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Abstract. Consider continuous-time random walks on Cayley graphs where

the rate assigned to each edge depends only on the corresponding generator.
We show that the limiting speed is monotone increasing in the rates for infinite
Cayley graphs that arise from Coxeter systems, but not for all Cayley graphs.

On finite Cayley graphs, we show that the distance — in various senses — to
stationarity is monotone decreasing in the rates for Coxeter systems and for
abelian groups, but not for all Cayley graphs. We also find several examples of
surprising behaviour in the dependence of the distance to stationarity on the
rates. This includes a counterexample to a conjecture on entropy of Benjamini,

Lyons, and Schramm. We also show that the expected distance at any fixed
time for random walks on Z+ is monotone increasing in the rates for arbitrary
rate functions, which is not true on all of Z. Various intermediate results are

also of interest.

1. Introduction

We are interested in questions arising from the following scenario. Consider a
connected, undirected graph G with each edge e labelled by a nonnegative real
number r(e). A random walk is defined on this graph by associating a Poisson
process (“clock”) with rate r(e) to each edge e. When this clock rings, if the
walker is at either neighbouring vertex, then it moves along the edge e to the other
vertex; otherwise it does not move. We choose the convention that the walk is
left-continuous in time, which will be more convenient to describe our couplings.
Note that if G is finite, then the stationary distribution of this walk is uniform.

Monotonicity in time or in the rate function r := r(·) of the behaviour of such a
random walk is complicated and not always intuitive, primarily because increasing
r(e) not only makes the walk more likely to cross e when at each of its endpoints,
but also because it moves the walk sooner in both directions of traversing e. Let
pt(x, y) be the transition probability from x to y at time t. Note that changing the
rate function by a constant factor α is equivalent to changing the time t to α · t.
When x = y and t is fixed, there are examples where pt(x, x) is not monotone in
the rate function (one such is given here in Example 4.7). Nevertheless, if G is
finite, then the average of pt(x, x) over all vertices x of G is monotone, as shown by
Benjamini and Schramm [17, Theorem 3.1]. In particular, if the graph with rates is
vertex-transitive, then pt(x, x) is monotone decreasing in the rates. This result was
extended in various ways by [14, 23, 1, 29, 24], but all such extensions concerned
only return probabilities.
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In a different direction, Karlin and McGregor [22, equation (45)] considered
continuous-time random walks on Z+ := {0, 1, 2, . . . } with arbitrary, symmetric
rate functions. It follows from their result that for each n ≥ 1, the time to reach n
from 0 stochastically decreases in r. Indeed, they gave an explicit representation
of that time as the sum of n independent, exponential random variables whose
rates are the nonzero eigenvalues of the (n + 1) × (n + 1) tridiagonal Laplacian
matrix ∆, where ∆(i, i) := r(i, i + 1) + r(i, i − 1), ∆(i, i + 1) := −r(i, i + 1),
∆(i, i− 1) := −r(i, i− 1), and all other entries are 0. Because ∆ itself is monotone
increasing in r in the Loewner order, its eigenvalues are also increasing in the rate
function. (This monotonicity is also what is behind all the results mentioned above
on the return probabilities. We note that [22, equation (45)] holds for more general
birth and death chains; [21] gives a representation of transition probabilities via
orthogonal polynomials.) See also [12, 10, 11, 27] for other proofs and extensions of
the representation [22, equation (45)].

We are motivated by the following observation [25, Exercise 13.24]: If the 3-
regular tree is regarded as the standard Cayley graph of the free product of 3 copies
of Z/2Z, and the rates on all edges are 1 except for those corresponding to a fixed
generator, where the rates are ρ, then the limiting rate of escape (i.e., the graph
distance from the starting point divided by the time as time tends to infinity) is

(
3ρ(ρ+ 1) + (1− ρ)

√
16ρ+ 9ρ2

)/(
2(2 + ρ)

)
a.s.

What is interesting about this formula is that it is monotone increasing in ρ, but that
this fact is not obvious. Is there a more intuitive explanation for such monotonicity?
One might attempt to answer this via a coupling of two such random walks, where
one is always at distance at least as great as the other, but no such coupling can
be Markovian. In fact, even non-Markovian couplings cannot always have this
property: see Proposition 2.38. Other questions of interest include these: For rates
that depend only on the generators for the free product of more copies of Z/2Z,
does monotonicity still hold? What about other Cayley graphs? What about other
aspects of the random walk behaviour? For example, on a finite graph if some of the
rates are increased, does this necessarily improve the convergence to the stationary
(uniform) distribution? How does the total time spent at each vertex depend on the
rates?

Consider a Cayley graph G of a group Γ generated by a finite set S ⊂ Γ. Write
o for the identity element and |x| for the graph distance between o and x. Given
rs > 0 for each s ∈ S, let r(e) := rs when e is an edge of G corresponding to s ∈ S.
Throughout this paper, we will assume that generating sets are symmetric — that
is, if s is a generator then so is s−1, and that the corresponding rates rs and rs−1

are equal.
Let (Zt)t≥0 be the corresponding random walk starting from o and σ(r) :=

limt→∞E
[
|Zt|

]
/t be its limiting speed. This limit exists by a well-known subadditiv-

ity argument; the subadditive ergodic theorem also shows that limt→∞ |Zt|/t = σ(r)
a.s. Our main result for infinite graphs is the following:

Theorem 1.1. If (Γ, S) is a Coxeter system, then σ(r) is monotone increasing in r.
If (Γ, S) is irreducible and nonelementary hyperbolic, then σ(r) is strictly increasing
in r.



MONOTONICITY FOR CONTINUOUS-TIME RANDOM WALKS 3

See Corollary 2.20 and Theorem 2.34 for the proofs. Cayley graphs that are trees
are examples of Cayley graphs that arise from Coxeter systems. The theorem does
not extend to all Cayley graphs: see Example 2.14.

We then consider finite Cayley graphs and examine the convergence to stationarity.
It is plausible that increasing some of the rates might always improve the convergence
to the stationary distribution (which is the uniform distribution), but this is not
true in general. Our main positive result on this topic is the following:

Theorem 1.2. Let (Γ, S) be a finite Coxeter system. Let r and r′ be two sets of
rates on S with rs ≤ r′s for all s ∈ S. Let t > 0. Denote the corresponding transition
probabilities by pt(x, y; r) and pt(x, y; r′). Then pt(o, ·; r) majorizes pt(o, ·; r′) with
inequality if r 6= r′.

This implies that increasing rates leads to distributions that are closer to the
stationary distribution in many senses, including `p for 1 ≤ p ≤ ∞ and relative
entropy. See Definition 3.4 for the definition of majorization and Theorem 3.9 for
the proof. The edge graph of the permutohedron is an example of a Coxeter Cayley
graph, where Γ is a symmetric group. For certain special Markov chains in discrete
time, a much stronger inequality for total variation distance was proved by [13,
Theorem 8.3], which slightly extended a result of [28]. Similar strong inequalities
using what we call refresh rings hold in our context as well: see Theorems 2.22 and
3.10.

Despite the impossibility of “perfect” couplings, Markovian couplings will be
crucial to our proofs of Theorems 1.1 and 1.2.

In Section 3, we prove results of this kind for some other special cases, such
as for every Cayley graph of an abelian group, or for any group when distance
from stationarity is measured with either the `2- or `∞-distance. We then discuss
examples where increasing a rate worsens the distance to stationarity, which we find
in the Cayley graphs of groups as small as the dihedral group D5 and the symmetric
group S4. How easy it is to find these examples depends on which `p-distance is
used to measure the distance to stationarity. For instance, we find examples in
dihedral groups for p very close to 4, both above and below 4, but are unable to find
any for p equal to 4. In the symmetric group S5, we do find examples for p exactly
equal to 4. Hermon and Kozma [18] find examples of generating sets for symmetric
groups where increasing some rates by a tiny amount has the effect of increasing
the mixing time by a large amount, which also means that the `1-distance increases
by a large amount. Their examples have unbounded degree as the size of the group
tends to infinity.

A third result goes beyond the setting of Cayley graphs and concerns arbitrary
rate functions r, but is restricted to the ray graph, i.e., the nearest-neighbor graph
on Z+. Our result complements that of Karlin and McGregor given above.

Theorem 1.3. With r being an arbitrary positive rate function on the edges of the
nearest-neighbor graph on Z+ and t > 0, E

[
|Zt|

]
is monotone increasing in r.

See Corollary 4.4 for the proof. The theorem does not extend to walks on all of
Z: see Example 4.7.

Another aspect of the behaviour of random walk concerns the entropy: Let
ht(x, r) be the (natural-log) entropy of Zt when started at vertex x. The following
conjecture [2, Conjecture 4.11] turns out to be false:
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Conjecture 1.4. Let G be a finite graph and t > 0. Then |V (G)|−1
∑
x∈V (G) ht(x, r)

is monotone increasing in r.

For a counterexample, let G be a star with 6 vertices, all edges but one having
rate 1 and the other having rate either 10 or 20. Direct calculation shows that
the mean entropies at time 1 are, respectively, approximately 1.626355024 and
1.626293845. Theorem 1.2 implies that the conjecture does hold for rates depending
on generators in the setting of Coxeter systems, but changing the generators, even
on dihedral groups, can make it fail: see Subsection 3.2. However, for the purposes
of [2], it would suffice that there be a lower bound on the factor by which the mean
entropy can decrease; we do not know whether this weakened statement is true.

Other monotonicity results for random walks include [30] and [26], which study
monotonicity in time of pt(x, y)/pt(x, x), and [8], which studies the expected range
of symmetric random walks on Zd when extra steps are included deterministically.

2. Coxeter systems

2.1. Background on Coxeter systems. A Coxeter system (W,S) is a group

W with generators S defined by a presentation of the form 〈S | ∀s, s′ ∈ S (ss′)m(s,s′)〉,
where each m(s, s′) is either a positive integer or ∞. Each m(s, s) is equal to 1,
and m(s, s′) ≥ 2 for s 6= s′. When m(s, s′) = ∞, the interpretation is that no
such relation is imposed. In particular, all generators are involutions. Furthermore,
m(s, s′) ∈ {1, 2} iff s and s′ commute. As always in this paper, we assume that S is
finite. It is customary to denote Coxeter groups with the letter W (for “Weyl”),
and we will do that in order to make it easier to discern which of our results apply
to Coxeter groups. Coxeter groups are abstractions of reflection groups; dihedral
and symmetric groups are simple examples. Section 1.2 of [3] is devoted to these
and other examples.

We always use right Cayley graphs: the vertex set is a group Γ and the
unoriented edges are

{
{x, xs} ; x ∈ Γ, s ∈ S

}
. One could use multigraphs, but

nothing would change for our questions of interest. The Cayley diagram of a
group Γ with generators S is the corresponding Cayley graph with edges labelled
by the corresponding generator; if the generator is not an involution, then also the
edge is given an orientation so that multiplication (on the right) by the generator
maps the tail of the edge to the head. For γ ∈ Γ, we write Lγ for left multiplication
by γ, which is an automorphism of the Cayley diagram of Γ.

If (W,S) is a Coxeter system, then the Cayley graph of W with respect to S
has many nice symmetry properties. One simple property is that the Cayley graph
is bipartite, because all relations give even-length cycles. When G is a bipartite
Cayley graph and L is a left multiplication that interchanges the endpoints of some
edge, then we call L a reflection . We also call the set M of edges preserved by
L a wall , a hyperplane , or a mirror . A key property for our purposes is the
following, which will allow us to use arguments akin to the well-known reflection
principle for one-dimensional random walks and Brownian motion.

Lemma 2.1. Let w and ws be two adjacent vertices in the Cayley graph of a
Coxeter system, (W,S). Let M be the set of edges preserved by the automorphism
L := Lwsw−1 . The map L interchanges the endpoints of each edge of M . The
wall M separates the vertices closer to w from those closer to ws. Suppose that
|w| < |ws|; then for all v ∈W , v is closer to w than to ws iff |v| < |Lv|.
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These properties of walls are well known, but not all are easy to find explicitly
stated in this form. Because they are crucial to our results, we provide a proof.
Denote the shortest-path metric in a graph by dist.

Proof. Let G be the Cayley graph. Refer to vertices closer to w than to ws as white
and the others as black; also, call an edge grey if its endpoints have different colours.
If y is white and z is black, then every path from y to z must include a grey edge.

Merely because G is a bipartite graph, no vertex is equidistant from w and
ws. Because L preserves distances and interchanges w and ws, it therefore also
interchanges white and black vertices. In particular, every preserved edge is grey,
and the endpoints of grey edges are interchanged. We need to use more than
bipartiteness to show that all grey edges belong to the wall.

Let (x, xs′) be a grey edge with x white. First, merely by bipartiteness, dist(w, x) =
dist(ws, xs′). We may write this last conclusion as |w−1x| = |sw−1xs′|. Suppose
that w is a reduced word for w−1x. Then sws′ is a longer word that, when reduced,
has the same length as w. By the deletion condition of Coxeter systems ([3, Propo-
sition 1.4.7], [19, Corollary 5.8], or [9, Theorem 3.2.17]), there are two letters from
sws′ that can be deleted in order to obtain a reduced word for the same element.
Since x is white and ws is black, |sw−1x| = |w−1x|+ 1, and so the word sw must
be reduced; similarly, the word ws′ is reduced. Checking cases then reveals that the
two letters to delete must be the initial s and the final s′, which yields the word w.
In other words, sw−1xs′ = w−1x. Another way to say this is that Lwsw−1x = xs′.
In particular, (x, xs′) belongs to the wall, as claimed.

Finally, suppose that o is white. If v is white, then let (x, xs′) ∈ M be an
edge belonging to a geodesic from o to Lv. We have |v| ≤ dist(o, x) + dist(x, v) =
dist(o, x) + dist(xs′, Lv) = |Lv| − 1 < |Lv|. If v is, instead, black, then Lv is white,
so |Lv| < |L(Lv)| = |v|. �

Corollary 2.2. Let (W,S) be a Coxeter system. The set of reflections equals the
set of left multiplications Lwsw−1 for w ∈W and s ∈ S. If a, b ∈ S and w, x ∈W ,
then (w,wa) and (x, xb) belong to the same wall iff waw−1 = xbx−1.

Proof. It is clear that Lwsw−1 interchanges the endpoints of the edge (w,ws), and,
conversely, if Lγ interchanges those endpoints, then γw = ws, i.e., γ = wsw−1.
For the last statement in the corollary, if the two edges belong to the same wall,
defined, say, by a reflection Lγ , then by Lemma 2.1, γw = wa and γx = xb, whence
waw−1 = γ = xbx−1. The converse is proved similarly. �

Thus, there is a natural bijection between reflections and walls. We will identify
a wall M with the (disconnected) graph formed by the edges E(M) in the wall and
their endpoints V (M).

In the case of a free Coxeter group (i.e., the free product of copies of Z/2Z), whose
Cayley graph is a tree, walls are the same as single edges. Figure 2.1 shows the Cayley
diagram of the Coxeter group 〈a, b, c | a2, b2, c2, (ab)7, (bc)2, (ca)3〉 corresponding
to reflections in the sides of a hyperbolic triangle of angles (π/2, π/3, π/7). Each
white geodesic crosses through the edges of a wall. Note that in this case, each wall
contains edges corresponding to each of the three generators.

When we prove strict monotonicity of speed in the rates, we will need the following
three lemmas, the first two of which are well known.
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Figure 2.1. A portion of the Cayley graph of the (2, 3, 7)-triangle group, drawn by
Matthias Weber. Edges are coloured red, light blue, or light brown according to the
corresponding generator. Each dark blue face corresponds to a relation. Each white
geodesic corresponds to a wall.

Lemma 2.3. Let M be a wall in a Coxeter Cayley graph. Then every geodesic uses
at most one edge in M .

Proof. It suffices to show that if (w,wa), (v, vb) ∈M both belong to a path from w
to v, then there is a shorter path from w to v. Indeed, if P is a subpath from wa to
vb, then the path obtained from P by applying the reflection in M is a path from w
to v that is shorter by at least two edges. �

Lemma 2.4. Let (W,S) be a Coxeter system. There is some finite K such that for
every wall M , every geodesic between two vertices of M stays within distance K of
M .

Proof. By the parallel-wall theorem of Brink and Howlett ([4] or [7, Theorem C]),
there is some K so that for any pair (w,M) where w is a vertex at distance at least
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K from a wall M , there is some other wall M ′ 6= M that separates w from M . By
Lemma 2.3, no geodesic between vertices of M can cross M ′, whence it cannot go
farther than K from M . �

Lemma 2.5. Let M be a wall in a Coxeter system (W,S). Let WM := {w ∈
W ; LwV (M) = V (M)}. Then WM acts quasi-transitively by graph automorphisms
of M , in other words, there are only finitely many orbits in V (M) under the left
action of WM . Moreover, the orbit of w ∈ V (M) is {v ∈ V (M) ; (v, vs) ∈ E(M)},
where s is the generator for which (w,ws) ∈ E(M).

Proof. Suppose that (w,ws), (v, vs) ∈ E(M). Clearly Lvw−1 carries the first edge
to the second. We claim that vw−1 ∈WM . To prove our claim, let (x, xa) ∈ E(M).
We have wsw−1 = vsv−1 = xax−1 by Corollary 2.2, whence vw−1xa(vw−1x)−1 =
vsv−1, so that indeed (vw−1x, vw−1xa) ∈ E(M). Therefore, for each pair of edges
in M corresponding to the same generator, there is an element of WM that takes
one edge to the other. Since S is finite, it follows that this action is quasi-transitive.
Finally, since left multiplications preserve the Cayley diagram, the orbit of w cannot
be any larger than what is claimed. �

2.2. Monotonicity of speed. A key technical device we will use to construct our
couplings is the following alternative way to generate our random walks.

Definition 2.6. If an edge e has an attached Poisson clock of rate r, we will
generally consider this process as being controlled by a Poisson clock of rate 2r,
and when this new clock rings, there is a 1

2 chance that the original clock rings,
otherwise nothing happens. We will reserve the upper case R (for “refresh time”) for
this Poisson process of twice the rate, with subscripts denoting the edge in question,
for instance, Re. We may use a fair coin flip to decide whether the original clock
rings; if so, we will say the coin flip is “move”, otherwise that the coin flip is “stay”.
Alternatively, if the walk is at an endpoint of e at the time that Re rings, then we
may randomise the walk immediately after that ring to be at either endpoint of e
with equal probability. In the case of Cayley graphs where the rates depend only
on the generators, we observe that it suffices to use only one Poisson process per
generator rather than one per edge; we then use a subscript corresponding to the
generator.

Although our goal is Theorem 1.1, we begin for concreteness and clarity with a
specific example, the 3-regular tree.

Example 2.7. Consider the 3-regular tree as the Cayley graph of the group
〈a, b, c | a2, b2, c2〉, so that each edge is associated to one of the three generators, a,
b, or c. Choose rates ra, rb and rc for each generator, and use those as the rates for
each corresponding edge.

It is well known that the random walk of Example 2.7 is transient if and only if
all three rates are positive.

Before we can discuss the dependence of the escape speed on the rates ra, rb,
and rc, we need some preliminary results.

Proposition 2.8. Consider Example 2.7. If w and w′ are two adjacent vertices
with w closer to the initial position than w′, then for all t > 0, we have P[Zt =
w] > P[Zt = w′].
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Proof. Without loss of generality, assume that the edge between w and w′ is labelled
by the generator a, so that w′ = wa.

We prove our result by giving a probability-preserving injection from paths (of
the random walk up to time t) resulting in w′ to paths resulting in w. For any
path that ends at w′, let T be the first time ≤ t at which the path is at w and Ra
rings. Modify the path by changing the outcome of the coin flip attached to this
ring of Ra, and proceed with the rest of the path by multiplying by a, b, or c when
appropriate, not changing any of the other rings of the Poisson processes or the coin
flips. This has the effect of applying the reflection Lwaw−1 to each state after time
T , so paths that ended at w′ now end at w.

Indeed, this map is a probability-preserving bijection from paths that ever cross
the edge from w to w′ and end at w′ to paths that end at w and are at w at
some ring of Ra. Crucially, it is impossible to get to w′ without crossing the edge
(w,w′), and hence without being at w when Ra rings. However, there is a positive
probability that the walk ends at w without ever being at w when Ra rings, giving
our strict inequality. �

Proposition 2.8 actually has a much shorter proof: Let τ := inf{t > 0 ; Zt = w},
and let pt(x, y) denote the transition probabilities of Zt. Then

P[Zt = w′] = E
[
P[Zt = w′ | τ ]

]
= E[pt−τ (w,w′) ; τ < t]

< E[pt−τ (w,w) ; τ < t] = P[Zt = w]

(compare (3.13)). The reason we did not give this proof is that Proposition 2.8 may
be generalised to the Cayley graph of any Coxeter system, but not with this short
proof. This generalisation is a continuous-time version of Theorem 1 of [34], and
the proof is essentially the same. If M is a wall, let us call a time t an M-refresh
time for our random walk if Zt ∈M and the refresh clock Ra rings at time t, where
a is the generator such that (Zt, Zta) ∈M . The main difference between the case
of trees and the general case of Coxeter systems is that in the tree, every path that
reaches w′ must cross the edge between w and w′. In a general Coxeter system,
this is no longer the case, so instead we need to consider the steps at which the
walk might move from a state closer to w to one closer to w′, in other words, the
M -refresh times for the wall determined by (w,w′).

Theorem 2.9. Let (W,S) be a Coxeter system. To each generator s ∈ S, attach a
Poisson clock of rate rs. Consider a random walk starting at the identity that moves
from a current location w to ws when the s-clock rings. If w and w′ are two adjacent
vertices with |w| < |w′|, then for all t > 0, we have P[Zt = w] > P[Zt = w′].

Proof. Let w′ = wa. We follow the proof of Proposition 2.8 in this more general
setting.

Fix t > 0. We construct a probability-preserving injection from paths of the
random walk resulting in w′ to paths resulting in w. Let M be the wall determined
by (w,w′) and LM be the reflection in M . Let T be the first M -refresh time.

For a path ending at w′ at time t, we have T < t. Modify such a path by changing
the outcome of the coin flip attached to the refresh ring at time T , and proceed
with the rest of the path by leaving the remaining sequence of refresh rings and
coin flips unchanged. This has the effect of applying the reflection LM to each state
after time T , so paths that ended at w′ now end at w.
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This map is a probability-preserving bijection from the set of paths that end at
w′ at time t to the set of paths that end at w at time t and that have T < t. There
is a positive probability that the walk ends at w without taking such a path, giving
our strict inequality. �

Remark 2.10. Let (ui) be any sequence of times and (ai) be any sequence of
generators. Note that Theorem 2.9 remains true if the random walk is conditioned
to have Rai ring at time ui for each i. The same holds if, in addition, we condition
that Rs has no other rings for certain generators s up to time t. (Critically, Rai
is the refresh clock of Definition 2.6, not the clock that always multiplies by the
generator ai.)

The proof is unchanged, because the constructed injection preserves the times at
which each Rs rings.

We can express our argument in another way. The location Zt is a function
of the times and generators of the refresh rings that occur before time t and the
results of the corresponding coin flips. Let a coin flip 0 represent “stay” and 1
represent “move”. For s ∈ S, let ξ(s, 0) be the identity element and ξ(s, 1) := s.
Given sequences s = (s1, . . . , sn) ∈ Sn and b = (b1, . . . , bn) ∈ {0, 1}n, let

ξ(s,b) := ξ(s1, b1)ξ(s2, b2) · · · ξ(sn, bn) ∈W.

Thus, if s gives the sequence of generators whose refresh rings occur before time
t and b is the corresponding sequence of coin flips, we have Zt = ξ(s,b). For any
sequence (a1, . . . , an) and 0 ≤ k ≤ n, write (a1, . . . , an)k for the initial segment
(a1, . . . , ak). Our argument shows the following, which also easily implies Theorem
2.9:

Theorem 2.11. Let (W,S) be a Coxeter system. Let s = (s1, . . . , sn) be a finite
sequence from S. Let C = (C1, . . . , Cn) be independent, uniform {0, 1}-valued
random variables. If w and w′ are two adjacent vertices with |w| < |w′|, then
P[ξ(s,C) = w] ≥ P[ξ(s,C) = w′].

Proof. Let M be the wall determined by (w,w′) and LM be the reflection in M .
Given b = (b1, . . . , bn), define b′ := (b1, . . . , bj , 1 − bj+1, bj+2, . . . , bn) if there is
some k < n such that ξ(sk,bk) ∈M and j is the smallest such index, while b′ := b
if there is no such k. Note that (b′)′ = b. Thus, b 7→ b′ is a permutation of {0, 1}n
with the property that ξ(s,b′) = LMξ(s,b) iff b′ 6= b. In particular, ξ(s,C) = w′

implies ξ(s,C′) = w. Since C′ has the same distribution as C, the inequality
follows. �

We will now construct a Cayley graph where the conclusion of Theorem 2.9 fails.

Example 2.12. Consider the cyclic group Z/8Z, with generators ±1, ±2, and ±3.
Let the rates be chosen so that r1 = r3 are small and r2 = 1. At time 2, there is
a reasonable chance that the 2-clock has rung exactly twice and the −2-clock has
not rung, and the ±1-clocks and ±3-clocks are unlikely to have yet rung. Then the
walker, started at 0, is more likely to be at 4 than at 3, even though 4 is distance 2
from 0, 3 is distance 1, and there is an edge between 3 and 4. Thus, Proposition
2.8 is not true in this setting.

The issue here is that while the vertices 3 and 4 are connected by an edge, and 4
is farther from 0 than 3 is, we have made this edge less likely than others, and there
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are paths from 0 to 4 that do not need such an unlikely edge. In the Coxeter-system
setting, this cannot happen according to Theorem 2.9.

We may also modify this example so that the expected distance is not monotone
in time; a discrete-time example of this phenomenon is due to Oded Schramm [25,
Exercise 13.16(b)].

Example 2.13. Adjust Example 2.12 so that the group is Z/2nZ, with n at least
5. Take as generators ±2 and every odd number, with ±2 having high rates and
the odd numbers having low rates.

After a time chosen so that the ±2-clocks have rung many times and the odd
generator-clocks are unlikely to have rung, the walker is close to uniformly distributed
on the even numbers, with expected distance from 0 close to 2 − 4

n . After much
more time, the walker will be close to uniformly distributed on all 2n states, with
expected distance close to 3

2 −
2
n . Thus, the expected distance is not monotone.

This allows us to produce an example where the escape speed is not monotone in
the rates.

Example 2.14. Take the free product of Example 2.13 with Z/2Z, using the same
generators as in that example, and one new generator a for the new factor of Z/2Z.
Then the escape speed is not monotone in the rates r2 = r−2 and ro associated,
respectively, to ±2 and the odd generators of the Z/2nZ factor.

Proof. Take the rate ra to be 1, r2 to be very large, ro to be 0, and n to be large.
Then the walker moves through copies of Example 2.13 at rate 1, backtracking
only with rate proportional to 1

n , and the average distance between entry and exit

points in each copy of Z/2nZ is 2 − 4
n − or2(1). Therefore the escape speed is

3−O( 1
n )− or2(1).

Now, increase the rate ro to be as large as r2. The average distance between
entry and exit points of each copy of Z/2nZ is now only 3

2 −
2
n − or2(1), so the

escape speed has decreased to 5
2 −O( 1

n )− or2(1). �

Remark 2.15. This example can be modified so that the escape speed is not
monotone, either increasing or decreasing, in each rate separately, even for a rate
on an involution.

The result of Example 2.14 should not necessarily be surprising — the graph
distance is calculated using all edges, regardless of associated rates, so we shouldn’t
expect this necessarily to be a terribly meaningful quantity when it is affected by
edges of very low rates. The following results start with trees, where this cannot
occur, and we then show that Cayley graphs of Coxeter systems are symmetric
enough that our results still apply. (While Examples 2.13 and 2.14 could equally well
be implemented in Coxeter groups, replacing finite cyclic groups and Z with finite and
infinite dihedral groups, the generators required would not be the Coxeter generators.
Our results for Coxeter groups require that the generating set is composed of the
Coxeter generators.)

We now return to settings Example 2.7.

Proposition 2.16. Let t1 be an arbitrary time, and let s ∈ S be one of the
generators. Consider the following two random processes:

(1) Run an instance Z1 of the random walk of Example 2.7.
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(2) Run a separate instance Z2 of the random walk of Example 2.7 until time
t1, then trigger Rs at the (deterministic) time t1, and then continue to run
the random walk.

These two processes may be coupled so that at all times t > t1, either they are in the
same state or the second walker is farther from the origin than the first is.

Proof. Given Z1, we will construct Z2 via a special coupling to Z1. Let A :=
{w ; |w| < |ws|}. Define γ to be the random vertex such that Z1

t1 ∈ {γ, γs}
with γ ∈ A. Couple Z1 and Z2 up to time t1 to be independent conditional that
Z2
t1 ∈ {γ, γs}, which is possible because Z1 and Z2 have the same law up to time

t1. For all w ∈ A, Proposition 2.8 gives us that

(2.17) P[Z1
t1 = γ | γ = w] =

P[Z1
t1 = w]

P[Z1
t1 = w] + P[Z1

t1 = ws]
>

1

2
.

We need Z2
t+1

to be uniformly distributed in {γ, γs} independently of (Z2
t )0≤t≤t1

conditional on γ. We may ensure this by letting Z2
t+1

equal γs whenever Z1
t1 = γs,

and sometimes even when Z1
t1 = γ; this is possible in light of (2.17) and maintains

the required independence by the first step in our construction of Z2. We have now
achieved that |Z1

t1 | ≤ |Z
2
t+1
|.

In case |Z1
t1 | = |Z

2
t+1
| (which has probability 2 P[Z1

t1 = γs]), we couple the two

processes so that they stay together at all times after t1. Otherwise, we couple them
after time t1 so that the second is the first reflected by Lγsγ−1 (which is true at

time t+1 ), until and unless they would move across the edge between γ and γs, in
which case we couple the Rs-coin flips so that the walks agree from then on.

For any time t > t1, this results in either the two processes being at the same
vertex at time t, or the first being at a vertex v that is closer to γ than to γs, and
the second being at Lγsγ−1(v). In this case, v is closer to the initial state than
Lγsγ−1(v) is by Lemma 2.1. �

Remark 2.18. As with Remark 2.10, let (ui) be any sequence of times in [0,∞)\{t1}
and (ai) be any sequence of generators. Proposition 2.16 remains true if the processes
Z1 and Z2 are each conditioned to have Rai ring at time ui for each i. The same
holds if, in addition, we condition that Rs has no other rings up to any given time
t2 for the process Z1.

The proof is unchanged, except for applying Remark 2.10 when we invoke
Proposition 2.8.

Corollary 2.19. The escape speed in Example 2.7 is nondecreasing in the rates ra,
rb, and rc.

Proof. By symmetry, it suffices to show that the escape speed is nondecreasing in ra.
It suffices for this to show that E

[
|Zt|

]
is nondecreasing in ra for every time t. But

increasing the rate ra just results in extra instances of Ra, so this is a consequence
of Proposition 2.16 as follows.

Let (Xt) be our random walk and (Yt) be the random walk where the rate ra
has been increased. We may couple X and Y so that they have the same Ra, Rb,
and Rc rings at the same times, except that Y has some random number Nt of
additional rings of Ra up to time t. For each i between 0 and Nt, let Xi be the
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random walk which agrees with X except that it has the first i of these additional
rings of Ra, so that X0 = X and XN = Y .

For each i, we may use Proposition 2.16 to couple Xi and Xi+1 so that at time
t the walk Xi+1 is at least as far from the origin as Xi is. Because Xi+1 has
Ra-rings at the times that Xi does, this application of Proposition 2.16 requires
the observation of Remark 2.18; we are also conditioning on the time of the extra
Ra-ring. Combining these couplings gives a coupling between X = X0 and XN = Y
where at time t the walk Y is at least as far from the origin as X is. �

As with Proposition 2.8, these results also apply to walks on the Cayley graphs
of Coxeter systems.

Corollary 2.20. The result of Proposition 2.16 is true for the Cayley graph of a
Coxeter system, as is Corollary 2.19.

Proof. This result follows from Theorem 2.9 in the same way as Proposition 2.16
and Corollary 2.19 follow from Proposition 2.8, with a single change: in the proof
of Proposition 2.16, the phrase

“until and unless they would move across the edge between γ and γs, in which case
we couple the Rs-coin flips . . . ”

should be replaced by

“until and unless they would move across an edge (x, xb) in the wall determined by
(γ, γs), in which case we couple the Rb-coin flips . . . ”. �

Remark 2.21. A superficially more general result is that Corollary 2.20 holds for
Cayley graphs of presentations

Γ := 〈S1, S2 | ∀s1 ∈ S1 ∀s ∈ S1 ∪ S2 (s1s)
n(s1,s), ∀s2 ∈ S2 s

2n(s2)
2 〉,

where each n(s1, s) and n(s2) is either a positive integer or ∞, each n(s1, s1) is
equal to 1, and n(s1, s) ≥ 2 for s1 6= s. To see why Corollary 2.20 holds for such Γ,
let S̄2 be a copy of S2 and write s2 7→ s̄2 for a bijection from S2 → S̄2. Consider
the Coxeter system W := 〈S1, S2, S̄2 | ∀s, s′ ∈ S1 ∪ S2 ∪ S̄2 (ss′)m(s,s′)〉 with
m(s1, s2) := n(s1, s2) =: m(s1, s̄2) when s1 ∈ S1 and s2 ∈ S2, m(s1, s

′
1) := n(s1, s

′
1)

when s1, s
′
1 ∈ S1, and, finally, m(s2, s2) = m(s̄2, s̄2) = 1 and m(s2, s̄2) := n(s2)

when s2 ∈ S2. The Cayley graphs of Γ and W are the same, but to get the unoriented
Cayley diagram of Γ from that of W , replace each label s̄2 with the label s2. As
long as the generator rates for a random walk on W have the property that the rate
for s̄2 is the same as the rate for s2, then the random walks on the two diagrams
have the same law. The simplest case is when S1 = ∅ and n ≡ ∞ on S2, in which
case Γ is a free group with free generators.

Similarly to Theorem 2.11, we may deduce from our arguments the following,
which also easily implies Corollary 2.20:

Theorem 2.22. Let (W,S) be a Coxeter system. Let s and s′ be finite sequences
from S of lengths n and n′, respectively, with s a proper subsequence of s′. Let C be
a Bernoulli(1/2) process. Then E

[
|ξ(s′,Cn′)|

]
≥ E

[
|ξ(s,Cn)|

]
. �
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2.3. Strict monotonicity of speed. Corollaries 2.19 and 2.20 show that the
escape speed is an increasing function of the rates rs, for each generator s. We now
consider the question of whether this function is strictly increasing. First, we give
an example where this is not the case.

Example 2.23. Consider the Coxeter system

〈a, b, c | a2, b2, c2〉 × 〈d | d2〉.
This group is the direct product of a free Coxeter group, whose Cayley graph is the
3-regular tree, and the two-element group. Increasing the rate rd does not change
the escape speed of the random walk. As long as the three rates ra, rb, and rc are
all positive, increasing any of them does increase the escape speed, but the escape
speed is zero if one of those three rates is zero.

More generally, we have the following behaviour in product groups:

Proposition 2.24. Suppose that Γi is generated by Si and has identity element
oi for i = 1, 2, and let ri : Si → [0,∞). Then for Γ := Γ1 × Γ2 generated by(
S1 ×{o2}

)
∪
(
{o1}× S2

)
with rates r1 ∪ r2, the escape speed in Γ is the sum of the

escape speeds in Γi.

Proof. We have |(v1, v2)| = |v1| + |v2| for vi ∈ Γi. In addition, if we write the

random walk as Zt = (Z
(1)
t , Z

(2)
t ), then Z

(i)
t are independent random walks in Γi

with rates ri. �

The Coxeter diagram of a Coxeter system (W,S) is the unoriented graph with
vertices S, edges (s, s′) for m(s, s′) ≥ 3, and edge labels m(s, s′) when m(s, s′) ≥ 4.
A Coxeter system is called irreducible if its Coxeter diagram is connected. Every
Coxeter system can be expressed as a direct product of irreducible Coxeter systems,
namely, the subgroups generated by the vertices in the connected components
of its Coxeter diagram. An infinite, irreducible Coxeter group is either affine ,
being a finite extension of an abelian group, or nonelementary hyperbolic, being
nonelementary word hyperbolic: see [9, Chapter 12, especially Section 12.6] and [19,
Sections 6.8 and 6.9] for more detailed information on hyperbolic Coxeter groups.

We quickly review the basic definitions for hyperbolic metric spaces. A metric
space X in which every pair of points can be joined by a geodesic path is called
δ-hyperbolic if for each geodesic triangle in X, each side lies within the closed
δ-neighbourhood of the union of the other two sides. If X is δ-hyperbolic for some
δ ≥ 0, then X is called hyperbolic. A group is word hyperbolic if some (hence
every) Cayley graph is hyperbolic in the shortest-path metric. A word hyperbolic
group is called elementary if it is finite or virtually cyclic.

Remark 2.25. In a finite or affine Coxeter group, the escape speed is zero regardless
of the rates of each generator, so increasing the rate of a generator does not increase
the escape speed. Indeed, the speed is zero of every nearest-neighbor, reversible,
discrete-time random walk on a graph of subexponential volume growth and bounded
edge weights, a consequence of the Varopoulos–Carne inequality [25, Theorem 13.4].

Thus, the same behaviour as in Example 2.23 appears for any direct product of
a nonelementary hyperbolic Coxeter group with a finite or affine Coxeter group.

We will now prove that in an irreducible, nonelementary hyperbolic Coxeter
system, increasing the rate of any generator strictly increases the escape speed.
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With the preceding remark, this will characterise those generators where increasing
the rate must strictly increase the escape speed.

Theorem 2.26. Let W be a Coxeter system. Write W as a direct product of
irreducible Coxeter systems. If the rate corresponding to each generator is positive,
then increasing a rate strictly increases the escape speed if and only if that generator
belongs to a nonelementary hyperbolic irreducible factor, rather than a finite or affine
factor.

To prove this, it suffices to examine random walks on irreducible, nonelementary
hyperbolic Coxeter systems, because of Proposition 2.24 and Remark 2.25.

We will need the following facts about the boundary of a Coxeter group. We begin
by reviewing the definition of Gromov boundary and some of its basic properties.
Recall that a graph is equipped with its shortest-path metric, dist. A geodesic ray
in a graph G is a semi-infinite path all of whose finite subpaths are geodesic. Two
geodesic rays (xn)n and (yn)n are asymptotic if supn dist(xn, yn) < ∞. This is
an equivalence relation, whose equivalence classes form the boundary ∂G of G. If
ξ ∈ ∂G and x ∈ V (G), a geodesic ray starting from x that belongs to ξ will also be
referred to as a geodesic from x to ξ. We define a topology on V (G)∪ ∂G as follows.
Fix a vertex o of G. Given xk, y ∈ V (G)∪∂G for k ∈ N, we say that limk→∞ xk = y
if for some n∞, nk ∈ N ∪ {∞} (k ∈ N), there are geodesics (xk,n)n<nk

from o to
xk and a geodesic (yn)n<n∞ from o to y such that for every n < n∞, xk,n = yn
for all sufficiently large k. The closed sets are then those that are closed under
sequential convergence. In case G is hyperbolic, ∂G is usually referred to as its
Gromov boundary .

Consider now a Cayley graph with associated continuous-time Markov chain (Zt)t.
The embedded discrete-time random walk records only the changes made by (Zt)t.
This random walk has transition probability from w to ws equal to rs/

∑
a∈S ra,

where S is the generating set. We can recover the law of (Zt)t from its embedded
discrete-time random walk by jumping at the times of a Poisson process of rate∑
a∈S ra. Many results for (Zt)t follow from their corresponding results for the

embedded random walk, such as this:

Lemma 2.27 (Theorem 7.4 of [20]). Random walk on a nonelementary word-
hyperbolic group converges a.s. to a boundary point, provided all rates are positive. �

The law on ∂G of limt→∞ Zt is called harmonic measure , which depends on
the starting point, Z0.

The following result is due to Gromov [16]:

Lemma 2.28 (Lemma 2.4.4 of [6]). The action of a nonelementary word-hyperbolic
group on its Gromov boundary is minimal, i.e., every orbit is dense. �

Lemma 2.29. The harmonic measure of random walk on a nonelementary word-
hyperbolic group has full support in its Gromov boundary.

Proof. Suppose that ξ is a point of the support when the walk starts at o. Then γξ
is a point of the support when the walk starts at γ. Since the random walk starting
at o has positive chance to reach γ, it follows that γξ is also in the support when the
random walk starts at o. Thus, the result follows from Lemmas 2.27 and 2.28. �

We will use the following result of [32].
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Lemma 2.30. The conjugacy class of a reflection in an infinite, irreducible Coxeter
system (W,S) is always infinite.

Proof. Let S be ordered as (s1, s2, . . . , sr), where r := |S|. Speyer [33] showed that
s1s2 · · · srs1s2 · · · sr · · · s1s2 · · · sr is a reduced word for any number of repetitions of
s1s2 · · · sr. Write w := s1s2 · · · sr ∈W . Combining Speyer’s result with Lemma 2.3,
we deduce that the walls corresponding to the edges (wk, wks1) are all distinct,
whence the elements wks1w

−k are all distinct. Since the ordering of S was arbitrary,
every generator has infinitely many conjugates. Therefore, so does every conjugate
of a generator, i.e., every reflection. �

Lemma 2.31. Let M be a wall in an irreducible Coxeter system with Cayley graph
G. Then the closure M does not include all of ∂G.

Proof. Let (v, vs) ∈M . By Lemma 2.30, there exist wk ∈W such that |w−1k vsv−1wk|
→ ∞ as k →∞. By Lemma 2.1, for every w ∈W ,

|w−1vsv−1w| = dist(w,Lvsv−1w) = 1 + 2 dist
(
w, V (M)

)
.

Therefore, dist
(
wk, V (M)

)
→∞ as k →∞. Let vk ∈ V (M) satisfy dist(wk, vk) =

dist
(
wk, V (M)

)
. By taking a subsequence if necessary, we may assume that there

is some fixed a ∈ S such that (vk, vka) ∈ E(M) for all k. If we translate the
geodesic that goes from vk to wk so that it starts at v1, then as k → ∞, it has
a limit geodesic ray (yn)n, up to taking another subsequence if necessary. By
Lemma 2.5, M is fixed under this translation, so (yn)n is a geodesic ray from v1 with
dist

(
yn, V (M)

)
= dist(yn, v1) = n. By Lemma 2.4, it follows that the equivalence

class of (yn)n does not belong to M , as desired. �

Lemma 2.32. Let M be a wall in an irreducible, nonelementary hyperbolic Coxeter
system with Cayley graph G. Provided that all rates are positive, there is some
v ∈ V (M) such that the probability that random walk started at v never returns to
M is positive.

Proof. If not, then by Lemma 2.5 and the strong Markov property, the number of
visits to M would be infinite a.s. given that it starts on M . In other words, if the
random walk starts on M , then it has a limit in M ∩ ∂G a.s. by Lemma 2.27. But
this contradicts Lemmas 2.29 and 2.31. �

Given a Coxeter system (W,S) and rates r, let η(W,S; r) be the minimum over all
walls M of the probability that there is no positive M -refresh time for the random
walk with rates r.

Lemma 2.33. Let (W,S) be an irreducible, nonelementary hyperbolic Coxeter
system and r have all positive rates. Then η(W,S; r) > 0.

Proof. Given any wall, M , there is an automorphism of the Cayley diagram that
takes M to a wall containing o. By Lemmas 2.32 and 2.5, it follows that there are
some d <∞ and c > 0 such that for all walls M and all vertices w ∈M , there is a
path of length at most d from w to some v /∈ M from which the probability that
the random walk with rates r never visits M is at least c.

Given any wall, M , let w be the first vertex in M , if any, visited by our random
walk. Consider a fixed path (w = x0, x1, . . . , x` = v) of length ` ≤ d from w to some
v /∈M from which the probability that the random walk with rates r never visits
M is at least c. By reflecting v in M if needed, we may assume that w and v are on



16 RUSSELL LYONS AND GRAHAM WHITE

the same side of M , and hence that our fixed path does not cross M . The chance
that the next ` steps of our random walk are exactly along this path and that there
is no M -refresh time before visiting v is at least the chance that Rx−1

i−1xi
(1 ≤ i ≤ `)

are the next ` refresh rings and that the first ` coin flips all tell the random walk to
move, which equals

2−`
∏̀
i=1

rx−1
i−1xi∑
s∈S rs

.

It follows that

η(W,S; r) ≥
(

mins∈S rs
2
∑
s∈S rs

)d
c > 0. �

Gouëzel [15] showed that r 7→ σ(r) is analytic for arbitrary generators of nonele-
mentary word-hyperbolic groups, provided all rates in r are strictly positive.

Theorem 2.34. If (W,S) is an irreducible, nonelementary hyperbolic Coxeter
system, then increasing the rate rs of any generator s strictly increases the escape
speed, provided all rates are positive. Moreover, ∂σ(r)/∂rs ≥ 2η(W,S; r)2.

Proof. In order to understand the consequences of increasing the rate of any gener-
ator, consider the construction in the proof of Corollary 2.20, taken from the proof
of Corollary 2.19. In that construction, we produce a sequence Xi of random walk
paths, each successive path having one additional ring of the refresh clock, Rs. The
key property of that construction is that for each i, the paths Xi and Xi+1 either
eventually agree, or have |Xi+1| > |Xi| for all large times. To show that increasing
a rate strictly increases the escape speed, it suffices to show that asymptotically, a
positive fraction of i fall into the latter case. In our proof of this, we will be very
careful to avoid dealing with dependencies among these events for different i, as
well as with the dependencies on the number of such additional rings up to time t.

To be more precise, consider two sets of positive rates, r and r′, where r′ agrees
with r except that r′s = rs + ε, where ε > 0. Let (Nt)t be a Poisson process of rate
2ε, which we use for the extra rings of Rs. The random walk corresponding to r is
X = X0, and the random walk corresponding to r plus i additional rings of Rs is
Xi. We couple all Xi as in the proof of Corollary 2.19. We have

σ(r′)− σ(r) = lim
t→∞

1

t

Nt−1∑
i=0

(
|Xi+1

t | − |Xi
t |
)

a.s.

Let Ai be the event that |Xi+1| > |Xi| for all large times. If i < Nt, then we have
|Xi+1

t | ≥ |Xi
t |, with equality only if Ai does not occur. Thus, |Xi+1

t | − |Xi
t | ≥ 1Ai ,

whence

σ(r′)− σ(r) ≥ lim sup
t→∞

1

t

Nt−1∑
i=0

1Ai = lim
t→∞

Nt
t
· lim sup

t→∞

1

Nt

Nt−1∑
i=0

1Ai

= 2ε lim sup
n→∞

1

n

n−1∑
i=0

1Ai a.s.

Taking expectation and using Fatou’s lemma yields

σ(r′)− σ(r) ≥ 2ε lim sup
n→∞

1

n

n−1∑
i=0

P(Ai).
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Let Ti be the time of the ith ring of (Nt)t, and let Mi be the wall containing the
edge (Xi

Ti
, Xi

Ti
s). Recall that a time t is anMi-refresh time forXi ifXi

t ∈Mi and the

refresh clock Ra rings at time t, where a is the generator such that (Xi
t , X

i
ta) ∈Mi.

The event Ai occurs if (but not only if) (1) there is no Mi-refresh time t < Ti for
Xi and (2) there is no Mi-refresh time t > Ti for Xi. Here, (1) guarantees that (3)
Xi
T+
i

6= Xi+1

T+
i

, while (2) guarantees that if (3) holds, then Xi
t 6= Xi+1

t for all t > Ti.

Note that the law of (Xi
t)0≤t≤Ti is the same as the law of

(
(Xi

Ti
)−1Xi

Ti−t
)
0≤t≤Ti

by reversibility. In addition, the reflection in Mi maps a path on one side of the
wall to a path on the other side, preserving the times on the wall. Therefore, the
probability of (1) is at least the probability of (2). The events (1) and (2) are
also independent. Hence, P(Ai) ≥ η(W,S; r)2, which yields the desired inequality
σ(r′)− σ(r) ≥ 2εη(W,S; r)2 > 0 in light of Lemma 2.33. �

Combining Proposition 2.24 with Remark 2.25 and Theorem 2.34 gives Theorem
2.26.

Remark 2.35. The assumption in Theorem 2.26 that each rate is positive is
necessary — if enough of the rates are zero, then the escape speed may be zero, even
when one of the rates is increased. In a scenario where some of the rates are zero,
one should just remove those generators, and apply Theorem 2.26 to the resulting
smaller Coxeter system. Of course, if a rate is zero, increasing that rate will strictly
increase the speed if the same holds when that rate is positive.

Remark 2.36. The first part of Theorem 2.34 can be proved in the case of trees
by using an implicit formula for the speed: Namely, [31] gives a formula for the
speed of the embedded discrete-time random walk. Multiplying that speed by the
sum of the rates gives the following formula for the continuous-time speed. For a
free product of p ≥ 3 copies of Z/2Z and corresponding rates r1, . . . , rp > 0, write ζ

for the unique positive solution to the equation
∑p
i=1

(√
ζ2 + r2i − ri

)
= (p− 2)ζ.

(Existence and uniqueness follow from the fact that the left-hand side is a convex
function of ζ that passes through (0, 0) with derivative 0 and is asymptotic to pζ

as ζ → ∞.) The continuous-time speed σ(r) is then ζ−1
∑p
i=1 ri

(√
ζ2 + r2i − ri

)
,

which can also be written as
∑p
i=1

riζ√
ζ2+r2i+ri

. Because rj 7→
√
x2 + r2j − rj is

strictly decreasing for fixed x > 0, it follows that ∂ζ/∂rj > 0. Now

∂σ(r)

∂rj
=

∂ζ

∂rj

1

ζ

(
−σ(r) +

p∑
i=1

riζ√
ζ2 + r2i

)
+
rj
ζ

(√
(ζ/rj)2 + 1− 2 +

1√
(ζ/rj)2 + 1

)
.

From the second formula for σ(r), it is clear that the first term in parentheses is
strictly positive; it is elementary that the second term in parentheses is also strictly
positive. Thus, σ(r) is indeed strictly increasing in each rate.

2.4. Further questions. The proof of Proposition 2.16 gives rise to the following
question.

Question 2.37. Given two random walks, with one having higher rates than the
other, is it possible to couple them so that the more active walk is always at least as
far from the initial position as the other?

It might be plausible that a slightly cleverer construction in the proof of Proposi-
tion 2.16 could produce such a coupling. Surprisingly, this is not possible in even
the simplest of cases.
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Proposition 2.38. Question 2.37 is impossible in the setting of Example 2.7 even
in cases where rb = rc = 0. In such cases, the walker is moving back and forth
between just two states, at the rate ra. Similarly, it is not always possible for
ra, rb, rc > 0.

Proof. Consider two such walks, one with ra = 1, and the other with ra = 100, and
the behaviour of these over the first unit of time. The first process has a significant
chance of, for instance, staying at the initial vertex until a time between 0.4 and
0.6, moving to the other vertex, and staying there until time 1. The more active
process is very unlikely to take a path that remains farther from the starting vertex
than such a path, because that would require staying at the other vertex between
times 0.6 and 1, which is unlikely for such an active process.

If rb, rc > 0, then one can choose a sufficiently small t and make two choices of
ra, the smaller one being equal to 1/t, so that a similar analysis holds. �

Proposition 2.39. The coupling of Question 2.37 is not possible for two walks on
a recurrent graph, one of which has edges all with rate ρ1, and the other all with
rate ρ2 > ρ1 > 0.

Proof. Let both random walks start at o. If such a coupling were possible, then we
could similarly couple random walks with rates (cρ1, cρ2) for any c > 0. In particular,
we could couple with rates

(
ρ1(ρ2/ρ1)n, ρ2(ρ2/ρ1)n

)
for every nonnegative integer n.

Combining such couplings, we could couple with rates (ρ1, cρ2) for arbitrarily large
c. By recurrence, the times between visits of the random walk with rate ρ2 to the
vertex o have a distribution that is dominated by a geometric sum of exponential
random variables with rate ρ2, i.e., by an exponential random variable, which means
that given ε > 0, for all sufficiently large c the probability is at least 1− ε that o is
visited in every interval of length ε in [0, 1] by the random walk with rate cρ2. By
the coupling, the same is true for the random walk with rate ρ1, which forces that
random walk to be at o a.s. during the entire interval [0, 1], a contradiction. �

Question 2.37 appears to be difficult to decide even in other simple settings.

Question 2.40. On which transient Cayley graphs is the coupling of Question 2.37
possible for two walks, one of which has edges all with rate ρ1, and the other all
with rate ρ2 > ρ1 > 0?

It is even possible to ask a version of this question for a chain with only three
states.

Question 2.41. Is the coupling of Question 2.37 possible for two walks on the set
{0, 1, 2} that both start at 0, where walk i moves from 0 to 1, 1 to 0, and 1 to 2 with
rate ρi? Note that once the walker reaches the state 2, it stays there.

Neither Question 2.40 nor 2.41 can be answered by a Markovian coupling, because
it would be possible for both walks to be at a neighbor of the starting vertex, and
then the more active walk has a greater chance to move back to the starting vertex
than the less active walk does.

Finally, here are two more questions whose answers are unknown to us.

Question 2.42. Is the escape speed concave in the rates for Coxeter systems?

Question 2.43. Suppose that we have two random fields of rates on a Coxeter
system with the first being at most the second a.s. Suppose that the law of each field
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is invariant under left group multiplication. Is the expected speed of the first at most
that of the second?

3. Approach to stationarity

We will now consider random walks on finite groups and how the distance of the
law of Zt to the stationary distribution changes when the random walk rates are
increased.

Question 3.1. Given a continuous-time random walk (Zt)t on a finite group with
positive rates on the generators and a time t, consider the distance between the
distribution of Zt and the stationary distribution. Does the distance necessarily
decrease when a random walk rate is increased?

It seems natural to think that the distance would decrease, as increasing a rate
might be thought of as injecting additional randomness into the walk. In this section
we will show that the answer is yes in several families of nice examples, and then give
several examples where the answer is no in general, including some demonstrating
rather unusual behaviour. Furthermore, there appear to be interesting patterns in
the sorts of examples that we are able to produce.

There are several different measures of the distance from stationarity. Of course,
the stationary distribution is uniform.

Definition 3.2. For p ∈ [1,∞), the `p-distance between distributions f and g is

`p(f, g) :=

(∑
v

|f(v)− g(v)|p
) 1

p

,

where the sum is taken over the states v of the chain. The `∞-distance between
distributions f and g is `∞(f, g) := maxv |f(v)− g(v)|. The Hellinger distance
between distributions f and g is(

1

2

∑
v

∣∣√f(v)−
√
g(v)

∣∣2) 1
2

.

Definition 3.3. The entropy of a distribution f is the sum over states v of
−f(v) log f(v).

Observe that because the function x log x is convex on (0, 1), the distribution of
maximum entropy is the uniform distribution. Thus in this context, Question 3.1
asks whether increasing one of the rates causes the entropy of Zt to increase.

One particularly strong way in which Question 3.1 may be answered in the
affirmative would be if increasing one of the rates results in decreasing the vector of
transition probabilities in the majorization order.

Definition 3.4. Let f and g be vectors of length n. Denote by f[1] ≥ f[2] ≥
· · · ≥ f[n] the decreasing rearrangement of f , and similarly for g[i]. We say that f
majorizes g if for each i,

f[1] + · · ·+ f[i] ≥ g[1] + · · ·+ g[i],

with equality when i = n (which is automatic if f and g are probability vectors).
Majorization defines a partial order on probability vectors, with the largest elements
being the extreme points such as (1, 0, 0, . . . , 0) and the smallest element being
( 1
n ,

1
n , . . . ,

1
n ).
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Recall the inequality of Hardy–Littlewood–Pólya–Karamata that if f majorizes
g and φ is convex, then

∑n
i=1 φ(fi) ≥

∑n
i=1 φ(gi); if φ is strictly convex, then

equality holds only if f = g. For example, if f and g are probability vectors and
φ(x) = |x−1/n|p for some p ≥ 1, then we may conclude that the `p-distance between
f and the uniform distribution is at least the `p-distance between g and the uniform
distribution. By letting p → ∞, we get the same for the `∞-distance. A similar
inequality holds for Hellinger distance and, with opposite sign, for entropy. Recall
also that f majorizes g iff g is gotten by applying a doubly stochastic matrix to f ,
such as by replacing (fi, fj) by

(
αfi + (1− α)fj , (1− α)fi + αfj

)
, where α ∈ [0, 1].

This is equivalent to moving some part of the larger of fi and fj to the smaller of
the two. More generally, doubly stochastic matrices are convex combinations of
permutation matrices.

In particular, for continuous-time random walk on any finite graph, the distribu-
tion of Zt decreases in the majorization partial order as t increases. In some cases,
increasing one of the rates causes the distribution Zt to decrease in the majorization
partial order, which implies that the `p-distance to uniform has decreased for each
p ≥ 1 and that the entropy has increased.

3.1. Positive examples. There are several special cases where the answer to
Question 3.1 is positive.

3.1.1. Coxeter systems. Throughout this subsection, we work in a Coxeter system,
(W,S). We will show that increasing the generator rates has the effect of decreasing
in the majorization order the probability distribution of Zt at any fixed time t,
which therefore implies decreasing distance to the uniform distribution in all senses
mentioned. In order to prove this, we will use the Bruhat order , the partial order
≤ on W defined by taking the transitive and reflexive closure of the relation{

(v, Lv) ; L is a reflection and |v| < |Lv|
}
.

We first extend Theorem 2.9 to the Bruhat order:

Theorem 3.5. Let x < y in the Bruhat order and t > 0. Then pt(o, x) > pt(o, y).

Proof. It suffices to prove this when y is a reflection L of x in a wall M . Let T be
the first M -refresh time of the random walk. For every path with Zt = y, we have
T < t in light of Lemma 2.1. If we change the coin flip at time T , then the walk
will end instead at Ly = x. This defines a probability-preserving bijection of the set
of paths and coin flips (on [0, t]) from o to y to the set of paths and coin flips from
o to x that have T < t. Since there is a positive-probability set of paths from o to x
during which there is no M -refresh time, we get the desired strict inequality. �

We now look at how partial orders relate to majorization, based on [5].

Definition 3.6. Let 4 denote a partial order on a set, A. A function f : A → R
is called decreasing if f(x) ≥ f(y) whenever x 4 y. A subset B ⊆ A is called
decreasing if its indicator 1B is decreasing. If f and g are two functions on A,
then f 4-majorizes g if f and g are decreasing and

∑
x∈B f(x) ≥

∑
x∈B g(x) for

all decreasing sets B, with equality when B = A.

Lemma 3.7. Let 4 denote a partial order on a finite set, A. If f 4-majorizes g,
then f majorizes g.
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Proof. For i < |A|, there is a decreasing set B of cardinality i on which g attains
its i largest values. The sum of the i largest values of f is at least the sum of f over
B, which, by definition, is at least the sum of g over B. �

Corollary 3.8. Let r and r′ be two sets of rates on S and t and t′ be two positive
times. Let Z and Z ′ be the corresponding random walks on W . Suppose there is a
coupling of Zt and Z ′t′ such that Zt ≤ Z ′t′ a.s. in the Bruhat order. Then the law of
Zt majorizes the law of Z ′t′ .

Proof. Let f be the law of Zt and g be the law of Z ′t′ . By Theorem 3.5, both f and
g are decreasing. If B is a decreasing subset of W , then P[Zt ∈ B] ≥ P[Z ′t′ ∈ B]
because of the coupling, whence f ≤-majorizes g. Thus, the result follows from
Lemma 3.7. �

Theorem 3.9. Let r and r′ be two sets of rates on S with rs ≤ r′s for all s ∈ S. Let
t > 0. Denote the corresponding transition probabilities by pt(x, y; r) and pt(x, y; r′).
If W is finite, then pt(o, ·; r) majorizes pt(o, ·; r′) with inequality if r 6= r′.

Proof. Suppose that r = r′ except for rs < r′s for one specific s. Consider how
many extra rings in [0, t) there are of Rs with the rates r′. If there is only one,
then the argument of Corollary 2.20 showed, with the same notation, that we may
couple Z1

t and Z2
t so that Z1

t ≤ Z2
t in the Bruhat order, and inequality holds with

positive probability. By induction, this same conclusion extends to any finite set
of additional rings of Rs. Therefore, we may couple the two random walks so that
Z1
t ≤ Z2

t conditional on the extra rings of Rs. Hence we may couple them so that
this inequality holds without such conditioning. By Corollary 3.8, we deduce that
the distribution of Z1

t majorizes that of Z2
t . For the general case of rates, we may

change the rates one by one until r becomes r′, still yielding majorization. �

Of course, there is a superficial generalization of this result as in Remark 2.21.
With the proper definition, this result also holds for infinite W . Similarly to
Theorem 2.22, we may deduce from our arguments the following, which also easily
implies Theorem 3.9:

Theorem 3.10. Let (W,S) be a Coxeter system. Let s and s′ be finite sequences
from S of lengths n and n′, respectively, with s a proper subsequence of s′. Let C
be a Bernoulli(1/2) process. Then the probability distribution of ξ(s,Cn) strictly
majorizes that of ξ(s′,Cn′). �

Remark 3.11. There are additional consequences of the argument used in Theo-
rem 3.5. Suppose that M is a wall. Write M+ for the set of vertices v for which there
is a path joining v to o without using an edge of M , and write M− for the remainder.
Since the Cayley graph of (W,S) is connected, Lemmas 2.3 and 2.1 imply that the
reflection LM in M interchanges M+ and M−. Let τM− := inf{t > 0 ; Zt ∈M−}.
A direct analogue of the reflection principle (for one-dimensional random walks and
Brownian motion) is that for all t > 0 and all A ⊆M+,

P[τM− < t, Zt ∈ A] = P[Zt ∈ LMA].

Therefore,

P[τM− < t] = 2 P[Zt ∈M−].

Write τv := inf{t > 0 ; Zt = v}. If x < y, then τy strictly stochastically dominates τx,
that is, for all t > 0, P[τx < t] > P[τy < t]. In particular, P[τx <∞] ≥ P[τy <∞].
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Let λv(t) denote the Lebesgue measure of the set of times in [0, t] when the random
walk is at v. As a consequence of the strict stochastic domination inequality, we
obtain that λx(t) strictly stochastically dominates λy(t) when x < y and t > 0. We
leave the arguments to the reader.

3.1.2. Abelian groups and conjugacy classes. In an abelian group, the answer to
Question 3.1 is always positive, because increasing a rate results in extra multiplica-
tions by random group elements, and in an abelian group, we may consider these
extra multiplications to take place at the end of the random walk.

As a generalisation of this observation, consider a random walk on a group G
with a generator g every conjugate of which is also a generator. If all of the rates on
this conjugacy class are increased the same amount, then this results in multiplying
by additional group elements partway through the walk. Those extra elements are
uniformly distributed in the conjugacy class of g, independently of all other steps.
This is equivalent to multiplying by the same number of independent, uniformly
chosen conjugates of g at the end. Thus, this also moves the resulting distribution
down in the majorization order.

3.1.3. All groups with special distances. As long as we measure distance to sta-
tionarity in special ways, increasing rates will always decrease distance on any
group.

Proposition 3.12. For any finite group, increasing any of the rates always decreases
the `∞-distance and the `2-distance to the uniform distribution.

Proof. This relies on some well-known calculations. We have

|pt(x, y)− 1/n| =
∣∣∣∑
z

(
pt/2(x, z)− 1/n

)(
pt/2(z, y)− 1/n

)∣∣∣
=
∣∣∣∑
z

(
pt/2(x, z)− 1/n

)(
pt/2(y, z)− 1/n

)∣∣∣
≤
√∑

z

(
pt/2(x, z)− 1/n

)2∑
z

(
pt/2(y, z)− 1/n

)2
=
√(

pt(x, x)− 1/n
)(
pt(y, y)− 1/n

)
= pt(o, o)− 1/n.

(3.13)

Note that pt(o, o) ≥ 1/n because the first two lines above, without absolute values,
show that

(3.14) pt(o, o)− 1/n =
∑
z

(
pt/2(o, z)− 1/n

)2 ≥ 0.

In particular, (3.13) gives

max
x,y
|pt(x, y)− 1/n| = pt(o, o)− 1/n.

When any rate is increased, pt(o, o) decreases, as we noted in the introduction.
Thus, the `∞-distance decreases. In light of (3.14), the `2-distance at time t equals
the square root of the `∞-distance at time 2t, whence it is also decreasing in the
rates. �
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3.2. Negative examples. Symmetric groups give Coxeter systems when generated
by adjacent transpositions. Changing generators, however, may yield entirely
different behaviour. Indeed, every finite group is a subgroup of a symmetric group.
Therefore, any counterexample can be exhibited on a symmetric group by adding
generators to those for the subgroup and making their rates 0 or very close to 0.
However, symmetric groups being very large means that it can be hard to find
examples by searching in symmetric groups.

In this section, many of our examples were found by random numerical searching
and numerical calculation — choosing sets of random generators and rates and
exploring the consequences of increasing one of those rates. As we move through
the different types of examples, we will attempt to give some idea of how difficult
it was to find them, as an indication of the frequency of similar examples. We
will usually be considering groups with up to about 120 elements, and numbers of
random samples in the hundreds of thousands. In cases where we were unable to
find examples, we will indicate when we spent enough effort that we were surprised
not to find them.

In most cases, we used sets of four generators, with rates between about 1 and
10. Indeed, when choosing five generators at random, the most extreme examples
often either included the identity or two copies of the same generator, suggesting
that it is easier to find these examples with four distinct generators than with five.

For many of the groups we examined, it was not difficult to find examples where
increasing a rate increased the `1-distance from stationarity. This includes the
symmetric groups S4 and S5, dihedral groups with as few as ten elements, and
dicyclic groups with as few as twenty elements. We did not find these examples
for split metacyclic groups. We will restrict our discussion now to dihedral and
symmetric groups, as two quite different families of groups.

For the dihedral group D11 with three involutions as generators, we found an
example where the entropy was not monotone in the rates. Note that dihedral
groups are Coxeter groups, with Coxeter generators being two involutions.

As we increase p from 1 towards 2, it becomes more difficult to find examples
where the `p-distance increases, which is consistent with Proposition 3.12. For
instance, in the dihedral group D5, we can find examples for values of p between 1
and 1.4, and in the group D7, for values of p between 1 and 1.8. It also seems easier
to find these kinds of examples in dihedral groups Dn when n is prime compared to
a composite number of similar size, such as D31 or D41 compared to D30 or D40.

While Proposition 3.12 says that there are no examples of this kind for p = 2, it
is possible to get very close to this value. For instance, it was not uncommon for
us to find examples exhibiting this behaviour for p up to 1.99 or from 2.01, and
individually optimised examples worked for p as large as 1.9999.

The next natural question is what happens for values of p larger than two. In the
case of dihedral groups, we found examples of sets of generators and rates which
increase the `p-distance from uniform for a range of values of p between 2 + ε and
4− ε, for ε as small as 0.001, but we were unable to find any examples where the
`p-distance increases for p = 4, searching in dihedral groups as large as D131. This
seems rather surprising. A generic example of this sort has the `p-distance increasing
for p in some interval contained in (2, 4). When the rates are adjusted so that the
right endpoint of this interval moves closer to p = 4, the left endpoint seems to
move closer to p = 2, and vice versa.
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Likewise, we found an example in the dihedral group D41 for which the `p-distance
increases for values of p between 4.001 and 5.995. Interestingly, this example also
increases the `p-distance for p up to p = 1.997.

We were unable to find dihedral examples either at p = 6 or for larger values of
p. Proposition 3.12 explains why distance cannot increase for p = 2, but we have
no similar explanation for p = 4 or p = 6. While the `p-distance may increase for
ranges of p less than 2 or between 2 and 4, we were unable to find any dihedral
examples exhibiting this behaviour in both ranges simultaneously.

The proof of Proposition 3.12 relates the behaviour of the `2-distance at time t
to the `∞-distance at time 2t. One might hope, then, that if there are examples
where the `p-distance increases for p near 2, then there should be similar examples
where the `p-distance increases for p near ∞ — that is, for p very large — at twice
the time. Yet we were unable to find such dihedral examples.

We looked for similar examples to these in the symmetric group S5. As with the
dihedral groups, we found examples where the `p-distance increased for all p up to
a value quite close to 2, and examples where it increased for most p between 2 and
4, but also new types of behaviour, including one where the `p-distance increased
for p between 2.004 and 4.02, and several where it increased for p from about 3 up
to as large as 300.

We did not find examples where the distance increased at p = 4 in dicyclic groups.

4. A ray

We now turn our attention from Cayley graphs to an infinite one-ended path, and
allow arbitrary rates on the edges. We label vertices by the nonnegative integers,
and each pair of consecutive numbers is connected by an edge. For each positive
integer i, let ri be the (nonnegative) rate of the Poisson clock on the edge between
i − 1 and i. Let i0 := inf{j ; rj = 0} ∈ [1,∞]. For simplicity, we assume that
the rates are such that explosions do not occur. We will see several interesting
phenomena in this case. The random walk will begin from 0.

Proposition 4.1. For each time t > 0, the probability pt(0, i) that the walker is at
location i is a strictly decreasing function of i for those i < i0.

Proof. We first prove that pt(0, i) is weakly decreasing in i.
Let ft(i, j) be the probability that a random walk starting from i visits j at some

time before t. Because there are no explosions, limN→∞ ft(0, N) = 0. Consider the
sequence of chains whose rates are ri for i ≤ N and 0 for i > N ; write pNt (i, j) for
their transition probabilities. Since |pt(0, i) − pNt (0, i)| ≤ ft(0, N), it follows that
limN→∞ pNt (0, i) = pt(0, i) for all i. Therefore, it suffices to prove the claim for a
chain where only finitely many rates are nonzero. We now assume that condition.

Consider the refresh times Ri of Definition 2.6. There are only finitely many
such times before t a.s. If we condition on the sequence of all refresh rings that
occur between time 0 and time t, ordered by time, then the probability distribution
function of the walker’s location at time t is a nonincreasing function of i. This
is because the coin flip, or randomization, at each time of Ri acts on the walker’s
distribution function at that time by averaging the probabilities at i− 1 and i, and
this operation preserves monotonicity. The walker is initially at position 0 with
probability 1, and this initial distribution function is monotone.

Integrating these conditional distribution functions with respect to the distribution
of all refresh rings before time t completes the proof of the claim.
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Next we show that the transition probabilities are strictly decreasing. We no
longer assume that only finitely many rates are nonzero. Let p̃t(0, ·) denote the
probability distribution conditional on the set of refresh rings before time t. There
is a collection of positive probability of sets of refresh rings for each of which
p̃t(0, i− 1) > p̃t(0, i) for i < i0. Because p̃t(0, i− 1) ≥ p̃t(0, i) for each possible set
of refresh rings and pt(0, i) is the expectation of p̃t(0, i), it follows that pt(0, i) is
strictly decreasing for 0 ≤ i < i0. �

This analysis also lets us discuss the speed at which the walker moves away from
0.

Lemma 4.2. In the language of the proof of Proposition 4.1, consider the following
two distribution functions on Z+. The function f1 is defined by starting with a unit
mass at 0 and applying any fixed finite sequence of refresh rings. The function f2 is
defined similarly, using the same sequence of refresh rings, except with one additional
refresh ring Rj occurring partway through the sequence. Then f2 dominates f1, that

is,
∑k
i=0 f1(i) ≥

∑k
i=0 f2(i) for every k ∈ Z+.

Proof. Consider the evolution of the difference f2 − f1. This is zero until the extra
Rj is applied to f2. At this point, f2− f1 is zero at all points except j− 1 and j. At
j − 1 it is negative (or zero), at j it is positive (or zero), and these two differences
have the same size (but opposite sign).

At this point, the difference f2− f1 has the property that when summed over the
states 0 to any k, it is nonpositive. This property is preserved by the application of
any of the Ri, which completes the proof. �

This implies that the location of the random walk at each time is stochastically
strictly increasing in each of the rates rj :

Corollary 4.3. At every time t and nonnegative integer i < i0, the probability that
the walker is at a position between 0 and i is a strictly decreasing function of each
rj for j < i0.

Proof. As in the proof of Proposition 4.1, we first prove the statement without the
strictness under the assumption that i0 <∞. When some Rj rings one additional
time, then the result follows from Lemma 4.2. Applying this fact repeatedly gives
the result. It then follows even if i0 =∞, but without the strictness part.

To show strictness, it again suffices, for each i, to exhibit a collection of positive
probability of sequences of refresh rings with a marked additional ring of Rj that
each give a strict inequality. Indeed, such a collection is formed by the sequences
that when restricted to the refresh rings for edges k ≤ i ∨ j are sequences of the
form (R1, R2, . . . , Ri∧j , . . . , Ri∨j), where (one of) the Rj is marked additional. �

Corollary 4.4. At every time t, the expected distance of the walker from 0 is a
strictly increasing function of each rj for j < i0.

Proof. The expected distance from 0 is the sum over all i of the probabilities that
the walker is farther away than i. Hence the result follows from Corollary 4.3. �

We are also interested in how much time the walker spends at each vertex.

Proposition 4.5. For our random walk on the infinite one-ended path, let t be an
arbitrary time. Then the time spent at 0 between time 0 and time t stochastically
dominates the time spent at 1.
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Proof. As in previous proofs, we may assume that i0 <∞. Without loss of generality,
rescale time so that the rate r1 is equal to 1. Fix t > 0. We define recursively the
following sequences of times. Let A1 := 0. Then let Bk be the infimum of the times
in [0, t] after time Ak at which the walker is at the vertex 1 if there is such a time
and Bk := t if not, and Ak+1 be the infimum of the times in [0, t] after Bk at which
the walker is at 0 if there is such a time and t if not, for each k. For each k, let Xk

be the amount of time the walker spends at vertex 0 between time Ak and Ak+1,
and Yk be the amount of time spent at 1 between Bk and Bk+1.

If we didn’t stop counting at time t, then both Xk and Yk would be distributed
as exponential random variables with rate 1, because they count the time spent at
vertex 0 or 1, respectively, until the Poisson clock corresponding to the edge (0, 1)
rings while the walk is at one of its endpoints, and this clock has rate 1. Taking this
into account, we see that the conditional distribution of Xk given Ak and (Xi, Yi)
for all i < k is the same as the distribution of min

(
Exp(1), t−Ak

)
. We can’t give

such a concrete expression for the conditional distribution of Yk, because the walker
may move to 2 and beyond before moving back to 1 and then to 0. We can say,
though, that Yk given Ak, Xk, and (Xi, Yi) for all i < k is stochastically dominated
by min

(
Exp(1), t−Ak−Xk

)
. In particular, this means that Xk dominates Yk given

(Xi, Yi) for all i < k. It follows that the sum of the Xk stochastically dominates the
sum of the Yk. Since the total time spent at 0 between 0 and t is the sum of the
Xk, and the time spent at 1 is the sum of the Yk, we obtain the desired result. �

In the preceding proof, note that we gave an explicit expression for Xk, and an
upper bound for Yk. If the walker was allowed to move away from the vertex 0
without moving to 1, then we would only have obtained an upper bound for Xk,
which would not allow us to compare Xk and Yk. Example 4.6 illustrates what may
go wrong in such a scenario.

Surprisingly, even the simplest generalisations of Proposition 4.5 are not true.
The following example shows that in the same setting, the walker need not spend
more time at vertex 1 than at 2.

Example 4.6. Fix t > 0. Set the rate r1 to be extremely large, so that the total
time spent at vertex 0 or 1 before time t is very likely to be almost the same. Take
r2 to be 1 and r3 to be zero (thus the walker will never reach any state beyond 2,
and the other rates are irrelevant). Then at time t, the probability that the walker
has spent more than time 2t

3 at vertex 1 is almost zero, because it spends almost
equal amounts of time at 0 and 1. However, there is probability bounded away from
0 that the walker spends more time than 2t

3 at state 2 — for instance, it could move

to state 2 by time t
4 and then the edge between states 1 and 2 might not ring again

before time t.
Therefore, the time spent at 1 does not stochastically dominate the time spent

at 2.

The next example illustrates how Corollary 4.4 may fail in cases that are only
slightly more complicated. The state space will still be a path, but the walker will
not start at an end.

Example 4.7. Expand the setting so that there is a vertex for each integer i, with
ri still the rate for moving between i− 1 and i. The walker still begins at 0, but
there are now possible states on either side of 0.
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If ri = 0 for i 6= 0, 1 and r1 = 1, then one can check by explicit calculation that
pt(0, 0) is larger when r0 = 3 than it is when r0 = 2, whence the expected distance
from 0, being 1− pt(0, 0), is smaller when r0 = 3 than it is when r0 = 2.

For a more extreme example, choose arbitrary positive integers k and n, and set
the rates on edges between −k and 0 to each be 1, and rates on edges between 0 and
n− 1 to be very large and the same. Rates outside these ranges are zero. At times
that are much less than 1, but large compared to the reciprocal of the large rate, the
walker is approximately equally likely to be at any state between 0 and n− 1, for an
expected distance of n−1

2 . At large times, the walker is approximately equally likely

to be at any of the k + n states, for an expected distance of n(n−1)+k(k+1)
2(n+k) . For

some values of k and n, the expected distance from the starting state has decreased
between these two regimes.

If we take k = αn and consider the limit as k and n increase, the most extreme
ratio occurs when α =

√
2 − 1, which gives a ratio between the small-time and

large-time expected distances of 1+
√
2

2 .

One permissible generalisation of Proposition 4.5 is to settings where the excur-
sions from the two vertices in question have the same distribution. This includes
the setting of Cayley graphs with rates depending only on the generators.

Proposition 4.8. Consider random walk on a graph whose edge rates are preserved
by some group of graph automorphisms that acts transitively on the vertices. Then
the time spent between 0 and t at the initial vertex u stochastically dominates the
time spent at each other vertex v.

Proof. Let λ(x, t) be the amount of time between 0 and t spent at the vertex x by a
random walk started at x at time 0. Because the graph is vertex-transitive, the law
of this quantity does not depend on x. The duration λ(x, t) is also increasing in t.
Let τ be a random variable independent of the random walk and whose distribution
is the same as that of the hitting time of the vertex v when the random walk is
started from u. Then we are comparing λ(u, t) with λ

(
v, (t− τ)+

)
, whose law is the

same as that of λ
(
u, (t− τ)+

)
. The random variable τ is positive, which completes

the proof. �
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