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Biased Random Walks on Galton-Watson Trees

BY RUSSELL LyoNS, ROBIN PEMANTLE AND YUVAL PERES

Abstract. We consider random walks with a bias toward the root on the
family tree T of a supercritical Galton-Watson branching process and show
that the speed is positive whenever the walk is transient. The corresponding
harmonic measures are carried by subsets of the boundary of dimension smaller
than that of the whole boundary. When the bias is directed away from the
root and the extinction probability is positive, the speed may be zero even
though the walk is transient; the critical bias for positive speed is determined.

§1. Introduction.

Consider a supercritical Galton-Watson branching process with generating function f(s) =
> oo Prs”®, ie., each individual has k offspring with probability py, and m := f/(1) €
(1,00). Started with a single progenitor, this process yields a random infinite family tree
T, called a Galton-Watson tree, on the event of nonextinction. We assume throughout
that no pg is equal to 1.

Simple random walk gives some information on the structure of a tree; to explore this
structure further, random walks with a bias toward the root have been used (e.g., Berretti
and Sokal (1985), Lawler and Sokal (1988), Lyons (1990)). The rate of escape (speed) of
a random walk indicates how much of the tree a single path explores, while the dimension
of harmonic measure indicates how much of the tree is explored by the ensemble of almost
all paths.

For A > 0, the A-biased random walk on a locally-finite rooted tree T', denoted
RW,, is the time-homogeneous Markov chain (X, ; n > 0) on the vertices of T" such that
if u is a vertex with & > 1 children vy, ..., v, and parent u., then P[X, 11 = v; | X,, =
ul=1/(k+ X fori=1,....,k and P[X,,11 = us | X, = u] = A/(k+ \); from the root all
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Figure 1.1. The walk is at the highlighted vertex and will
take one of its incident edges with probabili-
ties proportional to the weights indicated.

transitions to its children are equally likely. In case k = A = 0, then P[X,, 11 = u. | X,, =
u] = 1. Normally, we fix the initial state X, to be the root, p. See Figure 1.1.

For almost every Galton-Watson tree 7" on the event of nonextinction, RW) is transient
for 1 < A < m (Lyons 1990). Here we show that for 1 < A < m, the random walk escapes
at a positive speed and the corresponding harmonic measure has Hausdorff dimension less
than that of the whole boundary. For A = 1, i.e., the case of simple random walk, this was
shown in Lyons, Pemantle and Peres (1995) by using an explicit stationary measure on the
space of trees. We know of no such direct construction when \ > 1; instead, the proof is
based on some a priori bounds on the Green function and a regeneration argument. The
speed of the random walk is the almost sure limit (if it exists) of | X,,|/n, where |x| denotes
the distance from the root to the vertex x. In Section 5, we use positivity of the speed
(and, in particular, the finiteness of the mean time between regenerations) to establish
the existence of a finite measure on the space of trees which is absolutely continuous with
respect to Galton-Watson measure and is stationary for the A-harmonic flow. This is the
key to the “dimension drop” of harmonic measure. In Corollary 5.3, we deduce that there
exists a.s. a subtree T(9) of T with smaller exponential growth such that RWy on T is
confined to 7€) with overwhelming probability.

When the bias is away from the root, i.e., 0 < A\ < 1, the walk is obviously transient
on any infinite tree, but the walk may have zero speed when too much time is spent at
leaves. In Theorem 4.1, we show that for Galton-Watson trees, the speed is positive iff

A > f’(q), where q is the extinction probability.



§2. Linear Growth of the Range.

For the speed of RW) to be positive, certainly the range of RW, must grow linearly in
the number of steps taken. In this section, we establish that when A > 1, the range grows
linearly for any tree on which RW), is transient; this is false for A = 1. We begin with an
a priori bound on the Green function.

Let G(z,y) := Y i~y P.[X; = y] be the Green function of RW) on T, i.e., the expected
number of visits to y when the walk starts at x. Let d(z) denote the number of children

of a vertex z.

PROPOSITION 2.1. Let A > 1 and let T' be any tree on which RWy s transient. Then for

every vertex x € T', we have

Proof. Let G (z,x) denote the expected number of visits to x before visiting p when starting
from x. Let f(x,y) := P,y[3n > 0 X,, = y| denote the probability of visiting y when
starting at x (ignoring the initial visit if z = y), and let f(x, y) denote the probability of
visiting y before visiting p when starting at x.

By considering separately the path before and after the first visit to p, we see that
G(a,x) < Glw,2) + f(2.0)f(p,2)G(w.7) < Cla,x) + f(p. p)Gla, )

and therefore

G(z, )
G(x7x) S I f(pvp)

(This is valid for any transient Markov chain.) Denote by z, the parent of the vertex x

= G(x,2)G(p, p). (2.2)

(i.e., the neighbor of x that is closer to the root), and observe that

A o~

1— f(x,z) > m(l — f(x*,m))

By comparing the steps of RW), on the path connecting p and x to a simple asymmetric

random walk on the integers, and using a standard result on gambler’s ruin, we find that

~

f(zy,x) < 1/X. Therefore

1—f(x,m)2m(1—§)zc@;+l)\. (2.3)
Since G(z,x) = 1/(1 — f(x,z)), combining (2.3) and (2.2) yields (2.1). |

3



Let R, be the number of distinct vertices visited by time n. Our next proposition is

interesting in itself.

PROPOSITION 2.2. Let A > 1 and let T' be any tree on which RWy 1is transient. Then for
alln > 1,
E[R,]
n

-1
20G(p,p) + (A =1)

> —+

1
n
Proof. For every k < n, we have

P[Vj € (k,n] X; # Xx | Xi] > G( Xy, Xi) L.

Since R, is the number of epochs at which a vertex is visited for the last time, it follows
that

n—1 n—1
E[Rn] =14+E Z 1{Vj€(k,n] Xj;,ng}] >1+E ZG(Xk’Xk)_ll
k=0 k=0
n—1 1
>1+(\=-1)G B 2.4

by Proposition 2.1. This bound is effective when the typical degrees are small. To handle
large degrees, note that for x # p, the drift at = is

_ oy d@) - A
E[| Xpq1| — | Xi| | X = 2] = TOES)
Therefore,
n—1
d(Xg) — A
E[R,| > 1+ E[|X,|]] >1+E Z% : (2.5)
k=0 K

Now multiply (2.4) by 2AG(p, p)/(A—1) and add to (2.5). After a small amount of algebra,

we obtain the proposition. |

REMARK. The expected range can grow linearly even when RW) is recurrent, as can be

checked for the case A = 2 on the binary tree.



§3. Speed.

Our aim in this section is to prove the following theorem.

THEOREM 3.1. For 1 < A < m and for a.e. Galton-Watson tree T upon nonextinction,
the limit lim,_, o | X, |/n ezists a.s. and is a positive constant depending only on \ and the

offspring distribution. A lower bound is

(1—-A"1)3

1—qy)? 3.1
where qy is the smallest nonnegative number satisfying f(1 — X711 —qy)) = qx.

Our proof relies on the existence of infinitely many regeneration epochs, where, given
a path (Xo, X1,...), we call n > 0 a fresh epoch if X,, # X for all £ < n and a
regeneration epoch if, in addition, X,,_1 # X for all & > n. Define «(T") to be the
probability that, for the tree 7" gotten by adjoining a new vertex to the root of T" and
designating it the root of T”, the walk RW, on T’ never returns to its root. This is the
same as the effective conductance from the root of 7" to infinity when edges at distance
n from the root of 77 have conductance A~". To establish that there are infinitely many
regeneration epochs, we work on the space of trees, not, as in Section 2, on only one tree.
At first reading, we recommend that the reader consider only the case pg = 0. For this
and other proofs, let P,, and E,,, denote probability and expectation conditional on

nonextinction.

LEMMA 3.2. Let A be a measurable set of infinite trees and F,, be the o-field generated by
the events {X; # X;} for 0 <i < j < n. Let o be a stopping time with respect to (F,)
such that o 1s a fresh epoch and let T denote the descendant subtree of X.. Then

Poon[T% € A | Fol = Pron|T € A].

Proof. This lemma expresses a strong Markov property, which is evident without the
conditioning on nonextinction. Since each of the events T € A and T € A implies

nonextinction of 7T, we have

P[T°cA|F.] P[TeA
P, [T c A| Fo] = L 1€_q|f]: [1_€q]:Pnon[TeA]. 1

LEMMA 3.3. Let 1 < A < m. For a.e. Galton-Watson tree T upon nonextinction and a.e.

sample path of RWy, there are infinitely many regeneration epochs.

Proof. Condition throughout on nonextinction. It suffices to show that for any NV, there

is a.s. a regeneration epoch n > N. Since T is infinite, there is a.s. a fresh epoch n > N;
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let o be the first such. From Lemma 3.2, with the same notation, we have

P.on[3 a regeneration epoch > N | Fn] > Ppona is a regeneration epoch | Fi]
no

n[7(T)] -

Denote by F. the join of all the o-fields F,,. By martingale convergence, the conditional

probability of a regeneration epoch after N given F, is almost surely

lilgn Pon[3 regeneration > N | Fyik] > limkinf Poon[d regeneration > N + k | Fnyk)

> Enon ['Y(T)] .

Since the regeneration epochs are F,,-measurable, there is a.s. a regeneration epoch after
each N. [

Let the regeneration epochs be 0 < 7, < 75 < ---. These are defined only on the event

of nonextinction.

PROPOSITION 3.4. For 1 < A < m, on the event of nonextinction, the differences

between successive regeneration epochs {Tp41 — Tptn>1 are i.i.d. as are the increments
{|X7'n+1| - ’XTn|}n2]_'

Proof. The proof of this intuitively clear assertion requires more formal notation. Label
the edges from each vertex x to its children by the integers 1,...,d(x) so that each vertex
is identified with the sequence of labels leading to it from the root. This identifies the tree
T with a set [T] of finite sequences of positive integers. For every vertex x, let T'(x) denote
the tree of descendants of z, rooted at x; we identify T'(x) with the set [T'(z)] of sequences
which, when appended to the sequence identifying x, correspond to vertices in 7. A (finite
or infinite) path X := (X ; k > 0) is described by the sequence of non-negative integers
X = ().(k ; k> 1), where ).(k is 0 if X is the parent of X;_1 and is otherwise the label
on the edge from Xj_; to X;. Here, as in the sequel, we use angle brackets (- - -) to denote
a sequence (rather than a set).

Conditional on the event of nonextinction, the sequence of fresh trees T'(X, ) seen at
regeneration epochs is clearly stationary, but not i.i.d. However, as we establish below,
the part of a tree between regeneration epochs, together with the path taken through this
part of the tree, is independent of the rest of the tree and of the rest of the walk. We call
this part a slab: (see Figure 3.1)

Stab, i ([TO6 )\ T )UK ] s R Kz X)) (2)
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First point ;

Figure 3.1. The slab shown is a portion of the whole tree. The path
taken is highlighted. The tree that is not part of the slab is
joined only through the first and last vertices of the path.

(These are defined only on the event of nonextinction. Note that Slab,, is rooted at X .)
The stationarity of the sequence of fresh trees seen at regeneration epochs implies that the
random variables Slab,, are identically distributed.

Now we demonstrate that the slabs are mutually independent given nonextinction,
which implies the proposition.

Note that for k& < n, the variables 73, are measurable with respect to (Xy; k < 7,);
in particular, 7, is just the length of this sequence. Thus it suffices to show that for
n > 1, the fresh tree [T'(X,, )] and the remaining walk ().( r.+k; k> 1) are independent of
[T\T(X,,)U{X,, }] and ().(k : k < 7,) given nonextinction. Define the maps ¢; and v
by

([T X) := (T\T(X) UXi] 5 (Xis 1<k <))

and

Gel[T]5 X) o= (T(XD)] 5 (Kewns k2 1)),

Let GW be the measure on trees given by the Galton-Watson process and let P =
RW, x GW be the associated probability measure defined on a space €2 of paths in trees.
Let T be a Galton-Watson tree and let X’ be a sample from RW, on the enlarged tree
T’ started, however, at the root of T'. Let Q be the distribution of the pair (7 ; X’) [not
(T"; X')], so that Q is a probability measure on a space €’ which contains €, in the sense
that the set of pairs (T ; X') € €' such that X’ remains in 7" may be identified with .
Note that Q(92) = E[(T)].



Likewise, for any time t, we have Py, € Q | ¢ fresh, ¢¢] = Q(2). More generally, for

any event B C (), we have
Pl € B | t fresh, ¢;] = Q(B). (3.3)

For 1 < k < t, denote by C}, the event that ¢ is a fresh epoch and that there are exactly
k regeneration epochs before time ¢ when the walk is killed at time t. Let ., be the
intersection of {2 and the event of nonextinction. Then for any time ¢, any positive integer
n, and any events B C Q,,, and F', we have by (3.3) that

P[¢t€B7 theF» Tn:t]:P[’l?ZJtGB, ¢tEF7 C’fl—l]:Q(B)P[CfL—17 gthF]
Therefore,

Py, € B, ¢,, € F]=Y Q(B)P[C}_,, ¢ € F]

_ QB ; QB )
= Qi) P (Cher» 1 € FA) = s S Plor e P 7= ¢
_am)

= Q) O €1 (3.4)

In the case that F is the whole universe, {¢,, € F'} is the event of nonextinction and we
get P[Y,, € Bl = (1 —q)Q(B)/Q(Qnon). Substitution into (3.4) yields

Pl € B, ¢, € F] P, € B Plp,, € F]

1—g¢q 1—g¢q 1—g¢q

?

which establishes the desired independence. |

COROLLARY 3.5. For 1 < A < m, the differences between successive regeneration epochs,
{Tn+1 — Ta}n>1, have finite means conditional on the event of nonextinction. An upper

bound on their mean is the reciprocal of (3.1).

Proof. The expected number of regeneration epochs in [1, n| is the sum over k € [1, n]
of the probability that k is a regeneration epoch. For each k, this is E[y(T)] times the
probability that k is a fresh epoch. The sum over [1, n] of the probabilities that k is a fresh
epoch equals E[R,]. Therefore, by Proposition 2.2, the expected number of regeneration

epochs grows linearly in time with a lower bound of

lin BL (B[] > BRI 50| =20

n—00 n

LBl (3.5)



Since the times between regeneration epochs are i.i.d. given nonextinction, it follows by
the strong law of large numbers that Ep,[m2 — 7] < 0o. Moreover, according to (3.5), an
upper bound for their mean is 3\/[(A — 1)E[y(T)]?]. In order to make this bound more
explicit, we use the connection between random walks and percolation of Lyons (1992).
Define v/ (T') to be the effective conductance from the root of 7" to infinity when the edge
from the root of T” to the root of T" has unit conductance, while edges at distance n > 1
from the root of 7' have conductance A =" /(A —1). Also, let p(T') be the probability that
the component of the root of T is infinite when the edges of T" are removed independently
with probability 1 — A~! each. Then the inequality at the bottom of p. 2047 of Lyons
(1992) says that

A—1 A—1

EN(T)] 2 5~ Ep[)] = — -1 -a),

since E[p(T")] is the probability of nonextinction of a Galton-Watson branching process

with probability generating function s — f(1 — A7+ A71s). |

Proof of Theorem 3.1. Condition on nonextinction. By the strong law of large numbers,

Tn/n = Eyon[r2 — 1] as. and | X7, [/n — Enon || X+, | — | X+, |] a.s. Therefore,

|X7'n| Enon [|X7'2| - |X7'1 H
_>
Tn Enon [TQ - Tl]

(3.6)

Since lim 7, /n exists and is finite by Corollary 3.5, we have 7,41 /7, — 1 and the theorem
follows. The lower bound arises from the upper bound in Corollary 3.5 and the observation
that the numerator of (3.6) is at least 1. |

64. Outward-biased Random Walks.

If A <1 and py = 0, the argument of the preceding section works to give the existence and
positivity of the speed of RW,, provided we substitute the easy (2.5) for Proposition 2.2.
Thus, when A < 1, the most interesting possibility occurs when pg > 0: the walk may have
zero speed by spending too much time at leaves. Recall that ¢ is the extinction probability

of the Galton-Watson process.



THEOREM 4.1. Suppose that pg > 0. Let T be a Galton-Watson tree conditioned on nonex-

tinction. The speed of RWy exists and is constant a.s. It is positive if f'(¢) < A <1 and
zero if 0 < X < f'(q).

Proof. Since the case A = 0 is obvious, we assume that A > 0. Let g(s) = [f(s) —
f(gs)]/(1 — q) and h(s) := f(gs)/q. Then an f-Galton-Watson tree Ty conditioned on
nonextinction may be generated by first generating a g-Galton-Watson tree 7T, and then
appending to each vertex x of Ty a random number N, of h-Galton-Watson shrubs, where
N has a distribution dependent on dr,(x) only and, given T, and the numbers N, the
shrubs are i.i.d. We shall not need the explicit form of the distribution of N, (see Lyons
(1992)). Call the union of the N, shrubs at x a bush. See Figure 4.1.

Figure 4.1. Part of the tree Ty decomposed as the tree T,
(solid lines) together with bushes (dashed lines).

If we observe RWy on T only at the times o, that it makes a transition along an edge
of Ty, then we see a sample Y;, := X, of RW) on T,. Between these observations, there are
excursions of random lengths, possibly zero. To determine the lengths of these excursions,
we consider a single bush. The expected length of time that RW, takes to return to the
root on a fixed finite tree I' is equal to the reciprocal of the stationary probability of the
root of I'. Since RW,, is reversible, this is easily calculated to be 2% o, T, \!=" /Ty, where
I',, is the number of vertices in generation n. In particular, for h—Gz;lton—Watson bushes,

this sum has expectation

00 otherwise.

> Sy = {20 LN 4> 1) 1)
n>1

When 0 < A < f/(q), it follows that the expected time between regeneration epochs on

Ty is infinite, whence by the strong law of large numbers, the speed is a.s. zero. (Note

that the expected distance between successive regeneration loci on T is the same as on

Ty, hence is finite.)
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Now assume that f'(¢) < A < 1. Between times o, and 0,41, the walk (X}) makes a
random number of excursions into the bush at Y,,. The number of excursions has a geo-
metric distribution minus 1 with mean (dr,(Y,) —dr, (Y%))/(A +d7,(Yy)). In conjunction
with (4.1), this implies that

Enonl0nt1 — on | Yo < cdr, (Ya) (4.2)

for some constant ¢ depending only on A and f. Let Z;,...,Zk, be the distinct vertices
among Y7,...,Y,. Let U; = Z;’;l 1{y,—z,;- Then

n K,
> dr, (Vi) < Ukdr, (Zi),
=1 k=1
so that
n K,
Euon | dr,(Yi)| < Euon | > Urdr, (Z1)
=1 k=1

For each k, comparison to asymmetric simple random walk and use of Lemma 3.2 gives

Enon[deTf (Zk)] = Enon [de (Zk)Enon[Uk | de (Zk)H

1+ A m 14+ A
S Enon [de (Zk) :|

I—A] 1-qgl-\"
Therefore,
- m 14+ A
Enon d 1/1 <n—— ——
; 7; (¥3) "Tog1-
In conjunction with (4.2), this yields
em(1+ ))
EHOH Un n S Y
7S T )

whence by Fatou’s lemma, liminf,,_,. 0,/n < co a.s. Because regenerations occur with
positive frequency on T, it follows that liminfs_,. 7%/k < oo a.s., where 7, are the
regeneration epochs of X. By the strong law of large numbers, it follows that E[rx11 —
Tr] < oo, and the above liminf is a limit a.s. with constant value E[rp — 71]. Now for
Tk < n < Tgp1, we have | X, | < |X,| < | X | +n— 7 < |X5|+ Ths1 — 7. Since
lim 741 /7 = 1, it follows that

lim | X,|/n= lim |X,|/7% > lim k/7 > 0. |
n—00 k— o0 k— o0
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§5. Dimension of Harmonic Measure.

Recall that the Hausdorff dimension of a Borel measure v on a metric space is defined as
the infimum of Hausdorff dimensions of Borel sets with full v-measure.

Given a rooted tree T', let 9T denote the set of infinite self-avoiding paths from the root
of T'. This becomes a compact metric space when equipped with the standard metric that
assigns distance e™" to any pair of self-avoiding paths with exactly n edges in common.
The Hausdorff dimension of 97 is logm for a.e. Galton-Watson tree 7" (Hawkes 1981).
Let UNIF7 denote the measure on 07 which is the weak limit of measures uniform on the
vertices in the n-th generation of T'; this limit exists on a.e. Galton-Watson tree T see,
e.g., Equation (6.2) in Lyons, Pemantle and Peres (1995). When the random walk RW
is transient and cycles are erased from the path, the path converges almost surely to an
element of 0T whose law is denoted HARM%. Let HARM? be the function which assigns
to every tree T' the probability measure on its first generation corresponding to HARME\F,
ie.,

HARM*(T)(z) = HARM?2-{paths passing through 2}

for a vertex x in the first generation of T'. This gives transition probabilities for a Markov
chain on the space of trees if we let HARM?(T')(z) be the transition probability from T to
the descendant tree T'(x).

Call ¢t an exit epoch for the path (X;; k& > 0) if X; ; is the parent of X; and
X # Xy for all k > t. Let (tx) be the successive exit epochs. Then (X;,) forms a
random ray of 7" with distribution HARM% by definition. Therefore,

The subtrees T(X, ) form a HARM*-Markov chain. (5.1)
For a fixed offspring distribution, let GW denote the resulting Galton-Watson measure on

the space of trees.

THEOREM 5.1. For 0 < X\ < m, conditional on nonextinction, the Hausdorff dimension of
HARMa\w 1s GW-a.s. strictly less than logm. For 0 < A1 < Ay < m, the measures HARI\/I?}1
and HARM;!2 are GW-a.s. mutually singular. (We allow X =0 only if po = 0.)

The proof depends on the following lemma.

LEMMA 5.2. Assume pg = 0. For 0 < \ < m, there is a finite stationary measure for the
HARM*-Markov chain, denoted IWHARM; that is absolutely continuous with respect to GW.

Proof of Theorem 5.1. Because of the decomposition described in the previous section, the

theorem reduces to the case pg = 0. Theorem 7.1 of Lyons, Pemantle and Peres (1995)
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shows that the dimension of HARM%,‘v will be a.s. less than logm as long as HARM? has
a stationary measure absolutely continuous with respect to GW, and as long as HARM%
is not a.s. equal to UNIFp. The argument of Proposition 8.3 in that paper applies in
the present case to show that HARM:’\F is not a.s. equal to UNIF7, and Lemma 5.2 of the
present work thus shows that dim(HARM?Y.) < logm a.s. Theorem 7.1 of Lyons, Pemantle
and Peres (1995) also shows that HARM%l and HARM%2 are a.s. mutually singular if they

are not a.s. equal. To see that they are a.s. unequal, note that a.s. equality would force

 (T(z))
<'Y>\2(T(33)) >|x|21 (5.2)

to be a multiple of the constant vector 1 since

the vector

HARME (1) — — (T(@)

B Z|y|:1 MWIT(y)
For Galton-Watson trees, each component of this vector has the same law as that of
Yy (1) /72, (T'). Thus, the independence of T'(z) and T'(y) for two distinct children z and
y of the root implies that the random vector (5.2) is, in fact, constant GW-a.s. Thus,

;. (T) /72, (T') is a constant GW-a.s. This is easily seen to imply that some pj equals 1,

which contradicts our standing assumption. |

Proof of Lemma 5.2. The case A = 1 was done in Lyons, Pemantle and Peres (1995),
so assume that A % 1. We provide only a sketch due to space restrictions. Let W¥,, :=
<T(XT7L)7T(XT +1)7 ) T(X

. )) be the sequence of forward trees seen by the walk
during the nth slab. Then (¥, ; n > 1) is a stationary Markov chain. There is at

Trg1—1
least one exit epoch occurring in each slab, namely, 7,,. For each n, let ®,, be the finite
sequence of trees (T'(X;); t an exit epoch in the nth slab). Thus, (®,,; n > 1) is a factor
of (¥,,; n>1). Let h((®,)) > 1 be the length of the sequence ®;. The tower over (®,,)
with height function h yields a shift-invariant distribution for (7'(Xy,)). Examination of
the tower construction shows that this last sequence is a HARM*-Markov chain. It is
necessarily stationary, with some initial distribution pyarm-

It remains to prove that uyarm is absolutely continuous with respect to GW. Now
for any Borel subset A of trees,

T271

prarm(4) < [ 37 La(T(X,) dGW =i v(4).

n=T1

Thus, it suffices to show that if GW(A) = 0, then v(A) = 0. Indeed,

V(A) < / S 14(T(0)) dGW .
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For each vertex v in a Galton-Watson tree T', the forward tree T'(v) is also a Galton-Watson

tree, so the last integral vanishes. |

We now demonstrate how the drop in dimension of harmonic measure implies the
confinement of RW) to a smaller subtree. Given a tree 1" and positive integer n, let T,
be the vertices of T" at distance n from the root and |T},| be the cardinality of T,,. We
remark that the following proof is both easier and more general than the analogous proof
of Theorem 9.9 in Lyons, Pemantle and Peres (1995).

COROLLARY 5.3. Assume that po = 0. Fiz an offspring distribution and A € [0,m). For
GW-almost all trees T and for every € > 0, there is a subtree T'9) C T such that

RWA{Xn eTO for all n} >1—e (5.3)
and
1 (o) :
—log |T)¥| — dim ()\),
n

where dim () < logm is the dimension of HARME\F. Furthermore, any subtree T'€) satis-

fying (5.3) must have growth
1
lim inf — log | 79| > dim ()).
n

Proof. Let ty, := 1+ max{t; |X.| = k} be the k-th exit epoch and D(z, k) be the set of
descendants y of = with |y| < |z| + k. We shall use three sample path properties of RW
on a fixed tree:

Xn
Speed : lim u

n—oo N

= speed(A) >0 a.s. (5.4)

1 1
Holder exponent : lim —log ———F———
n—oo k~ HARMZ(Xy,)

log |D(X,,, 3| X,
Neighborhood size : V§ > 0 lim sup og | D( [ X))l

n— o0 ‘Xn’

=dim (\) a.s. (5.5)

<dlogm as. (5.6)

(In fact, the limit in (5.6) exists and equals the right-hand side, but this is not needed.)
The first property (5.4) was proved in Section 2 and the second (5.5) follows from a result
of Billingsley and an idea of Furstenberg once the absolute continuity in Lemma 5.2 has
been established; see Lyons, Pemantle and Peres (1995), Lemma 4.1 and Section 5. In
order to see that (5.6) holds for GW-a.e. tree, denote by Y} the k-th fresh point visited
by RW,. Then (5.6) can be written as

Vo >0 limsup |Yz| ' log | D (Y, 6|Yi|)| < dlogm

k— o0
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and since |Yy|/k has a positive a.s. limit, this is equivalent to
V6* >0  limsupk 'log|D(Yy,6%k)| < §*logm. (5.7)
k

Now the random variables |D(Y}, 6*k)| are identically distributed, though not independent.
Indeed, the descendant subtree of Y has the law of GW. Since the expected number of

descendants of Y}, at generation |Yy| + j is m? for every j, we have
5k
P(|D(Yy,0%k)| > m® k) <m0k ng .
7=0

If & > §*, then the right-hand side decays exponentially in k, so by the Borel-Cantelli
lemma, we get (5.7), hence (5.6).

Now (5.5) alone implies the last assertion of Corollary 5.3.

Applying Egorov’s theorem to the two almost sure asymptotics (5.4) and (5.5), we see
that for each e > 0, there is a set of paths A, with RW)(A.) > 1 — € and such that the
convergence is uniform on A.. Thus, we can choose (J,) decreasing to 0 such that on A,
for all £ and all n,

R

HARM}.(Xy,) > e F(Am()+00)  apq E§£&T55_1’

< O, - (5.8)

Now since d,, is eventually less than any fixed d, (5.6) implies that

limsup | X,,| " log |D(X,,,38 x| Xx])| = 0 as.,

n—oo

so applying Egorov’s theorem again and replacing A, by a subset thereof (which we continue

to denote A.), we may assume that there exists a sequence (1,,) decreasing to 0 such that
|D(Xn, 36, Xn|)| < eXnl7 for all n (5.9)

on A..
Define Fée) to consist of all vertices v € T' such that either 6, > 1/3 or both

HARMZ(v) > e~ MmO and | D(v, 381, [v])] < el

Finally, let
F = | D(v,308,vl)

’UEFO(E)
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and denote by T(9 the component of the root in F(9). Since the number of vertices
v € T, satisfying HARM?Y(v) > e 1?1(dim (V+010) g at most e(dm (N+0n) the hound on
|D(v, 36|y||v|)| bounds the growth rate from above as asserted in the statement of the
corollary. It remains to establish that RW ) stays inside F' (¢) forever on the event A, since
that will imply that the walk is confined to T(¢) on this event. The points visited at exit
epochs tj, are in FO(E) by the first part of (5.8) and (5.9). Fix a path (X;) in A, and a time
n, and suppose that the last exit epoch before n is tx, so that ¢y < n < tx41. Denote by
N := tx41 — 1 the time preceding the next exit epoch, and observe that Xy = X, . If
dn > 1/3, then X, is in Fo(e) since d|x, | > 0pn, so consider the case that 9, < 1/3. By the

second part of (5.8), we have

X, X X
[Xn] <1+6, and || > | X

_1nl 1—6n>1-9,.
n speed () n speed (A) — N speed (\) ” N=

Dividing, we find that

1+ 6,
Xl < TS Xo] < (1430, X
It follows that Xy, is in D(Xy,,3d|x, |[X,|) and this completes the proof. |

§6. Dependence on the Bias Parameter ).

Fix an offspring distribution, and recall that speed (\) denotes the a.s. constant speed of
RW, on Galton-Watson trees upon nonextinction. Similarly, denote by dim (\) the a.s.
constant dimension of the harmonic measure HARM%. The methods of this paper are not
well suited to analyze the dependence of speed (A) and dim (\) on the parameter A\. We
state explicitly two questions in this direction, and refer to the survey Lyons, Pemantle

and Peres (1996) for further questions and relevant examples.

Question 1: Assume that the offspring distribution satisfies po = 0. Is speed (\) mono-

tonic nonincreasing for A € [0,m) ?

Though a positive answer is intuitively compelling, the evidence available indicates
that if monotonicity holds, it is a special property of Galton-Watson trees. The calculations
in Section 4 show that the assumption py = 0 cannot be dropped. Even if we restrict atten-
tion to trees without leaves, there exist family trees of two-type Galton-Watson processes

for which speed () is not monotonic in A (see Lyons, Pemantle and Peres 1996).

Question 2: Determine the smoothness properties of speed (\) and dim () for A € [0, m).

16



In particular, the methods of the present paper do not yield the intuitively “obvious”
inequality
liminf speed()) > 0, (6.1)

A—1
since the a priori bound for the Green function in Proposition 2.1 blows up as A | 1. Of
course, continuity of the speed at A = 1 would immediately imply (6.1).
Continuity for A < 1 is easier to establish, since comparison with simple asymmetric

random walk on the integers is possible.
PROPOSITION 6.1. If pg = 0, then speed (X) is continuous for X € [0,1).

Proof. We construct a richer probability space on which random walks with laws RW, are
simultaneously defined for all A > 0. Pick a tree T according to Galton-Watson measure.
Label the edges of T as in the proof of Proposition 3.4. Let (U,) be a sequence of i.i.d.
random variables uniformly distributed on [0,1]. For every A > 0, we define inductively
a sequence of vertices (X)) as follows. First, let X7 be the root of T. For n > 1,
denote by d,,_1(A\) the number of children of X ;. If X , is the root, then define
).(;\L = [dn—1(A\) - U, ]. Otherwise, let

X = [+ dur (V) - U] (6.2)

if the right-hand side is at most d,,—1(\), and ).(;\l := 0 if the right-hand side of (6.2) is
strictly greater than d,,_;()). This defines the path (X)) as in the proof of Proposition 3.4.
Given T, the sequence (X)) is a clearly a sample from RW,. For any fixed \g > 0

and n > 1, we clearly have pointwise convergence:
X} — X0 almost surely as A — Ag . (6.3)

Pick Amax < 1. Denote by 7, ()\) the k-th regeneration epoch of (X)). We shall show
continuity of speed for A € [0, Apax| by using the formula

E [[X2,0)| = 1X2 0]

speedY) = —p e Oy = V]

(6.4)

Using the random variables U,,, we also define an asymmetric simple random walk
(Y;,) on the integers. Let Yy := 0 and for n > 1, let

1
Y, =Y, _ i — =U, .
1+ sign (1 . )
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Whenever Y,, > Y,,_1, necessarily | X > | X | for all A € [0, \pax]. Therefore every
regeneration epoch for the process (Y;,) is also a regeneration epoch for each of the processes
(X)) with A < Apax. Denoting the k-th regeneration epoch for (Y,,) by 77, we see that
Te(A) < 7',3/ for all A < Apax, and therefore 74, (A) — 7, (Ao) when A — \g < Apax. Because
the speed of (Y,,) is positive, 7} is integrable for each k (indeed, it has an exponentially
decaying tail — see, e.g., Lemma 5.1 in Dembo, Peres, and Zeitouni (1996)). Thus,
continuity of speed (\) in the interval [0, Ayax] follows from (6.3), (6.4) and Lebesgue’s

dominated convergence theorem. |
REMARK. Similarly, if p; = 0 for ¢ < N, then speed (\) is continuous for A € [0, N).

REMARK. Very similar methods allow us to deduce Theorem 3.1 for 1 < A < p for positive-
regular nonsingular multitype branching processes such that each particle has at least one
child (a stronger condition than a.s. nonextinction, but analogous to py = 0), where p is
the maximal eigenvalue of the mean matrix. We do not know how to prove that the speed

of simple random walk (A = 1) is positive on multitype trees.

Acknowledgements: We thank David Aldous for directing our attention to the question
of speed for biased random walks and Harry Kesten for useful discussions. The proof of

Lemma 5.2 was indicated by a referee; our original argument was considerably longer.
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