this:

Corollary 7. Given an integer d > 0, there exists a number εd > 0 such that for
all groups G with generating sets X, if the growth of G with respect to X is either
polynomial of degree d or non-polynomial, then for all y, z ∈ G and t ≥ 1,

pt(y, z) ≤ pt(y, y) ≤ 8d(d+5)/2∆d/2

εded/2
t−d/2,

where ∆ := |X ∪X−1|.

Because bounds on pt are used extensively, such results can be used to give
universal bounds for other quantities in probability.

Acknowledgments. We are grateful to Emmanuel Breuillard and David Fisher
for discussions.
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