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Determinantal Probability Measures: Appendix

by Russell Lyons

Abstract. We present the appendix of the original submission, removed at the request

of the referee from the published article. In it, we show how to prove known theorems

counting bases of regular matroids. This includes the famous Matrix-Tree Theorem.

We have changed the equation numbers to match the published article.

Appendix: Counting Bases in Regular Matroids

If M is regular, or more generally, complex unimodular, then any complex unimodular repre-

sentation M of M has the well-known property that

|B| = det(M(r)M
∗
(r)) ,

which is a consequence of (2.1). This formula can provide a useful way to count B when a useful

complex unimodular representation can be found. A more general form holds as well: If M and

M ′ are both complex unimodular representations of B, then

|B| = |det(M ′
(r)M

∗
(r))| .

This is because, by (5.7), the right-hand side is just |(c′ξH , cξH)| for some constants c, c′ of absolute

value
√

|B|.

We give short proofs in this section of two known useful (real) unimodular representations.

Our first is the Matrix-Tree Theorem. As we noted in Section 2, the entries of the combinatorial

Laplacian of G are (⋆x, ⋆y) (x, y ∈ V).

The Matrix-Tree Theorem. Let G = (V,E) be a finite connected graph. Let x0, y0 ∈ V. Then

the number of spanning trees of G equals
∣

∣

∣
det

[

(⋆x, ⋆y)
]

x6=x0,y 6=y0

∣

∣

∣
.

Proof. Any set of all the stars but one is a basis for ⋆. The discussion at the beginning of this

section shows that we need merely prove that if u is the wedge product (in some order) of the stars

at all the vertices other than x0, then u has all its coefficients belonging to {0,±1} (in the standard

orthonormal basis of Λ|V|−1
E). Since ⋆ is a subspace representation of the graphic matroid, as

observed in Section 2, the only non-zero coefficients of u are those in which choosing one edge in

each ⋆x for x 6= x0 yields a spanning tree; moreover, each spanning tree occurs exactly once since

there is exactly one way to choose an edge incident to each x 6= x0 to get a given spanning tree.

This means that its coefficient is ±1.
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Our proof of the Matrix-Tree Theorem also shows that P⋆ is uniform. In combination with

Theorem 5.1, we thus deduce not only the Transfer Current Theorem of Burton and Pemantle

(1993), but also its special case, Kirchhoff’s Theorem, which was an ingredient in all prior proofs

of the Transfer Current Theorem.

We next consider general regular matroids and give a short proof of a theorem of Maurer

(1976). First, however, we review some additional facts about regular matroids. A hyperplane

of a matroid on E is a maximal set in E that does not contain a base. A cocircuit of a matroid

on E is the complement of a hyperplane. Let M be a regular matroid of rank r. Then there is

an (r × E) coordinatization matrix M of M that is totally unimodular, i.e., such that every

(k × k)-submatrix of M has determinant equal to 0 or ±1 (k ≤ r) (see Theorem 3.1.1 of White

(1987)). Let H ⊆ ℓ2(E) be the row space of M . If C∗ is a cocircuit of M, then the matrix ME\C∗

has rank r − 1. Pivot operations can therefore transform ME\C∗ to have its last row identically 0.

These same row operations on M lead to a last row uC∗ ∈ H all of whose elements are 0 or ±1

since M is totally unimodular (compare Lemma 2.2.20 of Oxley (1992)). Because the complement

of C∗ is a hyperplane, the 0’s in the last row occur only for those e /∈ C∗. If B is a base and e ∈ B,

let C∗(e,B) := {e′ ∈ E ; B \ {e}∪ {e′} ∈ B}. The set C∗(e,B) is a fundamental cocircuit. Write

u(e,B) := uC∗(e,B). The vectors u(e,B) (e ∈ B) of H corresponding to all fundamental cocircuits

form a basis of H (compare Welsh (1976), p. 170).

Theorem. Let B be the set of bases of a regular matroid on E. Let B,B′ ∈ B. Then

|B| =
∣

∣

∣
det

[(

u(e, B), u(e′, B′)
)]

e∈B,e′∈B′

∣

∣

∣
.

Proof. Let u(B) :=
∧

e∈B u(e,B). Since the vectors 〈u(e,B) ; e ∈ B〉 form a basis of H, there

is a constant c(B) such that u(B) = c(B)ξH. All the coefficients of u(B) are integers since the

coefficients of each u(e,B) are 0 or ±1. Since B ∩ C∗(e,B) = {e} for all e ∈ B, the coefficient
(

u(B), θB

)

= ±1. Therefore, the smallest (in absolute value) non-0 coefficient of ξH occurs for

B. Since B is arbitrary, it follows that all non-0 coefficients of ξH have the same magnitude.

Therefore, all non-0 coefficients of u(B) are ±1. Since the same holds for u(B′), it follows that

|c(B)| = |c(B′)|. Hence
∣

∣

∣

(

u(B), u(B′)
)

∣

∣

∣
= ‖u(B)‖2 = |B|.
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