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@ Let G be a d-regular connected graph. (Regular for simplicity.)
@ Let A be its adjacency matrix.

o Let £L:=1— A/d be its Laplacian, so L =1— Q, where Q is the
transition matrix of simple random walk.

Consider first finite graphs.
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O0=A <A< <A <2,

where n = |V/|. If orthonormal eigenvectors of £ are 1/\/n=gi,...,gn,
then
the spectral embeddings are

F:V - RK

F:x— (g2(x),....8k(x)).

We use lazy SRW, P :=(I+ Q)/2. Then P=1—L/2, so the
eigenvalues of P are

1=1-A/2>1—X/2>--->1-1X,/2>0 .
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Recap: The eigenvalues of P are

1=1-XA/2>1—X/2>-->1-X,/2>0.
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A,

For infinite graphs, we will give upper bounds on the spectral measure of
L, which imply upper bounds on p;(x, x).

| \

Classical Examples
e On ZP, pe(x,x) ~ Ct—P/2,
e On ZP/(NZ)P, 0 < pe(x,x) = N=P < C't=D/2,

N,

Modern Example (Revelle 2003)

On the Lamplighter group over Z, pe(x, x) ~ Ctl/6e=C't!/?,

.
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Focus on transitive graphs, such as Cayley graphs of groups. Let o be a
fixed vertex of G. Let vol(r) := |B(o,r)|. The following are for groups.

Theorem. (Varopoulos, 1985)
If vol(r) > CrP, then p:(0,0) < C’'t~P/2 and conversely.

Theorem. (Varopoulos, 1991)
a+2)

If vol(r) > Ce€'"", then pe(0,0) < C"e=C"t" /™,

Theorem. (Diaconis and Saloff-Coste, 1994)

Similar bounds hold for p:(0,0) — 1/n on finite groups of size n.




Example

For finite transitive graphs with n vertices, the inequality
pe(0,0) —1/n < C't~P/?
is equivalent to the inequality
Ak > (C"k/n)?/P

for k > 2.
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For finite transitive graphs with n vertices, the inequality
pe(0,0) —1/n < C't~P/?
is equivalent to the inequality

>\k 2 (C/lk/n)2/D

for k > 2.

To see the connection and to state the corresponding inequality for infinite
graphs, we use spectral measure.
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First, finite graphs. For any function f, expand it in eigenfunctions as

n

f=> (f g8k
k=1
Example:
]-x = ng(x)gk .
k=1
Thus, .
pe(x,x) = (P'L, 1) = (1 = £/2)'1,, 1) = > (1 = A /2)"gr(x)

k=1
is the same for all x, and so averaging gives

n 2
plo0) =1 S (1= M2 = 1+ [ (1= N2 du (),
k=1 0

where the measure/c.d.f.
pr(A) == [{k; 0 < A < A}|/n
puts mass 1/n at each Ay for k > 2 (with multiplicity).
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For infinite G (n = c0), we have the same , but where the measure/c.d.f.
pr(A) = (I£(M)1o, 1)
is defined from /7, the resolution of the identity for L:
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,c/ NN
JO

For finite G, if we diagonalize £ =" APy, then I7(6) = > o ,<s Px-

11/20



Recall vol(r) :=|B(o, r)|.

Theorem. (L.-Oveis Gharan, 2012)
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Recall vol(r) :=|B(o, r)|.

Theorem. (L.-Oveis Gharan, 2012)
If G is transitive of degree d, then for all ¢ € (0,2),

p(0) < W

S
EH
>
—

| A\

Sample Corollary.

If G is transitive with vol(r) > Cr” (0 < r < diam G < ©0), then for all
0 €(0,2),

,UJ*((S) < C/(SD/2

and lazy simple random walk satisfies, for every t > 1,

1
Pt(o,o) < C”t_D/2
n

(n < o).




To show the corollary:

and vol(r) = Q(rP) implies p*(8) = O(6P/?)

and  p:(o,0) — % = O(t*D/2).
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wr(9) < % and vol(r) = Q(rP) implies p(6) = 0(50/2)
vol (ﬁ)
and  p:(o,0) — % = O(FD/2).

p*(6) = O(6P/?) is immediate. This gives

pi(0,0) — % = O(/02(1 —)/2)t d(/\D/Z))
/2 e,)\t/2 d()\D/2)>

(U
(
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0<A<S
The EPeic|MIlXtlelliI-@ is the best approximation to 1,
F: V= 3(V)

F:xw—I"(6)1.

For 0 # g € (2(V), define the of g

Ray(g) := % :

For g € img I*(d), we have Ray(g) <.

Notice F(x) € img/*(9).

14 /20



spectral embedding F((0,0)) € ¢*(Z?) of Z? for § = 0.1
F((j, k)) is the same but shifted to (j, k)
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o |[F(0)II> = F(0)(0) = u*(9).
@ The change of F(o) across an
edge is at most v2d4 - u*(0).

So F(o) stays large in a ball around
o of radius r := 1/\/&% Each point
in that ball contributes at least
p*(8)?/4 to ||F(0)||?, so the number
spectral embedding F((0,0)) of  of such points is < 4/u*(d), and is
72 for § = 0.1 also > vol(r). O

<
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First item:

IF(o)I* = [[1*(5)1 o||2 I*(6)10, 1"(6)10)
< (0)1o0,10) =: 117 (9)
F(o)(0).
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g(x) —gW)l = [{g, F(x) = F))| < llgll - IIF(x) = FI < llgll - M
for x ~ y, where M := maxx~, ||F(x) — F(y)||. Thus,

(F(0). LF(0)) _ 3o.ollF(0) = FCAIZ M2
lgll? 2d| gl? ~ 2dgl?’

8(x) — &)l < llgll - +/2dllgl|?6 = v2d6 - 1i*(5) -

6 > Ray(g) =

SO
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Y IF(e) = FO)I? = 2d|IF (o) > =2 ) _{F(
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- 2<F(o),z [F(o) - F(X)]>
= 2(F(0). Y I"(8)(1o ~ 1))
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Transitivity means the graph looks the same from every vertex.

For all x, we have ||F(o)| = ||F(x)|| and for every automorphism ¢,

IF(0) — F(x)|| = ||F (¢(0)) — F(6(x))]| -
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Lemma
For all x, we have ||F(o)| = ||F(x)|| and for every automorphism ¢,

IF(0) = F()Il = [|F(¢(0)) — F(&(x))]| -

Proof.

Choose an automorphism ¢ such that ¢1, = 1,. Since £ and ¢ commute
as operators on (2(V), we have ¢/*(§) = I*(5)¢. Thus,

F(o) = I"(6)1, = I"(0)¢1x = ¢I"(0)1x = ¢F(x).

| \

Since ¢ is a unitary operator, it preserves the norm, thus
|F(0)|| = [[F(x)||. We also proved that F(¢(x)) = ¢(F(x)). Therefore

IF(6(0)) = F(¢()) || = [[6(F(0) = F(x))|| = I1F(0) = F()Il . O
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