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Let G be a d-regular connected graph. (Regular for simplicity.)

Let A be its adjacency matrix.

Let L := I − A/d be its Laplacian, so L = I − Q , where Q is the
transition matrix of simple random walk.

Since ‖Q‖ ≤ 1 (on `2(V )) and Q is symmetric, the eigenvalues of L are

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 ,

where n = |V |. If orthonormal eigenvectors of L are 1/
√
n = g1, . . . , gn,

then

the spectral embeddings are

F : V → Rk−1

F : x 7→
(
g2(x), . . . , gk(x)

)
.

We use lazy SRW, P := (I + Q)/2 . Then P = I − L/2 , so the
eigenvalues of P are

1 = 1− λ1/2 ≥ 1− λ2/2 ≥ · · · ≥ 1− λn/2 ≥ 0 .
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Let G be a d-regular connected graph. (Regular for simplicity.)

Let A be its adjacency matrix.

Let L := I − A/d be its Laplacian, so L = I − Q , where Q is the
transition matrix of simple random walk.

Consider first finite graphs.
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Recap: The eigenvalues of P are

1 = 1− λ1/2 ≥ 1− λ2/2 ≥ · · · ≥ 1− λn/2 ≥ 0 .

We will give lower bounds on eigenvalues of L, so upper bounds on
eigenvalues of P, which imply upper bounds on pt(x , x) for the return
probability at time t starting at x .

For infinite graphs, we will give upper bounds on the spectral measure of
L, which imply upper bounds on pt(x , x).

Classical Examples

On ZD , pt(x , x) ∼ Ct−D/2.

On ZD/(NZ)D , 0 ≤ pt(x , x)− N−D ≤ C ′t−D/2.

Modern Example (Revelle 2003)

On the Lamplighter group over Z, pt(x , x) ∼ Ct1/6e−C
′t1/3 .
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Focus on transitive graphs, such as Cayley graphs of groups. Let o be a

fixed vertex of G . Let vol(r) := |B(o, r)|. The following are for groups.

Theorem. (Varopoulos, 1985)

If vol(r) ≥ CrD , then pt(o, o) ≤ C ′t−D/2 and conversely.

Theorem. (Varopoulos, 1991)

If vol(r) ≥ CeC
′rα , then pt(o, o) ≤ C ′′e−C

′′′t−α/(α+2)
.

Theorem. (Diaconis and Saloff-Coste, 1994)

Similar bounds hold for pt(o, o)− 1/n on finite groups of size n.
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Example

For finite transitive graphs with n vertices, the inequality

pt(o, o)− 1/n ≤ C ′t−D/2

is equivalent to the inequality

λk ≥ (C ′′k/n)2/D

for k ≥ 2.

To see the connection and to state the corresponding inequality for infinite
graphs, we use spectral measure.
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First, finite graphs. For any function f , expand it in eigenfunctions as

f =
n∑

k=1

〈f , gk〉gk .

Example:

1x =
n∑

k=1

gk(x)gk .

Thus,

pt(x , x) = 〈

Pt1x

, 1x〉

=

〈

(I − L/2)t1x

, 1x〉

=
n∑

k=1

(1− λk/2)t

|

gk(x)

|2gk

is the same for all x , and so averaging gives

pt(o, o) =
1

n

n∑
k=1

(1− λk/2)t =
1

n
+

∫ 2

0
(1− λ/2)t dµ∗(λ) ,

where the measure/c.d.f.

µ∗(λ) := |{k ; 0 < λk ≤ λ}|/n

puts mass 1/n at each λk for k ≥ 2 (with multiplicity).
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Recap: pt(o, o) =
1

n
+

∫ 2

0
(1− λ/2)t dµ∗(λ) ,

where µ∗(λ) := |{k ; 0 < λk ≤ λ}|/n.

Thus,

lower bound on λk ⇐⇒ upper bound on µ∗ ⇐⇒ upper bound on pt(o, o) .

For infinite G (n =∞), we have the same , but where the measure/c.d.f.

µ∗(λ) := 〈I ∗L(λ)1o , 1o〉
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Recall vol(r) := |B(o, r)|.

Theorem. (L.-Oveis Gharan, 2012)

If G is transitive of degree d , then for all δ ∈ (0, 2),

µ∗(δ) ≤ 4

vol
(

1√
2dδ

) .

Sample Corollary.

If G is transitive with vol(r) ≥ CrD (0 ≤ r ≤ diamG ≤ ∞), then for all
δ ∈ (0, 2),

µ∗(δ) ≤ C ′δD/2

and lazy simple random walk satisfies, for every t ≥ 1,

pt(o, o)− 1

n
≤ C ′′t−D/2

(n ≤ ∞).
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To show the corollary:

µ∗(δ) ≤ 4

vol
(

1√
2dδ

) and vol(r) = Ω(rD) implies µ∗(δ) = O
(
δD/2

)
and pt(o, o)− 1

n
= O

(
t−D/2

)
.

Proof.

µ∗(δ) = O
(
δD/2

)
is immediate. This gives

pt(o, o)− 1

n
= O

(∫ 2

0
(1− λ/2)t d(λD/2)

)
= O

(∫ 2

0
e−λt/2 d(λD/2)

)
= O

(
t−D/2

∫ ∞
0

e−s/2 d(sD/2)
)

= O
(
t−D/2

)
.
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Recall

I ∗(δ) := I ∗L(δ)

=
∑

0<λ≤δ
Pλ when finite .

The spectral embedding is the best approximation to 1x

F : V → `2(V )

F : x 7→ I ∗(δ)1x .

For 0 6= g ∈ `2(V ), define the Rayleigh quotient of g

Ray(g) :=
〈g ,Lg〉
〈g , g〉

.

For g ∈ img I ∗(δ), we have Ray(g) ≤ δ.

Notice F (x) ∈ img I ∗(δ).
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spectral embedding F
(
(0, 0)

)
∈ `2(Z2) of Z2 for δ = 0.1

F
(
(j , k)

)
is the same but shifted to (j , k)

15 / 20



Theorem restated. (L.-Oveis Gharan, 2012)

If G is transitive of degree d , then µ∗(δ) ≤ 4

vol
(

1√
2dδ

) for all δ ∈ (0, 2).

spectral embedding F
(
(0, 0)

)
of

Z2 for δ = 0.1

Proof.

‖F (o)‖2 = F (o)(o) = µ∗(δ).

The change of F (o) across an

edge is at most
√

2dδ · µ∗(δ).

So F (o) stays large in a ball around
o of radius r := 1/

√
8dδ. Each point

in that ball contributes at least
µ∗(δ)2/4 to ‖F (o)‖2, so the number
of such points is ≤ 4/µ∗(δ), and is
also ≥ vol(r).
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First item:

‖F (o)‖2 = ‖I ∗(δ)1o‖2 = 〈I ∗(δ)1o , I
∗(δ)1o〉

= 〈I ∗(δ)1o , 1o〉 =: µ∗(δ)

= F (o)(o) .
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Second item:

Transitivity means the graph looks the same from every
vertex.

Lemma

For all x , we have ‖F (o)‖ = ‖F (x)‖ and for every automorphism φ,

‖F (o)− F (x)‖ =
∥∥F(φ(o)

)
− F

(
φ(x)

)∥∥ .
Write g := F (o). Note that

g(x) = 〈g , 1x〉 = 〈I ∗(δ)g , 1x〉 = 〈g , I ∗(δ)1x〉 = 〈g ,F (x)〉. Thus,

|g(x)− g(y)| =
∣∣〈g ,F (x)− F (y)〉

∣∣ ≤ ‖g‖ · ‖F (x)− F (y)‖ ≤ ‖g‖ ·M
for x ∼ y , where M := maxx∼y ‖F (x)− F (y)‖. Thus,

δ ≥ Ray(g) =
〈F (o),LF (o)〉
‖g‖2

=

∑
x∼o ‖F (o)− F (x)‖2

2d‖g‖2
≥ M2

2d‖g‖2
,

so

|g(x)− g(y)| ≤ ‖g‖ ·
√

2d‖g‖2δ =
√

2dδ · µ∗(δ) .
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|g(x)− g(y)| =
∣∣〈g ,F (x)− F (y)〉

∣∣ ≤ ‖g‖ · ‖F (x)− F (y)‖ ≤ ‖g‖ ·M
for x ∼ y , where M := maxx∼y ‖F (x)− F (y)‖. Thus,

δ ≥ Ray(g) =
〈F (o),LF (o)〉
‖g‖2

=

∑
x∼o ‖F (o)− F (x)‖2

2d‖g‖2
≥ M2

2d‖g‖2
,

so

|g(x)− g(y)| ≤ ‖g‖ ·
√

2d‖g‖2δ =
√

2dδ · µ∗(δ) .
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Calculation of the energy term:

∑
x∼o
‖F (o)− F (x)‖2

= 2d‖F (o)‖2 − 2
∑
x∼o
〈F (o),F (x)〉

= 2
〈
F (o),

∑
x∼o

[
F (o)− F (x)

]〉
= 2
〈
F (o),

∑
x∼o

I ∗(δ)(1o − 1x)
〉

= 2
〈
F (o), I ∗(δ) · d · L1o

〉
= 2d

〈
F (o),LI ∗(δ)1o

〉
= 2d

〈
F (o),LF (o)

〉
.
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Transitivity means the graph looks the same from every vertex.

Lemma

For all x, we have ‖F (o)‖ = ‖F (x)‖ and for every automorphism φ,

‖F (o)− F (x)‖ =
∥∥F(φ(o)

)
− F

(
φ(x)

)∥∥ .

Proof.

Choose an automorphism φ such that φ1x = 1o . Since L and φ commute
as operators on `2(V ), we have φI ∗(δ) = I ∗(δ)φ. Thus,

F (o) = I ∗(δ)1o = I ∗(δ)φ1x = φI ∗(δ)1x = φF (x) .

Since φ is a unitary operator, it preserves the norm, thus
‖F (o)‖ = ‖F (x)‖. We also proved that F

(
φ(x)

)
= φ

(
F (x)

)
. Therefore∥∥F(φ(o)

)
− F

(
φ(x)

)∥∥ =
∥∥φ(F (o)− F (x)

)∥∥ = ‖F (o)− F (x)‖ .
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