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Group-Invariant Percolation on Graphs

by Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm

Abstract. Let G be a closed group of automorphisms of a graph X. We
relate geometric properties of G and X, such as amenability and unimodu-
larity, to properties of G-invariant percolation processes on X, such as the
number of infinite components, the expected degree, and the topology of the
components. Our fundamental tool is a new mass-transport technique that
has been occasionally used elsewhere and is developed further here.

Perhaps surprisingly, these investigations of group-invariant percolation
produce results that are new in the Bernoulli setting. Most notably, we prove
that critical Bernoulli percolation on any nonamenable Cayley graph has no
infinite clusters. More generally, the same is true for any nonamenable graph
with a unimodular transitive automorphism group.

We show that G is amenable iff for all α < 1, there is a G-invariant site
percolation process ω on X with P[x ∈ ω] > α for all vertices x and with no
infinite components. When G is not amenable, a threshold α < 1 appears. An
inequality for the threshold in terms of the isoperimetric constant is obtained,
extending an inequality of Häggström for regular trees.

If G acts transitively on X, we show that G is unimodular iff the ex-
pected degree is at least 2 in any G-invariant bond percolation on X with all
components infinite.

The investigation of dependent percolation also yields some results on
automorphism groups of graphs that do not involve percolation.
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§1. Introduction.

There are intimate connections between the geometry of a space or a group and the

behavior of stochastic processes in it. A well-known example is Kesten’s (1959a, b) theorem

that a countable groupG is amenable iff some (or every) symmetric group-invariant random

walk with support generating G has spectral radius 1. Here, we study the relations between

a group G acting on a graph X and G-invariant percolation processes on X. At least

as important as our particular results is the technique we use: this is a mass-transport

technique that provides a good method for averaging on nonamenable graphs.

Let G be a finitely generated group and let X(G) = (V,E) be its right Cayley graph

with respect to a (finite) set of generators. Note that left multiplication by G gives a left

action on X by automorphisms. We call a probability measure on subsets (also called

configurations) ω of V a site percolation. If the distribution of ω is invariant under

the left action of G, we call the percolation G-invariant. The usual case of Bernoulli

percolation, in which the events x ∈ ω are independent and have the same probability for

all vertices x, is, of course, an example of invariant percolation. A component of ω is a

connected component for the subgraph of X gotten by adding to ω all edges in E whose

endpoints are in ω. Denote by o the vertex in X corresponding to, say, the identity in G.

The following basic result is an analogue for group-invariant percolation of Kesten’s

spectral radius theorem.

Theorem 1.1. (Existence of Threshold) Let X = X(G) be the Cayley graph of a

finitely generated group G. Then G is amenable iff for all α < 1, there is a G-invariant

site percolation on X with P[o ∈ ω] > α and with no infinite components.

The “only if” part of Theorem 1.1 follows from the Rokhlin lemma of Ornstein and

Weiss (1987), and the method of Adams and Lyons (1991) can be used to prove the other

direction. We will give another proof and a generalization in Theorem 5.1.

A quantitative form of Kesten’s equivalence was provided by Cheeger (1970) in the

continuous setting; he gave a lower bound for the bottom of the spectrum of the Laplacian

in terms of the isoperimetric (or “Cheeger”) constant. In the discrete case, such a bound

is equivalent to an upper bound on the spectral radius of the transition operator P , since

the Laplacian is I − P . Cheeger’s result was transferred to the discrete setting in various

contexts by Dodziuk (1984), Dodziuk and Kendall (1986), Varopoulos (1985), Ancona

(1988), Gerl (1988), Biggs, Mohar, and Shawe-Taylor (1988), and Kaimanovich (1992).

We have found a quantitative version of Theorem 1.1, which we now present. Given

K ⊂ V , set ∂V K := {y /∈ K ; ∃x ∈ K, x ∼ y} and ∂EK := {(x, y) ; x ∼ y, x ∈ K, y /∈ K}.
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Define the vertex-isoperimetric constant of X by

ιV (X) := inf

{
|∂V K|

|K|
; K ⊂ V is finite

}
,

and let the edge-isoperimetric constant of X be

ιE(X) := inf

{
|∂EK|

|K|
; K ⊂ V is finite

}
.

Thus, Følner’s theorem is that a finitely generated group G is amenable iff the isoperimetric

constants of X(G) are 0. Let d be the degree of vertices in the Cayley graph X(G), i.e., the

number of generators of G (and their inverses) used to define the Cayley graph. Besides

site percolation, we also consider bond percolation, i.e., a probability measure on subsets

of E. (Note that every site percolation induces a bond percolation consisting of the edges

joining the sites that are present.)

Theorem 1.2. (Quantitative Thresholds) If P is a G-invariant site percolation on

X(G) and P[o ∈ ω] > d/(d + ιE(X)), then there is an infinite component with positive

probability. For G-invariant bond percolation, the same conclusion holds if the expected

degree of each vertex is at least d− ιE(X).

(See Theorems 2.12 and 2.4.)

The paper Benjamini, Lyons, and Schramm (1997) is largely based on the methods

and results of the present paper. One of the results there is an extension of Theorem 1.2;

namely, that if the weak inequality for the expected degree of bond percolation in Theo-

rem 1.2 is replaced by a strict inequality, then with positive probability, the percolation

subgraph contains a subgraph with positive isoperimetric constant.

The key tool in proving Theorem 1.2, and many other results below, is a “mass-

transport” technique that we learned from Häggström (1997), but which was used earlier

by Adams (1990) and by van den Berg and Meester (1991). It is a method that is especially

useful for averaging on nonamenable graphs (though it is not restricted to nonamenable

situations). Häggström used this technique in order to prove Theorem 1.2 for trees X;

he showed that the thresholds are sharp there. Our Mass-Transport Principle is given in

Section 3, following reasoning of Woess (1996). Briefly, the technique is to put “mass” at

the vertices, possibly depending on the percolation configuration, and then redistribute it

in some fashion. A sort of conservation-of-mass principle then allows one to compare the

mass at a vertex before and after redistribution.

For an example of invariant but not Bernoulli percolation, consider a Cayley graph

X and a positive integer r. Independently color each site red with probability 1/2. Now
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let ω consist of those sites x such that the proportion of red sites within distance r of x

is between 40% and 60%. It follows from Theorem 1.2 that if G is nonamenable, then

there is an easily estimable r such that there is an infinite component of ω with positive

probability. For example, if d/(d + ιE(X)) 6 0.95, then it suffices to take r so that the

number of group elements within distance r of the identity is at least 100.

Other examples of group-invariant percolation include the connected components of

plus spins in Ising models; random spanning forests of various kinds (see, e.g., Pemantle

(1991), Alexander (1995), Häggström (1998), and Benjamini, Lyons, Peres, and Schramm

(1998a)); and the random cluster model (see, e.g., Grimmett (1995)).

A graph X that does not necessarily arise as a Cayley graph is called amenable

if ιE(X) = 0, or, equivalently if X has bounded degree, ιV (X) = 0. (All graphs are

assumed without further comment to be countable and locally finite.) We say that a

group G ⊆ Aut(X) is transitive or acts transitively if |G\V | = 1; we say that G is

quasi-transitive or acts quasi-transitively if |G\V | < ∞. (Here, the set of vertex

G-orbits is denoted G\V .) In these cases, one is often interested in G-invariant random

walks on X. The extension of Kesten’s theorem to this setting involves unimodularity

and has been studied by Soardi and Woess (1990), Salvatori (1992), and Saloff-Coste and

Woess (1996). Likewise, Theorems 1.1 and 1.2 extend to the quasi-transitive case and

unimodularity plays a key role; see Theorems 4.1 and 4.4. A review of unimodularity and

amenability for automorphism groups is given in Section 3.

A Bernoulli(p) site [bond] percolation on a graph X = (V,E) is a probability measure

on subsets ω of V [respectively E] such that P[x ∈ ω] = p and the events x ∈ ω are all

independent. The parameter p is sometimes called the survival parameter. The critical

probability pc is the infimum over all p ∈ [0, 1] such that in Bernoulli(p) percolation, there

is positive probability for the existence of an infinite connected component in ω. Critical

Bernoulli percolation is Bernoulli percolation with p = pc.

The main long-standing open question in percolation is to show that critical perco-

lation in Z
d a.s. has no infinite components for all d > 2. The work of Harris (1960)

and Kesten (1980) established the two-dimensional case; Hara and Slade (1994) proved it

for d > 19. As an application of our study of group-invariant percolation, we obtain the

following result (see Section 7):

Theorem 1.3. (Critical Percolation is Finite) Let X =
(
V (X), E(X)

)
be a Cayley

graph of a finitely generated nonamenable group, and consider either site or bond perco-

lation on X. Then at the corresponding critical value p = pc, almost surely there is no

infinite cluster.
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More generally, the same is true when X is a graph having a transitive unimodular

automorphism group.

In particular, there are no infinite components for critical percolation on hyperbolic

lattices, nor on any (k-regular tree) × Z. The latter was previously known only for k > 7

(Wu 1993). Wu’s proof goes along the lines of the high-dimensional Euclidean proof and

uses the triangle condition.

If one is interested only in Theorem 1.3, then certain simplifications are possible, since

only Bernoulli percolation is involved. A self-contained proof of Theorem 1.3 is given in

the expository note Benjamini, Lyons, Peres and Schramm (1997b).

A result of independent interest that we use in the proof of Theorem 1.2 (but not in

the proof of Theorem 1.3) is that no finite subset achieves the isoperimetric constant in

transitive graphs:

Proposition 1.4. (Isoperimetric Constants are Not Achieved) If X is an infinite

transitive graph, then for all finite K ⊂ V , we have |∂EK|/|K| > ιE(X) and |∂V K|/|K| >

ιV (X).

(See Corollaries 2.2 and 2.11.)

We also give the following characterization of amenability that involves the type of

spanning subgraphs on which a group-invariant distribution can be carried. (A subgraph

is spanning if it is connected and includes all vertices.)

Theorem 1.5. (Amenability, Spanning Trees and pc) Let G be a closed unimodular

subgroup of Aut(X) that acts transitively on X. Then the following are equivalent:

(i) X is amenable;

(ii) there is a G-invariant random spanning tree of X with at most 2 ends a.s.;

(iii) there is a G-invariant random nonempty connected subgraph of X with pc = 1 with

positive probability.

(See Theorem 5.3.) We show by example that the theorem fails without the assumption

that G is unimodular.

In Section 6, we characterize unimodularity in terms of the expected degree of vertices

in infinite components. Since any connected finite graph with vertex set V has average

degree at least 2−2/|V |, one might expect that for G-invariant percolation on a transitive

graph X with all components infinite a.s., the expected degree of a vertex is at least

2. This inequality is true when the group G is unimodular, but surprisingly, whenever

G is not unimodular, there is a G-invariant percolation where the inequality fails. (See

Theorem 6.1.)
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In Section 7, we find a relationship between the number of ends of the components

in invariant percolation and the expected degree of vertices (where “degree” refers to the

degree in the percolation). Suppose that G acts transitively on X and is unimodular. Con-

sider a G-invariant bond percolation on X, and let ω be its configuration. In Corollary 7.5,

we show that if a.s. every component of ω is an infinite tree with finitely many ends, then

the expected degree of every vertex is 2. Towards the end of Section 7, Theorem 1.3 is

proved.

In Section 8, we consider a vertex-transitive tiling X of the hyperbolic plane and show

that the number of infinite components of any automorphism-invariant bond percolation

on X is either 0, 1 or ∞. Consequently, in any automorphism-invariant 2-coloring of the

vertices of X, if both colors have infinite components, then a.s. at least one color must

have infinitely many infinite clusters. For Bernoulli percolation on tilings of large genus,

this was proved by Lalley (1998).

The history of the study of group-invariant percolation is as follows. That the usual in-

dependence assumption in percolation theory can be profitably relaxed to group invariance

was demonstrated in the remarkable proof of uniqueness of the infinite cluster, discovered

by Burton and Keane (1989). Although they considered only the case of Euclidean lattices,

their proof is valid in any amenable transitive graph, provided that cubes are replaced by

Følner sets; see Gandolfi, Keane, and Newman (1992). Topological consequences of invari-

ance for percolation in Z
2 were explored by Burton and Keane (1991). The first analysis

of percolation on a nonamenable graph that is not a tree was that of Bernoulli percola-

tion on the Cartesian product of a regular tree and the integers, studied by Grimmett

and Newman (1990). They proved that for some p > pc, multiple infinite clusters co-

exist. As a consequence of a method for studying random walks, Lyons (1995) gave a

threshold for Bernoulli percolation on groups of exponential growth: if p > lim |Bn|
−1/n,

then there is an infinite component with positive probability in both Bernoulli site and

bond percolation with survival parameter p; here Bn is the ball of radius n. Benjamini

and Schramm (1996a) gave a threshold for Bernoulli percolation on general nonamenable

graphs: if p > 1/(1+ ιV (X)), then there is an infinite component with positive probability

in Bernoulli site percolation with parameter p. Likewise, if p > 1/(1 + ιE(X)), then there

is an infinite component with positive probability in Bernoulli bond percolation with pa-

rameter p. As we already mentioned, Häggström (1997) proved Theorem 1.2 for regular

trees. His paper was the original impetus for the present work. Other studies of perco-

lation in nonamenable settings, particularly in the hyperbolic plane, were carried out by

Lalley (1998) and by Benjamini and Schramm (1996b, 1998).

All three thresholds that we have mentioned (of Lyons, of Benjamini and Schramm,
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and of Häggström) are sharp for trees. We do not know whether the threshold for bond

percolation in Theorem 1.2 is sharp for every nonamenable Cayley graph.

§2. Nonamenable Cayley Graphs.

We shall treat first the case of bond percolation on Cayley graphs, as the mass-

transport method is particularly transparent there.

For an edge e = (u, v), write ě := (v, u). We call a function θ on E antisymmetric

if θ(u, v) = −θ(v, u) for all (oriented) edges e = (u, v). Set d∗θ(v) :=
∑

u∼v θ(v, u).

The following proposition, modelled on Proposition 2.10 below from Benjamini and

Schramm (1997), dualizes the inf in ιE(X) not only to a sup, but to a max. It is a

quantitative version of the main Theorem 3.1 of Block and Weinberger (1992).

Proposition 2.1. (Flows and the Edge-Isoperimetric Constant) For any graph

X, we have

ιE(X) = max{α > 0 ; ∃θ ∀e |θ(e)| 6 1 and ∀v d∗θ(v) = α} ,

where θ runs over the antisymmetric functions on E.

For the proof, we need some of the standard notions for flows in networks. A network

is a directed multigraph X = (V,E), a pair of distinguished vertices of X, s0 and s1, called

the source and the sink, respectively, and a capacity function on the oriented edges

C : E → [0,∞]. Write e− and e+ for the tail and head of an edge e. For a function

θ : E → R and v ∈ V , write d∗θ(v) :=
∑

e−=v θ(e) −
∑

e+=v θ(e). A network flow is

a function θ : E → R satisfying 0 6 θ(e) 6 C(e) for all e ∈ E and d∗θ(v) = 0 for all

v 6= s0, s1. The strength of the network flow is d∗θ(s0). A cut of the network is a set

Π of oriented edges such that there is no oriented path from s0 to s1 in X − Π. Ford

and Fulkerson’s (1962) Max-Flow Min-Cut Theorem says that in a finite network, the

maximum strength of a network flow is equal to minΠ
∑

e∈Π C(e), where Π ranges over all

cuts of the network.

Proof of Proposition 2.1. Suppose that θ : E → R is antisymmetric and satisfies ∀e |θ(e)| 6

1 and ∀v d∗θ(v) = α. Let K be finite. Then

α|K| =
∑

v∈K

d∗θ(v) =
∑

e∈∂EK

θ(e) 6 |∂EK| .

This shows that α 6 ιE(X) and (for later use) that θ(e) = 1 for all e ∈ ∂EK if α =

ιE(X) = |∂EK|/|K|. Consequently,

ιE(X) > max{α > 0 ; ∃θ ∀e |θ(e)| 6 1 and ∀v d∗θ(v) = α} .
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Now suppose that α 6 ιE(X). For any finite K ⊂ V , define the network XK with

vertices K and two extra vertices, the source, s0, and the sink, s1. The edges of XK are as

follows: For each edge in X with both endpoints x, y in K, put both oriented edges (x, y)

and (y, x) in XK ; for each edge (x, y) ∈ ∂EK, put the edge (x, s1) in XK ; and for each

x ∈ K, put the edge (s0, x) in XK . Give all edges e incident to s0 capacity C(e) := α and

all other edges capacity C(e) := 1.

We claim that there is a network flow from s0 to s1 in XK with strength α|K|.

Consider any cut Π separating s0 from s1. Let K ′ be the vertices in K that Π separates

from s1. Then ∂EK
′ ⊆ Π and (s0, v) ∈ Π for all v ∈ K −K ′. Therefore,

∑

e∈Π

C(e) > |∂EK
′|+ α|K −K ′| > ιE(X)|K ′|+ α|K −K ′| > α|K| .

Thus, the claim follows from the Max-Flow Min-Cut Theorem. Note that the flow along

(s0, v) is α for every v ∈ K.

Now let Kn be finite sets increasing to V and let θn be the corresponding flows of

strength α|Kn| on XKn
. There is a subsequence 〈ni〉 such that for all edges e ∈ E,

the limit θ(e) := θni
(e) exists; clearly, θ is antisymmetric when restricted to E. Also,

∀e ∈ E |θ(e)| 6 1 and ∀v ∈ V d∗θ(v) = α.

The following consequence appears to be new:

Corollary 2.2. (Isoperimetric Constant Not Attained) If X is an infinite tran-

sitive graph, then for all finite K ⊂ V , we have |∂EK|/|K| > ιE(X).

Proof. Let θ be an antisymmetric function on E with |θ(e)| 6 1 for all edges e and

d∗θ(v) = ιE(X) for all vertices v. Let K ⊂ V be finite. Suppose for a contradiction

that |∂EK|/|K| = ιE(X). We may assume that θ is acyclic on K, i.e., that there is no

cycle of oriented edges connecting vertices in K on each of which θ > 0. (Otherwise, we

modify θ by subtracting appropriate cycles.) The proof of Proposition 2.1 shows that for

all e ∈ ∂EK, we have θ(e) = 1; in particular, θ(e) > 0. Let (v1, v0) ∈ ∂EK and let g be

an automorphism of X that carries v0 to v1. Write v2 for the image of v1 and gK for

the image of K. Since we also have |∂E(gK)|/|gK| = ιE(X) and (v2, v1) ∈ ∂E(gK), it

follows that θ(v2, v1) > 0. We may similarly find v3 such that θ(v3, v2) > 0 and so on,

until we arrive at some vk that equals some previous vj or is outside K. Both lead to a

contradiction, the former contradicting the acyclicity of θ, the latter contradicting the fact

that on all edges leading out of K, we have θ > 0.

Remark 2.3. It also follows from Proposition 2.1 that if G covers H, then ιE(G) > ιE(H).
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For a finite subgraph K ⊂ X, set

αK :=
1

|K|

∑

x∈K

degK(x) ,

where degK(x) refers to the degree of x as a vertex in the graph K. Let

α(X) := sup{αK ; K ⊂ X is finite} .

If X is a regular graph of degree d, then

α(X) + ιE(X) = d .

Let d be the number of generators of G, i.e., the degree of vertices in its Cayley graph

X. Let o denote the identity of G as a vertex in X. Let D(x) be the random degree

of x in the percolation configuration. Here, we consider a G-invariant bond percolation,

so that all D(x) are identically distributed; let D be a random variable with this same

distribution. Write K(x) for the component of x in the percolation configuration.

We are now ready to prove our first threshold theorem:

Theorem 2.4. (Bond-Percolation Threshold) If P is a bond percolation on a non-

amenable Cayley graph X = X(G) whose distribution is G-invariant and ED > α(X),

then there is an infinite component with positive probability. Moreover, there is positive

probability for the bond pc of the percolation subgraph ω to satisfy pc(ω) 6 α(X)/ED.

Remark 2.5. The intuition is that if P gives a high mean degree, then it cannot be

supported only on finite components with smaller average internal degree.

Remark 2.6. Functions other than the degree can be used for thresholds, such as square

degree.

Remark 2.7. If the percolation is such that the components are guaranteed to belong

to a class of subgraphs C, then we can use the possibly better threshold α(X ; C) :=

sup{αK ; K ∈ C is finite}. For example, if C contains only trees, then it is enough that

ED > 2.

Remark 2.8. The proof shows the stronger result that E[D(o) | K(o) is finite] < α(X),

provided K(o) is finite with positive probability.

Proof of Theorem 2.4. We put mass D(x) at each x ∈ V . All masses of vertices in infinite

components are left alone, but the mass of a vertex in a finite component is redistributed

equally among the vertices in that component (including itself). Thus, after redistribution,
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all vertices in a finite component K have mass αK . Because P is G-invariant, this is a

G-invariant mass transport, so that if f(x, y) denotes the expected mass taken from x and

transported to y, then for all g ∈ G, we have f(x, y) = f(gx, gy). The mass at o before

transport has mean ED, whence

ED =
∑

x∈X

f(o, x) .

On the other hand, the mass at o after transport has mean

E[D(o)1{|K(o)|=∞} + αK(o)1{|K(o)|<∞}] =
∑

y∈X

f(y, o) .

By G-invariance of f , we have

∑

x∈X

f(o, x) =
∑

g∈G

f(o, go) =
∑

g∈G

f(g−1o, o) =
∑

y∈X

f(y, o) , (2.1)

whence (using Corollary 2.2)

ED = E[D(o)1{|K(o)|=∞} + αK(o)1{|K(o)|<∞}] < E[d1{|K(o)|=∞} + α(X)1{|K(o)|<∞}]

= (d− α(X))p∞ + α(X) ,

where p∞ := P[|K(o)| = ∞]. [Actually, the strict inequality fails in the trivial case that

K(o) = X a.s.] Since α(X) < d, the result follows, together with the estimate

p∞ >
ED − α(X)

d− α(X)
. (2.2)

If ED > α(X), then we can intersect with the configuration of an independent

Bernoulli percolation with survival parameter p′ = α(X)/ED and apply (2.2) to ob-

tain that there is still an infinite component with positive probability. This means that

pc 6 α(X)/ED < 1 with positive probability.

Remark 2.9. Although Bernoulli percolation at the thresholds given in Benjamini and

Schramm (1996a) can have the property that there are no infinite components a.s. (for

example, on a tree), this is not the case with the threshold of Theorem 2.4.

The analogue of Proposition 2.1 for the vertex-isoperimetric constant is due to Ben-

jamini and Schramm (1997) and involves the amount flowing along edges into vertices,

flow+(θ, v) :=
∑

u∼v

(
θ(u, v) ∨ 0

)
.
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Proposition 2.10. (Flows and the Vertex-Isoperimetric Constant) For any

graph X, we have

ιV (X) = max{α > 0 ; ∃θ ∀v flow+(θ, v) 6 1 and d∗θ(v) = α} ,

where θ runs over the antisymmetric functions on E.

Corollary 2.11. (Vertex-Isoperimetric Constant Not Attained) If X is an

infinite transitive graph, then for all finite K ⊂ V , we have |∂V K|/|K| > ιV (X).

Proof. Let θ be an antisymmetric function on E with flow+(θ, v) 6 1 and d∗θ(v) = ιV (X)

for all vertices v. Let K ⊂ V be finite. Suppose for a contradiction that |∂V K|/|K| =

ιV (X). It is easy to see that for all v ∈ ∂V K, we have flow+(θ, v) = 1 and flow+(−θ, v) =

ιV (X) + 1; in particular, there is some e leading to v with θ(e) > 1/d and some e leading

away from v with θ(e) > (ιV (X) + 1)/d > 1/d, where d is the degree in X. Since X is

transitive, the same is true for all v ∈ V . Therefore, we may find either a cycle or a bi-

infinite path with all edges e having the property that θ(e) > 1/d. We may then subtract

1/d from θ along these edges, yielding another function θ′ that satisfies flow+(θ
′, v) 6 1

and d∗θ′(v) = ιV (X) for all vertices v. But flow+(θ
′, v) < 1 for some v, a contradiction.

Now we consider site percolation on X.

Theorem 2.12. (Site-Percolation Threshold) If P is a G-invariant site percolation

on a nonamenable Cayley graph X = X(G) with P[o ∈ ω] > d/(d+ ιE(X)), then there is

an infinite component with positive probability. Moreover, if P[o ∈ ω] > d/(d + ιE(X)),

then with positive probability, there is a component with pc < 1.

Remark 2.13. If there are triangles in X, then the threshold d/(d + ιE(X)) may be

replaced by d′/(d′ + ιE(X)), where d′ is the maximum number of neighbors of o that are

pairwise nonadjacent.

Proof. Write n(x, y) := |{z ∈ K(x) ; z ∼ y}| for the number of neighbors of y in the

component of x. Note that for each x, we have
∑

y∈∂V K(x) n(x, y) = |∂EK(x)|. We use

the G-invariant mass transport corresponding to the expected mass transfer from x to y

of

f(x, y) := E

[
1{|K(x)|<∞, y∈∂V K(x)}n(x, y)

|∂EK(x)|

]
.

The mass that leaves o has mean P[o ∈ ω, |K(o)| < ∞], which must equal the mean mass

that enters o, namely

E

[∑

x∼o

1{o/∈ω, |K(x)|<∞}|K(x)|

|∂EK(x)|

]
<

d(1−P[o ∈ ω])

ιE(X)

11



(provided P[K(o) = X] < 1). Therefore, we get the estimate

P[|K(o)| = ∞] > P[o ∈ ω]

(
1 +

d

ιE(X)

)
−

d

ιE(X)
.

This proves the first assertion; the second follows as in the proof of Theorem 2.4.

§3. Basic Properties of Automorphism Groups.

We start by reviewing the modular function. A compact group has a unique left-

invariant Radon probability measure, called Haar measure. It is also the unique right-

invariant Radon probability measure. A locally compact group G has a left-invariant

σ-finite Radon measure |•|; it is unique up to a multiplicative constant. For every g ∈ G,

the measure A 7→ |Ag| is left invariant, whence there is a positive number m(g) such that

|Ag| = m(g)|A| for all measurable A. The map g 7→ m(g) is a homomorphism from G to

the multiplicative group of the positive reals and is called the modular function of G.

If m(g) = 1 for every g ∈ G, then G is called unimodular. In particular, this is the case

if G is countable, where Haar measure is counting measure.

The automorphism group Aut(X) of a (locally finite) graph X is given the topology

of pointwise convergence. If G is a closed subgroup of Aut(X), then G is locally compact

and the stabilizer

S(x) := {g ∈ G ; gx = x}

of any vertex x is compact.

Note that if gu = y, then S(y) = gS(u)g−1, whence

|S(y)| = |S(u)g−1| = m(g)−1|S(u)| . (3.1)

Thus, G is unimodular iff for all x and y in the same orbit, |S(x)| = |S(y)|.

Unimodularity of a group of graph automorphisms is a simple and natural combinato-

rial property, as shown by Schlichting (1979) and Trofimov (1985). Namely, if G ⊂ Aut(X)

is a closed group of automorphisms of a graph X and |•| denotes cardinality (for subsets

of X) as well as Haar measure (for subsets of G), then for any vertices x, y ∈ X,

|S(x)y|/|S(y)x| = |S(x)|/|S(y)| ; (3.2)

thus, G is unimodular iff for all x and y in the same orbit,

|S(x)y| = |S(y)x| . (3.3)

Of course, when G is countable and acting by multiplication on its Cayley graph X,

unimodularity is trivial. We note that (3.2) is proved by showing that the number of

cosets of S(x) ∩ S(y) in S(x) is |S(x)y|, whence |S(x)| = |S(x)y| · |S(x) ∩ S(y)|. See

Trofimov (1985) for details.
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Example 3.1. (Nonunimodular Trees) Here is an example of a transitive graph X

whose full automorphism group is unimodular but which has a closed group G ⊂ Aut(X)

that is not unimodular: Let X be the 3-regular tree. Fix an end ξ of X and let G be the

automorphisms preserving ξ.

For an example of a transitive graph X whose full automorphism group is not unimod-

ular, add to the above tree, for each vertex x, the edge between x and its ξ-grandparent.

These examples were described by Trofimov (1985). For an example of a quasi-transitive

tree whose full automorphism group is not unimodular, let X be the 3-regular tree again

and ξ an end of X. Let the horocycles with respect to ξ be Xn in their natural order. Add

a vertex to each edge joining v to w when v ∈ Xn, w ∈ Xn+1, and n is even. If X ′ denotes

the resulting tree, then Aut(X ′) is nonunimodular and has a finite number of orbits.

Example 3.2. (A More Interesting Nonunimodular Graph) Here is a significantly

different example. Let X1 be a 3-regular tree with edges oriented towards some distin-

guished end, and let X2 be a 4-regular tree with edges oriented towards some distinguished

end. Let V be the cartesian product of the vertices of X1 and the vertices of X2. Join

every (u1, u2), (v1, v2) ∈ V by an edge if [u1, v1] is an edge of X1 and [u2, v2] is an edge of

X2, and precisely one of these edges goes against the orientation. The resulting graph has

infinitely many components, any two components being isomorphic. Each component is a

transitive graph whose automorphism group is not unimodular.

Wolfgang Woess has informed us that this example was first discovered by Diestel

and Leader for the purpose of providing a potential example of a transitive graph that is

not quasi-isometric to any Cayley graph; however, this question is still open. See Woess

(1991).

Next, we review amenability. Let G be any locally compact group and L∞(G) be the

Banach space of measurable essentially bounded real-valued functions on G with respect

to Haar measure. A linear functional on L∞(G) is called a mean if it maps the constant

function 1 to 1 and nonnegative functions to nonnegative numbers. If f ∈ L∞(G) and

g ∈ G, we write Lgf(h) := f(gh). We call a mean µ invariant if µ(Lgf) = µ(f) for all

f ∈ L∞(G) and g ∈ G. Finally, we say that G is amenable if there is an invariant mean

on L∞(G). A more concrete yet necessary and sufficient condition for amenability was

given by Følner, namely, that for every nonempty compact B ⊂ G and ǫ > 0, there is a

nonempty compact set A ⊂ G such that |BA△A| 6 ǫ|A|; see Paterson (1988), Theorem

4.13. In this case, one often refers informally to A as a Følner set.

For automorphism groups of graphs, amenability has another interpretation:

Lemma 3.3. (Characterization of Group-Amenability) Let X be a graph and G

13



be a closed subgroup of Aut(X). Then G is amenable iff X has a G-invariant mean.

Here, a mean on ℓ∞(V ) is called G-invariant if every f ∈ ℓ∞(V ) has the same mean as

does Lgf (defined as taking x 7→ f(gx)).

Proof. This follows from, e.g., Adams and Lyons (1991), Prop. 3.1. We outline a more

direct proof here. Fix o ∈ V . Suppose that µ is an invariant mean on L∞(G). Given

f ∈ ℓ∞(V ), define f̂ ∈ L∞(G) by f̂(h) := f(ho). It is straightforward to check that

L̂gf = Lg f̂ for all g ∈ G, whence the mean f 7→ µ(f̂) is G-invariant.

Conversely, suppose that µ is an invariant mean on ℓ∞(V ). Given f ∈ L∞(G), define

f ∈ ℓ∞(V ) by f(x) :=
∫
ho=x

f(h) dh/|S(o)|, where dh denotes Haar measure. Again, it is

easy to check that Lgf = Lgf , so that the mean f 7→ µ(f) is G-invariant.

Soardi and Woess (1990) established the following fundamental theorem for transitive

graphs; the extension to quasi-transitive graphs is Theorem 1 of Salvatori (1992).

Theorem 3.4. (Characterization of Graph-Amenability) Let X be a graph and

G be a closed quasi-transitive subgroup of Aut(X). Then X is amenable iff G is amenable

and unimodular.

We shall give a new proof of this later (see Remarks 3.11 and 6.3) and extend it in

Theorem 3.9. The original proof of Theorem 3.4 used random walks. Our proof is more

direct, depending on the Mass-Transport Principle.

After this review, we now present the very useful Mass-Transport Principle, which

replaces the simple (2.1). Let τ be some invariant process on X, such as invariant per-

colation, and let F (u, v; τ) ∈ [0,∞] be a function of u, v ∈ V and τ . Suppose that F is

invariant under the diagonal action of G; that is, F (gu, gv; gτ) = F (u, v, τ) for all g ∈ G.

We think of giving each vertex v ∈ V some initial mass, possibly depending on τ , then

redistributing it so that u sends v the mass F (u, v; τ). With this terminology, one hopes

for “conservation” of mass, at least in expectation. Of course, the total amount of mass is

usually infinite. Nevertheless, there is a sense in which mass is conserved; in the transitive

unimodular setting, we have that the expected mass at a vertex before transport equals

the expected mass at a vertex afterwards. More generally, mass needs to be weighted

according to the Haar measure of the stabilizer as follows:

∑

z∈Gv

EF (u, z; τ)|S(v)| =
∑

y∈Gu

EF (y, v; τ)|S(y)| (3.4)

for every u, v ∈ V . This is the central formula of the mass-transport technique. Since F

enters only in expectation, however, it is more convenient to set f(u, v) := EF (u, v; τ).

Then (3.4) follows from the following deterministic formula:
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Mass-Transport Principle. If X = (V,E) is any graph, G ⊆ Aut(X) is closed,

f : X ×X → [0,∞] is invariant under the diagonal action of G, and u, v ∈ V , then
∑

z∈Gv

f(u, z)|S(v)| =
∑

y∈Gu

f(y, v)|S(y)| .

Proof. The following proof is due to Woess (personal communication, 1997); similar rea-

soning occurs, e.g., in Woess (1996), pp. 191–2. If dg denotes Haar measure, we have
∑

z∈Gv

f(u, z)|S(v)| =
∑

z∈Gv

f(u, z)|{g ∈ G ; gv = z}| =

∫

G

f(u, gv) dg

=

∫

G

f(g−1u, v) dg =
∑

y∈Gu

f(y, v)|{g ∈ G ; g−1u = y}|

=
∑

y∈Gu

f(y, v)|{g ∈ G ; gy = u}| =
∑

y∈Gu

f(y, v)|S(y)| .

Corollary 3.5. (Mass-Transport for Unimodular Graphs) Let X be a graph,

G ⊆ Aut(X) be a closed unimodular quasi-transitive subgroup, and f : X ×X → [0,∞] be

invariant under the diagonal action of G. Choose a complete set {o1, . . . , oL} of represen-

tatives in V of the orbits of G. Let µi := |S(oi)|. Then

L∑

i=1

µ−1
i

∑

z∈V

f(oi, z) =

L∑

j=1

µ−1
j

∑

y∈V

f(y, oj) . (3.5)

Proof. The assumption that G is unimodular means that |S(y)| = |S(oi)| for y ∈ Goi.

Thus, for each i and j, the Mass-Transport Principle gives
∑

z∈Goj

f(oi, z)|S(oj)| =
∑

y∈Goi

f(y, oj)|S(oi)| ,

i.e.,

µ−1
i

∑

z∈Goj

f(oi, z) = µ−1
j

∑

y∈Goi

f(y, oj) .

Adding these equations over all i and j gives the desired result.

In order to show why (3.5) corresponds to averaging in a natural way, we show how it

corresponds to averaging on Følner sets when X is amenable. Recall that X is amenable

if ιV (X) = 0.

For a quasi-transitive amenable graph, the total mass leaving vertices in a Følner set

is approximately the number of vertices in the set times the left-hand side of (3.5) if the

frequency of vertices that lie in Goi is 1/µi. Likewise, the total mass entering vertices in a

Følner set is approximately the number of vertices in the set times the right-hand side of

(3.5). The following proposition makes this precise and thus shows how natural (3.5) is.
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Proposition 3.6. (Density of Orbits in Amenable Graphs) Let X be an amenable

graph and G ⊆ Aut(X) be a closed quasi-transitive subgroup. Choose a complete set

{o1, . . . , oL} of representatives in V of the orbits of G. Let µi := |S(oi)| and normalize

Haar measure so that
∑

i µ
−1
i = 1. If Kn is any sequence of finite subsets of vertices such

that |∂V Kn|/|Kn| → 0, then for all i,

lim
n→∞

|Goi ∩Kn|

|Kn|
= µ−1

i .

Proof. By Theorem 3.4, G is unimodular. Fix i and let r be the distance from o1 to oi.

Let ni be the number of vertices in Goi at distance r from o1 and let n1 be the number

of vertices in Go1 at distance r from oi. Begin with mass ni at each vertex x ∈ Go1 and

redistribute it equally among those vertices in Goi at distance r from x. When n is large,

|Kn| dominates the number of vertices at distance r from ∂V Kn. Hence, the total mass

transported from vertices in Go1 ∩ Kn is asymptotically proportional to the total mass

transported into vertices in Goi ∩Kn; that is,

lim
n→∞

n1|Goi ∩Kn|

ni|Go1 ∩Kn|
= 1 . (3.6)

By the Mass-Transport Principle, we also have

niµi = n1µ1 . (3.7)

Since (3.6) and (3.7) hold for all i, their conjunction imply the desired result.

Analogues of Corollary 3.5 for nonunimodular groups can be proved the same way;

we merely record the result for later use:

Corollary 3.7. Let X be a graph, G ⊆ Aut(X) be a closed quasi-transitive subgroup, and

f : X × X → [0,∞] be invariant under the diagonal action of G. Choose a complete set

{o1, . . . , oL} of representatives in V of the orbits of G. Let µi := |S(oi)| and ai > 0. Then

L∑

i=1

ai
∑

z∈V

f(oi, z) =
L∑

i,j=1

ai/µj

∑

y∈Goi

f(y, oj)|S(y)| .

Given a set K ⊆ V , let

|K|G :=
∑

x∈K

|S(x)| .

By (3.1), we have

|gK|G = m(g)−1|K|G . (3.8)
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Lemma 3.8. Let G be a closed subgroup of Aut(X), o ∈ V , and A ⊆ G be closed. If

S(o)A = A, then

|A−1o|G = |A| .

Proof. For each x ∈ A−1o, let gx be an element of A satisfying g−1
x o = x. The hypothesis

that S(o)A = A means that {h ∈ A ; h−1o = x} = S(o)gx = gxS(x). In other words, A is

partitioned as 〈gxS(x) ; x ∈ A−1o〉, whence

|A| =
∑

x∈A−1o

|gxS(x)| =
∑

x∈A−1o

|S(x)| = |A−1o|G .

We now give a result related to Theorem 3.4: Say that a transitive graph X is |•|G-

amenable if for all ǫ > 0, there is a finite K ⊂ V such that |∂V K|G < ǫ|K|G.

Theorem 3.9. (Weighted Amenability) Let G be a closed subgroup of Aut(X) that

acts transitively on X. Then G is amenable iff X is |•|G-amenable.

Proof. Fix a basepoint o ∈ V . Suppose first that G is amenable. Let N be the set

containing o and its neighbors. Set

B := {g ∈ G ; g−1o ∈ N} .

Then N = B−1o and for all A ⊆ G,

∂V (A
−1o) = (A−1N)− (A−1o) = (A−1B−1o)− (A−1o) .

Note that B is compact,

S(o)B = B = BS(o) ,

and BA ⊇ A. Given ǫ > 0, there is a compact A ⊂ G such that

|BA| − |A| = |BA−A| 6 ǫ|A| .

Because BS(o) = B, this inequality is also satisfied by A′ = S(o)A ⊇ A. Consequently,

we assume, with no loss of generality, that S(o)A = A. Since S(o)B = B and S(o)A = A,

Lemma 3.8 gives

|BA| − |A| = |A−1B−1o|G − |A−1o|G = |∂V (A
−1o)|G .

By one more application of Lemma 3.8, we see that X is |•|G-amenable by taking K :=

A−1o.
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Conversely, suppose that X is |•|G-amenable. Given ǫ > 0 and a compact set B ⊂ G

containing the identity of G, let r be the maximum distance of any vertex in B−1o to o

and k :=
∑

d(x,o)6r |S(x)|/|S(o)|. There is a finite set K ⊂ V such that

|∂V K|G 6 ǫ|K|G/k .

Let A := {g ∈ G ; g−1o ∈ K}. Since S(o)A = A, we have

|S(o)BA−A| = |S(o)BA| − |A| = |A−1B−1o|G − |A−1o|G = |A−1B−1o−A−1o|G . (3.9)

Now every vertex in A−1B−1o−A−1o lies within distance r of some vertex in ∂V (A
−1o) =

∂V K. Therefore, (3.9), (3.8), and Lemma 3.8 give

|BA−A| 6 |S(o)BA−A| = |A−1B−1o|G − |A−1o|G

6
∑

x∈∂V K

|{y ; d(x, y) 6 r}|G =
∑

x∈∂V K

|{y ; d(o, y) 6 r}|G|S(x)|/|S(o)|

= k|∂V K|G 6 ǫ|K|G = ǫ|A| .

The following simple principle will allow us on several occasions to reduce the study

of quasi-transitive graphs to transitive graphs.

Lemma 3.10. (Reducing Quasi-Transitive to Transitive) Let X be a graph and

G be a closed quasi-transitive subgroup of Aut(X). Let o be a vertex in X. Let r be such

that every vertex in X is within distance r of some vertex in Go. Form the graph X ′

from the vertices Go by joining two vertices by an edge if their distance in X is at most

2r + 1. Restriction of the elements of G to X ′ yields a subgroup G′ ⊆ Aut(X ′). Then X ′

is connected, G′ acts transitively on X ′, and we have the following equivalences:

(i) X is |•|G-amenable iff X ′ is |•|G′-amenable;

(ii) G is amenable iff G′ is amenable;

(iii) G is unimodular iff G′ is unimodular.

Proof. (i) is proved in the unimodular case by Salvatori (1992), Lemma 2; the modifications

needed to establish the general case are straightforward.

It is also not hard to deduce (ii) from Lemma 3.3.

To see (iii), we use (3.3). When x, y ∈ X ′, each side of (3.3) is the same whether

interpreted in G or in G′. Hence if G is unimodular, so is G′. On the other hand, if G′

is unimodular, then the G-stabilizers of the vertices in the orbit of o all have the same

Haar measure (by the same reasoning). Now apply (3.1) to an arbitrary element of G to

conclude that G is unimodular.
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Remark 3.11. Together with Theorem 3.9, this immediately gives one direction of Theo-

rem 3.4: namely, that if G is amenable and unimodular, then X is amenable.

The following will be useful in proving Theorem 5.1.

Lemma 3.12. Let G be a closed subgroup of Aut(X) that acts transitively on X. Let

K ⊂ V be finite. For each x ∈ V , let gx be a random element of G that takes o to x chosen

according to normalized Haar measure. Fix some y ∈ V . Then

E
∣∣{x ∈ V ; y ∈ gxK}

∣∣ = |K|G|S(o)|
−1 .

Proof. By the Mass-Transport Principle, we have

E
∣∣{x ∈ V ; y ∈ gxK}

∣∣·|S(o)| =
∑

x∈V

P[y ∈ gxK]|S(o)| =
∑

z∈V

P[z ∈ goK]|S(z)| = E|goK|G .

By (3.1), |goK|G = m(go)
−1|K|G = |K|G.

§4. Thresholds for Quasi-Transitive Graphs.

We now extend the threshold for percolation on Cayley graphs to quasi-transitive

graphs. However, in the quasi-transitive case the thresholds are not as natural as in the

transitive case and there is room for improvement. For readability, we first treat the case

of unimodular automorphism groups.

Theorem 4.1. Let X be a graph, G ⊆ Aut(X) be a closed unimodular quasi-transitive

subgroup, and let o1, . . . , oL be a complete set of representatives in V of the orbits of G.

Let µi := |S(oi)|. Let P be a G-invariant bond percolation on X. Let Di denote the random

degree of oi in the percolation subgraph and let di denote the degree of oi in X. Write p∞,i

for the probability that oi is in an infinite component. Then

L∑

i=1

µ−1
i [di − α(X)]p∞,i >

L∑

j=1

µ−1
j [EDj − α(X)] . (4.1)

In particular, if the right-hand side of (4.1) is positive, then there is an infinite component

with positive probability.

Remark 4.2. In caseG acts transitively, then the> in (4.1) can be replaced by> provided,

of course, that the percolation subgraph is not the whole graph with probability 1.

Remark 4.3. (Threshold for Forest Percolation) For later use, we record The-

orem 4.1 for transitive groups in the version where all components of the percolation
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configuration are trees (as in Remark 2.7): Let G be a closed unimodular transitive sub-

group of Aut(X). Let P be a G-invariant bond percolation on X all of whose components

are trees a.s. If ED > 2, then there is an infinite component with positive probability.

Proof of Theorem 4.1. We put mass D(x) at each x ∈ V . All masses of vertices in infinite

components are left alone, but those in a finite component are redistributed equally among

the vertices in that component. Since P is G-invariant, so is this mass transport. Formally,

we use the function

f(x, y) := E

[
1{|K(x)|=∞,y=x}D(x) + 1{|K(x)|<∞,y∈K(x)}

D(x)

|K(x)|

]
.

The mass at x before transportation has mean ED(x), whence

L∑

i=1

µ−1
i

∑

z∈V

f(oi, z) =

L∑

i=1

µ−1
i EDi .

On the other hand, the mass at z after transportation has mean

E
[
D(z)1{|K(z)|=∞} + αK(z)1{|K(z)|<∞}

]
,

whence
L∑

i=1

µ−1
i

∑

y∈V

f(y, oi) =
L∑

i=1

µ−1
i E

[
Di1{|K(oi)|=∞} + αK(oi)1{|K(oi)|<∞}

]

6

L∑

i=1

µ−1
i [dip∞,i + α(X)(1− p∞,i)] .

Corollary 3.5 and a little algebra complete the proof.

An analogue of Theorem 4.1 in the (possibly) nonunimodular case is as follows: For

a finite subgraph K ⊂ X, set

αG
K :=

1

|K|G

∑

x∈K

degK(x)|S(x)|

and

αG(X) := sup{αG
K ; K ⊂ X is finite} .

If X is a regular graph of degree d, then

αG(X) + ιGE(X) = d ,

where

ιGE(X) := inf

{∑
(x,y)∈∂EK |S(x)|

|K|G
; K ⊂ V is finite

}
.

Define the G-degree of a vertex x ∈ X as
∑

y∼x |S(y)|/|S(x)|.
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Theorem 4.4. Let X be a graph, G ⊆ Aut(X) be a closed quasi-transitive subgroup,

and let o1, . . . , oL be a complete set of representatives in V of the orbits of G. Let P

be a G-invariant bond percolation on X. Let DG
i denote the random G-degree of oi in

the percolation subgraph and let dGi denote the G-degree of oi in X. Write p∞,i for the

probability that oi is in an infinite component. Then

L∑

i=1

[dGi − αG(X)]p∞,i >

L∑

j=1

[EDG
j − αG(X)] . (4.2)

In particular, if the right-hand side of (4.2) is positive, then there is an infinite component

with positive probability.

Remark 4.5. Even in the unimodular case, Theorem 4.4 gives a sometimes different result

than Theorem 4.1.

Proof. We merely indicate the changes necessary to the proof of Theorem 4.1. Given the

percolation configuration ω, put mass DG(x) at each x ∈ V , where DG(x) is the G-degree

of x in ω. Redistribute the masses in finite components G-equally, i.e., proportionally to

the weights |S(y)| (for y in the component). This defines f(x, y); use Corollary 3.7 with

ai = 1 for all i.

§5. Qualitative Characterizations of Amenability.

Besides the many characterizations of amenable groups in general, we have the fol-

lowing characterization for automorphism groups:

Theorem 5.1. (Amenability and Finite Percolation) Let X be a graph and G be

a closed subgroup of Aut(X). Then G is amenable iff for all α < 1, there is a G-invariant

site percolation on X with P[x ∈ ω] > α for all x and with no infinite components.

Remark 5.2. The analogous result for bond percolation is proved similarly.

Proof. Suppose that for all n = 1, 2, . . ., there is some G-invariant site percolation with con-

figuration ωn on X with P[o ∈ ωn] > 1− 1
n , but with no infinite components. Then we can

define aG-invariant mean onX by mapping f ∈ ℓ∞(V ) 7→ LIMn→∞ En[
∑

x∈K(o) f(x)/|K(o)|],

where LIM is a Banach limit, o is any fixed vertex in X, and En denotes expectation with

respect to ωn. Since X has a G-invariant mean, G is itself amenable by Lemma 3.3.

Now we prove the converse. Suppose that G is amenable. We consider first the case

that G acts transitively on X.

21



Fix a finite set K ⊂ V and consider the following percolation. For each x ∈ V ,

choose a random gx ∈ G that takes o to x and let Zx be a random bit that equals 1 with

probability |S(o)|/|K|G. Choose all gx and Zx independently. Remove the sites

⋃

x∈X,Zx=1

∂V (gxK) ,

that is, consider the percolation subgraph

ω := ωK := V −
⋃

{∂V (gxK) ; Zx = 1} .

Then the distribution of ω is a G-invariant percolation on X.

We claim that

P[o /∈ ω] 6 |∂V K|G/|K|G (5.1)

and

P[|K(o)| < ∞] > 1− 1/e . (5.2)

To prove (5.1), note that the probability that o /∈ ω is at most the expected number of x

such that Zx = 1 and o ∈ ∂V (gxK). Lemma 3.12 shows that this expectation is exactly

the right-hand side of (5.1). To prove (5.2), use the independence to calculate that

P[|K(o)| < ∞] > P[∃x o ∈ gxK and Zx = 1]

= 1−P[∀x ¬
(
o ∈ gxK and Zx = 1

)
]

= 1−
∏

x∈V

(1−P[o ∈ gxK]P[Zx = 1])

= 1−
∏

x∈V

(1−P[o ∈ gxK]|S(o)|/|K|G)

> 1− exp

{
−

∑

x∈V

P[o ∈ gxK]|S(o)|/|K|G

}

= 1− exp
{
−E

∣∣{x ∈ V ; o ∈ gxK}
∣∣|S(o)|/|K|G

}

= 1− 1/e

by Lemma 3.12 again.

Now, since X is |•|G-amenable by Theorem 3.9, there is a sequence Kn of finite sets

of vertices with
∑

n |∂V Kn|G/|Kn|G < 1− α. For each n, let ωn be the random subgraph

from the percolation just described based on the set Kn. Choose ωn to be independent

and consider the percolation with configuration ω := ∩ωn. By (5.1), we have P[o ∈ ω] > α

and by (5.2), we have P[|K(o)| < ∞] = 1.
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This finishes the transitive case. Next, assume that G is quasi-transitive. We reduce

to the transitive case as follows. Let o be a vertex in X and form the graph X ′ as

in Lemma 3.10. Given a G′-invariant site percolation with configuration ω′ on X ′ that

has only finite components and with P[o ∈ ω′] very close to 1, form the G-invariant

percolation with configuration ω on X by keeping those x such that all vertices in X ′

within distance r of x are in ω′. Trivially, P[x ∈ ω] is very close to 1 for all x. If there

were an infinite component in ω, say, a path 〈x1, x2, . . .〉, then we would be able to find an

infinite component {y1, y2, . . .} in ω′ by taking yi to be any vertex in Go within distance

r of xi.

Finally, consider the general case. Fix o ∈ V and 0 < α < 1. Choose an integer R

at random in the range 1/(1− α) < R < 2/(1− α). Remove every vertex whose distance

from Go is a multiple of R. This breaks X into a disconnected union of quasi-transitive

graphs. On each, we may find an invariant percolation with marginal > α and only finite

components. Putting these together does the job.

For unimodular groups, the next theorem gives another characterization of amenabil-

ity.

Theorem 5.3. (Amenability, Spanning Trees and pc) Let G be a closed subgroup

of Aut(X) that acts transitively on X. Then each of the following conditions implies the

next one:

(i) X is amenable;

(ii) there is a G-invariant random spanning tree of X with at most 2 ends a.s.;

(iii) there is a G-invariant random nonempty connected subgraph ω of X that satisfies

pc(ω) = 1 with positive probability;

(iv) G is amenable.

If G is assumed to be unimodular, then all four conditions are equivalent.

In part (iii), to say that ω is connected means that ω ∩ V is connected by edges from

ω ∩ E.

Proof. Assume (i). Then G is amenable by Theorem 3.4. From the proof of Theorem 5.1,

we obtain a sequence of invariant site percolations with configurations ω̃1 ⊂ ω̃2 ⊂ · · · with

each of them having no infinite components and with the marginals tending to 1: namely,

let ω̂n :=
⋂

k>n ωk, with ωk as in the proof of Theorem 5.1. Let ω̃n be the set of edges of G

that do not have an endpoint in ω̂n. An invariant random spanning tree is constructed as

follows. For each finite component of ω̃1, take a uniformly chosen spanning tree and let T1

be their union (a forest). The finite components of ω̃1 partition the finite components of
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ω̃2 and thus induce a graph structure on the components of ω̃2. Hence a uniformly chosen

spanning tree on this induced graph structure gives a spanning tree for the components of

ω̃2; let T2 be their union. Continue inductively and let T :=
⋃

Tn be the union of these

forests. Clearly the distribution of T is G-invariant. We claim that, in fact, T is a tree

a.s. Since the marginals of ω̃n tend to 1, the probability that any two given vertices lie in

the same component of ω̃n also tends to 1. Thus, with probability arbitrarily close to 1,

they are in the same component of T . Thus, T is a tree a.s. The fact that T has at most

2 ends is true for any invariant spanning tree in X by the argument in Burton and Keane

(1989). Thus, we have (ii).

The implication (ii) implies (iii) is trivial, so assume (iii). Let ω be a G-invariant

random connected subgraph of X with pc(ω) = 1. To deduce (iv), we use the Adams-

Lyons method. First, let oω be a random vertex in ω. For example, one may take choose

oω uniformly among the closest vertices in ω to some fixed vertex o. Define a mean µ on

X by mapping

f ∈ ℓ∞(V ) 7→ µ(f) := LIM
n→∞

E
∑

x∈Kn(oω)

f(x)/|Kn(oω)| ,

where LIM is a Banach limit and Kn(oω) denotes the cluster of oω in a Bernoulli bond

percolation on ω with survival parameter 1 − 1/n. Since ω is connected, the choice of oω

does not affect the value of µ(f). Thus, µ is G-invariant. Since X has a G-invariant mean,

G is itself amenable by Lemma 3.3, proving (iv).

If G is unimodular, then (iv) ⇒ (i) by Theorem 3.4.

Note that if X is a 3-regular tree and G is the group of automorphisms fixing a given

end ξ, then G is amenable, but obviously the only spanning tree of X is X itself. Thus

(iv) does not imply (ii) without assuming unimodularity.

The same example shows that (iv) does not imply (iii). In order to see this, let ω be

any stationary connected nonempty subgraph ofX. Suppose that with positive probability,

ω does not contain a path to ξ. Conditioned on this event, there is a unique vertex of ω

which is closest to ξ. This allows a G-invariant choice of a vertex in X, which is impossible.

Consequently, ω a.s. contains a path leading to ξ. Fix any vertex v ∈ V , and let vn be the

vertex on the path from v to ξ at distance n from v. Then the probability that vn ∈ ω

tends to 1 as n → ∞. Since the probability of a vertex to be in ω is independent of the

vertex, this means that v ∈ ω a.s.; that is, ω = X a.s.

We now present an example showing that (ii) does not imply (i). Let X and G be

as above. On Z
2 consider the following percolation. Let 〈xv〉 be i.i.d. random variables
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indexed by the vertices of Z2, with xv = (0, 1) or xv = (1, 0), each with probability 1/2.

Let ω be the bond percolation on Z
2 defined by

ω :=
{[

v, v + xv

]
; v ∈ Z

2
}
.

This percolation on Z
2 is essentially the same as one constructed by Tóth and Werner

(1998), and can be interpreted as the wired spanning forest for a Markov chain on Z
2. It

is immediate to verify that ω is a.s. connected. Let ω† be the set of edges of the planar

dual of Z2 that do not cross an edge in ω. Then the distribution of ω† is isomorphic to the

distribution of ω. By a simple duality argument, the fact that ω† is connected a.s. implies

that ω has a single end a.s. (compare BLPS (1998a), Section 12). Let f1 : V (X) → Z be

a map such that geodesic rays in X tending to ξ are mapped by f1 to geodesic rays in Z

tending to +∞ (and f1 takes neighbors in X to neighbors in Z). Let f : V (X × Z) → Z
2

be defined by f(x, n) :=
(
f1(x), n

)
. Finally, let f∗ω be the pullback of ω by f ; that is, an

edge is in f∗ω iff the images of its endpoints are connected by an edge in ω. Then it is not

hard to verify that f∗ω is almost surely a tree with one end whose distribution is invariant

under G × Z, where Z acts on itself by translations. Because X × Z is not amenable, we

find that (ii) does not imply (i).

Question. Does the implication (iii) ⇒ (ii) hold?

Remark 5.4. Recently, R. Pemantle and Y. Peres (1997) have shown that if X and Y are

quasi-transitive infinite graphs and at least one of them is nonamenable, then there is no

automorphism-invariant random spanning tree in the Cartesian product X × Y .

Corollary 5.5. (Uniqueness Only Above pc) If X is a transitive graph with a non-

amenable automorphism group and Bernoulli (site or bond) percolation with survival pa-

rameter p produces a unique infinite component a.s., then p > pc(X).

Proof. Suppose that p = pc(X) and that there is a unique infinite component a.s. Then

the infinite component ω has pc(ω) = 1 a.s. Hence G is amenable.

The argument in Burton and Keane (1989) that we used in the proof of Theorem 5.3

implies that any invariant percolation on an amenable transitive graph yields only com-

ponents with at most 2 ends. The converse is true as well, namely, on any nonamenable

transitive graph, there is an invariant percolation that a.s. yields a component with at least

3 ends. This is proved in BLPS (1998a). The proof of this characterization of amenability

is related to another characterization that appears in that paper: Let X be a transitive

graph. If T denotes the wired uniform spanning forest and ωp is the configuration of inde-

pendent Bernoulli bond percolation with survival parameter p, then X is amenable iff for

every p > 0, the union T ∪ ωp is connected a.s.
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§6. Characterization of Unimodularity.

Theorem 6.1. (Modulus and Expected Degree) Let G be a closed subgroup of

Aut(X) that acts transitively on X. Let m be the minimum of |S(x)|/|S(y)| for x, y

neighbors. Then for any G-invariant percolation that yields infinite components with posi-

tive probability, the expected degree of x given that x is in an infinite component is at least

1 + m. This is sharp for all pairs (G,X) in the sense that there is a G-invariant bond

percolation on X with every vertex belonging to an infinite component and having expected

degree 1 +m.

Proof. Begin with mass 1 at each vertex. Transport the mass at x to y if

(1) x and y are adjacent;

(2) x and y are both in an infinite component; and

(3) if the edge (x, y) is removed, then x is isolated to a finite component.

Note that for each x in an infinite component, there is at most one vertex to which

the mass at x might be transported. Also, there are at most D(x)− 1 vertices that might

transport their mass to x. Define θ(x, y) to be the mass transported from x to y and, as

usual, f(x, y) := E[θ(x, y)].

Fix x. By the Mass-Transport Principle, it follows that E[∆] = 0, where

∆ :=
∑

y∈V

θ(x, y)−
∑

z∈V

θ(z, x)|S(z)|/|S(x)| .

Now ∆ = 1 − 1 = 0 if K(x) is finite. If K(x) is infinite, then consider three cases: (1) If

D(x) = 1, then ∆ = 1. (2) If D(x) > 2 and for some y 6= x, we have θ(x, y) = 1, then∑
y∈V θ(x, y) = 1 and

∑
z∈V θ(z, x)|S(z)|/|S(x)| 6 (D(x)− 1)/m, whence

∆ > 1− (D(x)− 1)/m . (6.1)

(3) If D(x) > 2 and for all y 6= x, we have θ(x, y) = 0, then
∑

z∈V θ(z, x)|S(z)|/|S(x)| 6

(D(x)− 2)/m; since m 6 1, again (6.1) holds. Thus, in all three cases, (6.1) holds. Taking

expectation, we obtain that

0 = E[∆] = E[∆ ; |K(x)| = ∞] > E[1− (D(x)− 1)/m ; |K(x)| = ∞] ,

which is the same as E
[
D(x)

∣∣ |K(x)| = ∞
]
> 1 +m.

To show that this bound is sharp in case G is not unimodular, i.e., m < 1, consider

the following percolation. For each vertex x, let

L(x) := {y ∼ x ; |S(y)|/|S(x)| = m} ;

26



choose y ∈ L(x) at random (uniformly and independently for different x) and put (x, y) ∈

ω. No other edges are put in ω. Clearly every component of ω is infinite and the distribution

of ω is G-invariant. To show that E[D(x)] = 1 +m, we calculate that

E[D(x)] = E


 ∑

y∈L(x)

1{(x,y)∈ω} +
∑

x∈L(z)

1{(z,x)∈ω}




= 1 +
∑

z∈V

1{x∈L(z)}P[(z, x) ∈ ω]

= 1 +
∑

z∈V

1{z∈L(x)}P[(x, z) ∈ ω]|S(z)|/|S(x)| (6.2)

= 1 +mE


 ∑

z∈L(x)

1{(x,z)∈ω}


= 1 +m,

where we have used the Mass-Transport Principle in deriving (6.2).

To show that this bound is sharp in case G is unimodular, we borrow a result from

BLPS (1998a): the wired uniform spanning forest of X is a G-invariant percolation with

every component infinite and expected degree of every vertex equal to 2.

Corollary 6.2. (Monotonicity of Unimodularity) For G a closed subgroup of

Aut(X), let m(G) be the minimum of |S(x)|/|S(y)| for x, y neighbors. If G is transitive

and G ⊆ H with H a closed subgroup of Aut(X), then m(G) 6 m(H). In particular, if G

is unimodular, then so is H.

Proof. Since H must also be transitive, there is an H-invariant percolation on X with

infinite components and expected degree 1 +m(H). Since G ⊆ H, the percolation is also

G-invariant, whence 1 +m(H) > 1 +m(G).

Remark 6.3. (A Proof of Theorem 3.4) We can also use Theorem 6.1 to complete

our proof of Theorem 3.4 that we began in Remark 3.11: Assume that X is amenable and

G acts quasi-transitively. Let o ∈ V and define the G′-transitive amenable graph X ′ as in

Lemma 3.10. Let P be a G′-invariant percolation on X ′ concentrated on configurations all

of whose components are infinite. Let Kn be Følner sets in X ′, i.e., |∂V Kn|/|Kn| → 0. Fix

n and write ω ∩Kn as the disjoint union of Ln connected graphs ωi = (Vi, Ei). Since each

component of ω is infinite, each ωi intersects the boundary of Kn, whence Ln/|Kn| → 0

as n → ∞. Therefore, we have

1

|Kn|

∑

x∈Kn

degω x >
1

|Kn|

Ln∑

i=1

∑

x∈Kn

degωi
x
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>
1

|Kn|

Ln∑

i=1

(2|Vi| − 1) =
2|Kn| − Ln

|Kn|
.

Taking expectation gives

E[D(o)] =
1

|Kn|

∑

x∈Kn

E[degω x] >
2|Kn| − Ln

|Kn|
→ 2

as n → ∞, whence by Theorem 6.1, G′ is unimodular. By Lemma 3.10, also G is unimod-

ular. It follows from Theorem 3.9 that G′ is amenable and hence, by Lemma 3.10 again,

that G is amenable.

We now extend Theorem 6.1 to the quasi-transitive case:

Theorem 6.4. Let X be a graph, G ⊆ Aut(X) be a closed quasi-transitive subgroup,

o1, . . . , oL be a complete set of representatives in V of the orbits of G, and write τ(x) := i

if x ∈ Goi. Let P be a G-invariant bond percolation on X that has infinite components

with positive probability. Let µi := |S(oi)|,

mi := min{µτ(y)/|S(y)| ; y ∼ oi} ,

and p∞,i be the probability that oi is in an infinite component. Then

∑

i

E
[
D(oi) ; |K(oi)| = ∞

]

µimi
>

∑

i

1 + (mi ∧ 1)

µimi
p∞,i . (6.3)

Proof. The argument is very similar to the proof of Theorem 6.1. In fact, we use exactly

the same mass transport. Define

∆i :=
∑

z∈V

θ(oi, z)−
∑

y∈V

θ(y, oi)
|S(y)|

µτ(y)
.

Then Corollary 3.7 with ai := 1/µi implies that

∑

i

E∆i

µi
= 0 . (6.4)

Now ∆i = 0 if K(oi) is finite. Otherwise, we again consider three cases: (1) If D(oi) =

1, then ∆i = 1. (2) If D(oi) > 2 and for some z 6= oi, we have θ(oi, z) = 1, then∑
z∈V θ(oi, z) = 1 and

∑
y∈V θ(y, oi)|S(y)|/µτ(y) 6 (D(oi)− 1)/mi, whence

∆i > 1− (D(oi)− 1)/mi .
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(3) If D(oi) > 2 and for all z 6= oi, we have θ(oi, z) = 0, then
∑

y∈V θ(y, oi)|S(y)|/µτ(y) 6

(D(oi)− 2)/mi. Thus, in all three cases, we have

∆i > (1 ∧
1

mi
)−

D(oi)− 1

mi
.

From (6.4), we obtain that

0 =
∑

i

E∆i

µi
=

∑

i

E[∆i ; |K(oi)| = ∞]

µi

>
∑

i

1

µi
E[(1 ∧m−1

i )− (D(oi)− 1)/mi ; |K(oi)| = ∞] ,

which is the same as (6.3).

§7. Ends of Components.

An end of a graph X is an equivalence class of infinite nonself-intersecting paths in

X, with two paths equivalent if for all finite A ⊂ X, the paths are eventually in the same

connected component ofX−A. An elementary application of the Mass-Transport Principle

allows us to count the ends of the components in the configuration of a percolation that is

invariant under a unimodular automorphism group:

Proposition 7.1. (One, Two, or Infinity Ends) Let G be a closed unimodular sub-

group of Aut(X) that acts transitively on X. Let ω be the configuration of a G-invariant

percolation on X such that ω has infinite components with positive probability. Almost

surely every component of ω with at least 3 ends has infinitely many ends.

Proof. Let ω1 be the union of the components K of ω whose number n of ends is finite

and at least 3. Given a component K of ω1, there is a connected subgraph A ⊂ K with

minimal |V (A)| such that K −A has n infinite components. Let H(K) be the union of all

such subgraphs A. It is easy to verify that any two such subgraphs A must intersect, and

therefore H(K) is finite. Let H(ω1) be the union of all H(K), where K ranges over the

components of ω1.

Begin with unit mass at each vertex x that belongs to a component K of ω1, and

transport it equally to the vertices in H(K). Then the vertices in H(ω1) receive infinite

mass. By the Mass-Transport Principle, no vertex can receive infinite mass, which means

that ω1 is empty a.s.

A forest is a graph all of whose components are trees. The following theorem was

shown when X is a tree and G = Aut(X) by Häggström (1997).
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Theorem 7.2. (Ends, pc and Degrees) Let G be a closed unimodular subgroup of

Aut(X) that acts transitively on X. Let ω be the configuration of a G-invariant percolation

on X such that ω has infinite components with positive probability. If

(i) some component of ω has at least 3 ends with positive probability,

then

(ii) some component of ω has pc < 1 with positive probability and

(iii) for every vertex x, E
[
D(x)

∣∣ |K(x)| = ∞
]
> 2.

If ω is a forest a.s., then the three conditions are equivalent.

Remark 7.3. It follows from Theorem 7.2 that almost surely every component that has

at least 3 ends has pc < 1. For suppose the contrary, and condition on having some

component with at least 3 ends and pc = 1. Then the collection of all such components

gives a G-invariant percolation that contradicts the theorem. Another conclusion is that

if a.s. ω has a component with 3 ends, then a.s. it has a component with pc < 1.

Lemma 7.4. (Trimming to a Forest) Let G be a closed subgroup of Aut(X). Let ω

be the configuration of a G-invariant bond percolation on X. Then (on a larger probability

space) there is a percolation with configuration ω′ ⊂ ω such that the distribution of (ω′, ω)

is G-invariant and that enjoys the following properties: For x ∈ V , let K(x), K ′(x) denote

the component of x in ω, ω′, resp. Then

(i) ω′ is a forest a.s.;

(ii) ∀x ∈ V |K ′(x)| = |K(x)| a.s.; and

(iii) ∀x ∈ V and k ∈ Z
+, if K(x) has at least k ends with positive probability, then K ′(x)

also has at least k ends with positive probability.

Furthermore, if G is unimodular, then for all x ∈ V such that K(x) has at least 3 ends,

there is a component of K(x) ∩ ω′ that has infinitely many ends a.s.

Proof. Use the so-called free minimal spanning forest of ω: Assign to the edges i.i.d.

uniform [0, 1] random variables. An edge e ∈ ω is present in ω′ iff there is no cycle in

ω containing e in which e is assigned the maximum value. The first two properties are

straightforward and well known. To see the third, assume that K(x) has at least k ends

with positive probability. Choose any ball A about x so that K(x)− E(A) has at least k

infinite components with positive probability. Then with positive probability, K(x)−E(A)

has at least k infinite components, all edges in A are assigned values less than 1/2, and all

edges in ∂EA are assigned values greater than 1/2. On this event, ω′ contains a spanning

tree of A ∩ ω that is part of a tree in ω′ with at least k ends.

In case G is unimodular, let rx = r(x, ω) be the least radius r of a ball B = B(y, r)

in X such that K(x) − B has at least 3 infinite components, if such an r exists. If not,
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set r(x, ω) := ∞. Note that r(x, ω) < ∞ iff K(x) has at least 3 ends. As in the proof of

Proposition 7.1, the Mass-Transport Principle shows that given that K(x) has at least 3

ends, there are a.s. infinitely many y ∈ K(x) at pairwise distance at least 2rx+2 from each

other such that K(x)−B(y, rx) has at least 3 infinite components. For such y, the events

that all edges in B(y, rx) are assigned values less than 1/2 and all edges in ∂EB(y, rx)

are assigned values greater than 1/2 are independent and have probability bounded below,

whence an infinite number of these events occur a.s. Therefore, there is a component of

K(x) ∩ ω′ that has at least 3 ends a.s., whence, by Proposition 7.1, has infinitely many

ends a.s.

Proof of Theorem 7.2. First consider the case where ω is a forest. The proof will be by

throwing away a nonempty invariant collection of edges and appealing to Theorem 6.1.

Call a vertex x an encounter point if its removal breaks K(x) into at least 3 infinite

components. For each encounter point x, choose one of its incident edges ex in ω at random

(uniformly) and independently; let ζ be the set of edges chosen. Let η1 be the set of edges

ex ∈ ζ such that there is a one-sided infinite path on ω starting at x that passes through

ex and does not contain any encounter point other than x. For each pair of encounter

points x 6= y such that the shortest path P ⊂ ω from x to y does not go through any

other encounter point and contains both ex and ey, choose ex or ey at random with equal

probability (and independently of other such decisions); let η2 ⊆ ζ be the resulting set of

chosen edges. (Note that in case x and y are neighbors and (x, y) ∈ ζ, then this means

that (x, y) ∈ η2.) Finally, set η := η1 ∪ η2 ⊆ ζ.

A moment’s thought shows that every vertex that is in an infinite component of ω is

also in an infinite component of ω − η.

For every vertex x, Theorem 6.1 implies that E
[
degω−η x

∣∣ |K(x)| = ∞
]
> 2. If

(i) holds, then η is nonempty with positive probability. Since G acts transitively, this

means that some edge incident to x lies in η with positive probability. Since η ⊆ ω

contains only edges in infinite components of ω, it follows that E
[
D(x)

∣∣ |K(x)| = ∞
]
=

E
[
degω x

∣∣ |K(x)| = ∞
]
> 2, i.e., that (iii) holds.

Next, still assuming that ω is a forest, we deduce (ii) from (iii) by using Remark 4.3.

Finally, that (ii) implies (i) for forests is trivial.

In case ω is not a forest a.s, choose ω′ ⊂ ω as in Lemma 7.4. If (i) holds for ω, then

it also holds for ω′, whence (ii) and (iii) hold for ω′, whence also for ω.

Corollary 7.5. (Small Trees and Expected Degree) Let G be a closed unimodular

subgroup of Aut(X) that acts transitively on X and let ω be the configuration of a G-

invariant percolation on X. Fix a vertex o. Let Fo be the event that K(o) is an infinite
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tree with finitely many ends, and let F ′
o be the event that K(o) is a finite tree.

(i) If P [Fo] > 0, then E
[
D(o)

∣∣ Fo

]
= 2.

(ii) If P [F ′
o] > 0, then E

[
D(o)

∣∣ F ′
o

]
< 2.

Proof. For the first part, assume that all components of ω are infinite trees with finitely

many ends. There is no loss of generality, since we can remove from ω all components

that are not of this type. Since the components have only finitely many ends, they have

pc = 1. Thus, Theorem 7.2 gives E
[
D(o)

∣∣ Fo

]
6 2. On the other hand, Theorem 6.1 gives

E
[
D(o)

∣∣ Fo

]
> 2.

The second part is similar to Remark 4.3. Compare with Remarks 2.8 and 2.7.

Example 7.6. We describe a transitive nonunimodular graph with an invariant random

forest where each component has 3 ends, but the expected degree is smaller than 2. Let

Z3 := Z/3Z be the group of order 3 and let T be the 3-regular tree with a distinguished end,

ξ. On T , let every vertex be connected to precisely one of its offspring (as measured from

ξ), each with probability 1/2. Then every component is a ray. Let ω1 be the preimage

of this configuration under the projection T × Z3 → T . For every vertex x in T that

has distance 5 from the root of the ray containing x, add to ω1 two edges at random

in the Z3 direction, in order to connect the 3 preimages of x in T × Z3. The resulting

configuration is a stationary spanning forest with 3 ends per tree and expected degree

(1/2)1 + (1/2)2 + 2−(5+1)
(
(2/3)1 + (1/3)2

)
.

Similarly, one can construct a stationary spanning forest where each tree has one end

and the expected degree is greater than 2. To do this, for every vertex x that is a root of

the ray in T , add to ω1 two edges at random in the Z3 direction to connect the 3 preimages

of x, and for every edge e in a ray in T that has distance 5 from the root of the ray, delete

two of its preimages at random.

Proof of Theorem 1.3. Let ω be the configuration of critical Bernoulli percolation on X. It

is an easy well-known consequence of ergodicity that the number of infinite components for

Bernoulli percolation is equal a.s. to a constant, which can only be 0, 1 or ∞ (see Newman

and Schulman 1981). Corollary 5.5 rules out a unique infinite cluster at p = pc(X). If at

pc, there were more than one infinite cluster, then by opening the edges in a large ball,

we see that there would be, with positive probability, a cluster with at least 3 ends. This

means, by Theorem 7.2, that with positive probability, some infinite component K of ω has

pc(K) < 1. Consequently, we may subtract from ω the configuration γǫ of an independent

Bernoulli(ǫ) percolation with ǫ > 0, such that with positive probability ω − γǫ has infinite

components. However, this is impossible, as ω − γǫ is the configuration of a Bernoulli

percolation with survival parameter smaller than pc.
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Remark 7.7. It is possible, with some work, to extend the above proof of Theorem 1.3 to

the quasi-transitive case. In Benjamini, Lyons, Peres, and Schramm (1998b), we present

another proof of Theorem 1.3 that is very easy to adapt to the quasi-transitive setting.

§8. Invariant Percolation in the Hyperbolic Plane.

Theorem 8.1. (The Number of Infinite Components) Let G be a closed group of

isometries of the hyperbolic plane H
2. Suppose that T is a tiling of H

2 by finite-sided

compact polygons, that the isometries in G are automorphisms of T , and that G acts

quasi-transitively on V , where X = (V,E) denotes the 1-skeleton (graph) of T . Let ω be

the configuration of a G-invariant bond percolation on X. Then the number of infinite

components of ω is a.s. 0, 1 or ∞.

Remark 8.2. It follows that the total number of infinite monochromatic clusters in a

stationary 2-coloring of the vertices of X is a.s. 0, 1 or ∞. This was proved for Bernoulli

percolation assuming that X has sufficiently large genus by Lalley (1998), and stated

without proof for the continuous Bernoulli Voronoi model by Benjamini and Schramm

(1996b).

Remark 8.3. Burton and Keane (1991) described examples of Aut(Z2)-invariant perco-

lation on Z
2 with any finite number of infinite components. For example, let T be the

uniform spanning tree in Z
2 and let T † be the union of edges in the planar dual of Z2 that

do not intersect edges of T . Then T ∪T † can be thought of as an invariant percolation on a

refined square lattice; it has 2 infinite components. An example with 3 infinite components

is obtained by considering T ∪ T † ∪ Υ (in a further refined lattice), where Υ is the set of

points in the plane that have the same distance from T as from T †.

Proof of Theorem 8.1. Suppose that with positive probability, the number of infinite com-

ponents in ω is k, where 2 6 k < ∞, and condition on this event. If ω has any finite

components, absorb each finite component to an infinite component as follows. For each

finite component A that is adjacent to an infinite component, choose an edge in ∂EA at

random that connects A to an infinite component. Make these choices uniformly and inde-

pendently. If ω still has finite components, then repeat this procedure at most countably

many times until all components of ω are infinite. Since the result is still the configuration

of a G-invariant percolation, we may assume from the start that a.s. ω has only infinite

components and that their number is k.

It follows from the assumptions that G is nonamenable. See, for example, Zimmer

(1984), Propositions 4.1.8 and 4.1.11. We now define a G-invariant mean on X and appeal
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to Lemma 3.3 to obtain a contradiction. Consider the edges in X that join different

components of ω. Their dual edges in the planar dual of X form a forest, Γ. It is not hard

to verify that each component in Γ has no leaves, the number of components of Γ is finite

and > 1, and the number of ends in any component of Γ is finite and > 2.

We claim that a.s., all of the trees in Γ have at most 2 ends. For if not, Γ would have

finitely many vertices of degree at least 3. Each of these vertices is a face of X; let K be

the set of vertices (in X) in these faces. Since K is finite, by taking at random a vertex

from K, we could choose in an invariant way a random vertex of X, which is impossible

since G has infinite orbits. It follows that each component of Γ is isomorphic to Z.

Now, given f ∈ ℓ∞(V ), assign each vertex v in Γ the average f̄(v) of the values of f

on the face corresponding to v.

Fix an enumeration of V . For each component Γi of Γ, let vi be the first vertex in

Γi according to the enumeration. Let Mn(f) denote the average of f̄ on the union of the

n-balls in Γ centered at v1, . . . , vk.

Given a Banach limit LIM, define M(f) := LIMn→∞ EMn(f). Then M(f) does not

depend on the choice of enumeration and is an invariant mean on X. By Lemma 3.3, this

contradicts the nonamenability of G, and completes the proof.
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