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Course Notes for Stochastic Processes

by Russell Lyons

Based on the book by Sheldon Ross

These are notes that I used myself to lecture from. A modified version was

handed to the students, which is reflected in various changes of fonts and marginal

hacks in this version. These things were not in their version. In particular,

certain things were omitted and they were given space to write things that either

were in my notes or on which I expanded in class.

The first part of the course contains some material that is not taught when

one semester is devoted to the whole course.

Prerequisites: Undergraduate probability, up through joint density of continuous

random variables. You should be comfortable with undergraduate real analysis/advanced

calculus, meaning proofs and “epsilonics”, in order to understand some of the derivations,

although you will almost never have to do epsilonics yourself. You will be asked to do

calculations as well as derivations in this course. It will be crucial to understand proba-

bilistic concepts; they make calculations much easier and strengthen your intuition. An

introduction to measure theory is not needed and will not be assumed, but would add to

your understanding if you happen to have had it or are taking it concurrently.

The textbook is by S. Ross, Stochastic Processes, 2nd ed., 1996. We will cover

Chapters 1–4 and 8 fairly thoroughly, and Chapters 5–7 in part. Other books that will be

used as sources of examples are Introduction to Probability Models, 7th ed., by Ross (to be

abbreviated as “PM”) and Modeling and Analysis of Stochastic Systems by V.G. Kulkarni

(to be abbreviated as “MASS”). You do not need get them. The material of the course is

extremely useful in practice, and also a lot of fun. We will give examples that are designed

to illustrate both of these (not always at the same time).

Grades will be based on weekly homework, class participation, two exams, and a

final exam (Tuesday, May 6, 12:40-2:40 p.m.).

These notes follow the book fairly closely. In particular, all numbering (such as

of sections and theorems) follows that in the book. However, the notes often provide

proofs that are shorter or more conceptual than the ones in the book. The book tends
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to prefer proofs that rely on calculation, despite the excellent intuition and concepts that

are introduced. On the other hand, these notes are sometimes sketchy, with more details

to be given in class. (There are blank spaces often left for you to fill in details as we go.)

Sometimes, entire chapters are done differently in these notes than in the book.

Occasionally, we need to assign numbers to equations that do not appear in the book.

These will be preceded by “N” (for “notes”).

Definition of stochastic process. Examples and graphs. . . .5"

Example MASS 1.3 (Single-Server Queue). Here we begin with 2 stochastic pro-

cesses as input and study several others derived from them. Suppose that the nth customer

arrives at time An and, once service begins, takes time Sn to be served. There is a single

server who serves the customers in the order of their arrival, each one until finished. We

want to study Q(t), the number of customers in the system at time t; the time of departure

Dn of the nth customer; and the waiting time of the nth customer, Wn := Dn −An.

Draw graph of arrival and departure times on the horizontal axis with length

of queue on the vertical axis. Put down An and Dn first, both being increas-

ing processes. . . .3"
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Chapter 1

Preliminaries

§1.1. Probability.

The axioms of probability are that there is a “sample space” Ω (or S) containing all

possible outcomes and a function P that assigns to subsets of Ω (called “events”) a number

in [0, 1] such that

(i) P (Ω) = 1 and

(ii) if E1, E2, . . . are (pairwise) disjoint events, then

P
( ∞⋃

n=1

En

)
=

∞∑

n=1

P (En).

[Actually, sometimes only certain subsets of Ω can be given a probability, but that will not

concern us. Part of the development of measure theory elucidates this issue.] A probability

space is such a pair, (Ω, P ).

The axioms imply the particularly useful consequences:

(i) P (∅) = 0. . . .1"

(ii) If E ⊆ F , then P (E) ≤ P (F ). . . .1"

(iii) P (Ec) = 1− P (E). . . .1"

(iv) (subadditivity) For any events En, we have

P
( ∞⋃

n=1

En

)
≤

∞∑

n=1

P (En).

. . .1"

(v) If P (En) = 0, then P (
⋃

nEn) = 0. If P (En) = 1, then P (
⋂

nEn) = 1. . . .1"

Proposition 1.1.1. If En ↑ E or En ↓ E, then P (En) → P (E).

Proof. In the first case that En ↑ E, write E as a disjoint union
⋃

n(En+1 \En). (See the

figure.) . . . When En ↓ E, use Ec
n ↑ Ec. . . .2"1"
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E1

E2

E

If you flip a sequence of coins and the nth coin has chance 1/n2 of landing H, will you

get an infinite number of heads? What if the chance is 1/n? To answer these questions,

we prove the Borel–Cantelli lemmas.

Explain limsup and liminf of sequence of sets. . . .3"

Proposition 1.1.2 (First Borel–Cantelli Lemma). If
∑

n P (En) < ∞, then

P (En i.o.) = 0.

Proof. We have

P (En i.o.) = P
(⋂

n≥1

⋃

k≥n

Ek

)
= lim

n
P
(⋃

k≥n

Ek

)
≤ lim inf

n

∑

k≥n

P (Ek) = 0.

. . .2"

Proposition 1.1.3 (Second Borel–Cantelli Lemma). If
∑

n P (En) = ∞ and {En}
are (mutually) independent, then P (En i.o.) = 1.

Proof. We have

P (En i.o.) = lim
n
P
(⋃

k≥n

Ek

)
= lim

n

[
1− P

(⋂

k≥n

Ec
k

)]

= lim
n

[
1−

∏

k≥n

(
1− P (Ek)

)]
≥ lim sup

n

[
1−

∏

k≥n

e−P (Ek)
]

since 1− x ≤ e−x

= lim sup
n

[
1− e−

∑
k≥nP (Ek)

]
= 1.

Counterexamples without independence.

. . . Draw the tangent line to illustrate the inequality. Prove using def-3"

inition of log. . . .2"
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§1.2. Random Variables.

A (real-valued) random variable is a function X: Ω (or S) → R. Its (cumulative)

distribution function (c.d.f.) F = FX is F (x) := P [X ≤ x]. The c.d.f. determines the

distribution of X. . . . Often the tail probability function F (x) := 1 − F (x) = P [X > x]2"

is useful. We use the notation X ∼ F , especially when F has a name, like Bin(n, p) or

Unif[0, 1]. When two random variables X and Y have the same c.d.f., we write X
D
= Y ;

here, X and Y need not be defined on the same probability space. In case we have a

collection of identically distributed random variables Xi, we often write X for a random

variable with the same distribution as all of the Xi.

If the range of X is countable, we call X discrete; if its values are isolated, then

FX is a step function. If no value has positive probability, X is continuous; this is the

same as saying that FX is a continuous function. The random variable X could be neither

discrete nor continuous. For example, if we flip a coin and get H, then set X := 0; but if

we get T, then choose X ∼ Unif[0, 1]. What is FX? . . . We could define X in different1"

ways that give the same distribution (though not the same random variable): for example,

X := Y Z, where Y ∼ Bern(1/2), Z ∼ Unif[0, 1], and Y , Z independent; or X := W+,

where W ∼ Unif[−1, 1].

If ∃f :R → R such that ∀x FX(x) =
∫ x

−∞ f(s) ds, . . . then X is absolutely contin-0"

uous [called “continuous” in the book] and f is its probability density function. In

this case, f(x) = F ′
X(x) and P [X ∈ B] =

∫
B
f(x) dx. Almost always, we will use the

case that B is an interval. Defn for more general B. . . .0"

For two random variables X and Y on the same probability space, their joint dis-

tribution function is FX,Y (x, y) := P [X ≤ x, Y ≤ y]. . . . If2"

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds,

then fX,Y is called the joint density of X and Y ; we also say that X and Y are jointly

absolutely continuous.

Note that FX(x) = FX,Y (x,∞) (no densities are being assumed here). Explain

limits not along sequences. . . . We have that X and Y are independent ⇐⇒3"

∀x, y FX,Y (x, y) = FX(x)FY (y) ⇐⇒ ∀A,B P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B].

We are generally interested in random variables and their distributions, not the un-

derlying probability spaces on which they are defined.
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§1.3. Expected Value.

The expectation of X is defined by E(X) :=
∫∞
−∞ x dFX(x). However, we will

only say what this means in two cases: If X is absolutely continuous, then E(X) =∫∞
−∞ xf(x) dx. If X is discrete, then E(X) =

∑
x xP [X = x]. Give idea of Stieltjes

integral with
∫
h(x) dFX(x) to explain notation. . . . If we want to find the expec-2"

tation of h(X), we don’t need to find the distribution of h(X); instead, we can use the

distribution of X directly, as it can be shown that

E
(
h(X)

)
=

∫ ∞

−∞
h(x) dFX(x).

This change-of-variable formula is very handy! In particular,

P [X ∈ A] =

∫

A

dFX(x).

It can also be shown that E
(∑n

i=1Xi

)
=

∑n
i=1E(Xi). This linearity is actually a key

property of expectation; the proper definition of expectation using measure theory makes

the proof of linearity easy. Since E[Z] ≥ 0 when Z ≥ 0, it follows that E[Y ] ≥ E[X]

when Y ≥ X. Another particular case of the previous formula for E
(
h(X)

)
uses h(x) :=∫∞

−∞ g(x, y) dy, which gives

E
[ ∫ ∞

−∞
g(X, y) dy

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y) dy dFX(x) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) dFX(x) dy

=

∫ ∞

−∞
E[g(X, y)] dy.

In other words, we can interchange expectation and integral. Define the variance of X as

Var(X) := E
[(
X − E(X)

)2]
= E(X2)− E(X)2

and the covariance of X and Y as

Cov(X,Y ) := E
[(
X − E(X)

)(
Y − E(Y )

)]
= E(XY )− E(X)E(Y ).

. . . Recall that Cov(X,Y ) = 0 if (but not only if) X and Y are independent. We have0"

Var
( n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi) +
∑

i 6=j

Cov(Xi, Xj).

. . . In particular, if Xi are independent, then Var
(∑n

1 Xi

)
=

∑n
i=1 Var(Xi).0"

If X and Y have a joint density, fX,Y , then it can be shown that

E[h(X,Y )] =

∫ ∫
h(x, y)fX,Y (x, y) dx dy.
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§1.4. Moment Generating, Characteristic Functions, and Laplace Transforms.

We will occasionally need the moment generating function

E[etX ] =
∑

n≥0

E[Xn]

n!
tn.

(Although we will not pay close attention to when this equality holds, it does in all situ-

ations we will encounter. For example, if the left-hand side is finite for some t+ ≥ 0 and

some t− ≤ 0, then equality holds for all t ∈ [t−, t+].)

The reason for the name is that

E[Xn] =
( d
dt

)n

E[etX ]

∣∣∣∣
t=0

.

. . . We can differentiate inside the expectation.1"

Example: Exp(λ). Recall that X ∼ Exp(λ) (λ is called the parameter or rate) if it has

probability density function

fX(x) =

{
λe−λx if x ≥ 0,
0 if x < 0.

. . .3"

Thus, for X ∼ Exp(λ), we have E[X] = 1/λ and Var(X) = 1/λ2. . . .3"

In the case of the exponential distribution, one could also derive the moments from the

fact that
∫∞
0
xne−x dx = n! (which follows by induction and integration by parts). Con-

versely, one can derive the value of this integral by differentiating the moment generating

function for Exp(1).

7
c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



§1.5. Conditional Expectation.

Use an example for all the following, such as X the number of the first

die and Y the sum of two dice. We can wait to do examples until after (1.5.1).

Suppose that X and Y are discrete. Then

P [X = x | Y = y] =
P [X = x, Y = y]

P [Y = y]
.

We can regard this as a function of x or of y. As a function of x, it gives the distribution

function of a random variable since
∑

x P [X = x | Y = y] = 1. It is called the conditional

distribution of X given Y = y. It has, thus, an expectation,

∑

x

xP [X = x | Y = y] =: E[X | Y = y].

. . .2"

If we regard P [X = x | Y = y] as a function of y, then we may pre-compose it with

Y to get a random variable denoted P [X = x | Y ]. . . . This random variable has an2"

expectation:

E
[
P [X = x | Y ]

]
= P [X = x]. (N1)

. . . This is a special case of the so-called law of total probability. We can also pre-compose1"

the function y 7→ E[X | Y = y] with Y to get a random variable denoted E[X | Y ]. . . .2"

We have

(1.5.1) E[X] = E
[
E[X | Y ]

]
.

This is called the tower property.

Proof: Write it out. . . .2"

We may regard (N1) as a special case of (1.5.1): . . .1"

These ideas extend to all random variables. For the case that X and Y are jointly

absolutely continuous, the density of X given Y = y is x 7→ fX,Y (x, y)/fY (y) (by Exercise

2, this is a probability density function). Think of this as follows. Note that

fX(x) dx = P
[
X ∈ (x, x+ dx)

]

so that

fX,Y (x, y)

fY (y)
=
P
[
X ∈ (x, x+ dx), Y ∈ (y, y + dy)

]
/(dx dy)

P
[
Y ∈ (y, y + dy)

]
/dy

= P
[
X ∈ (x, x+ dx) | Y ∈ (y, y + dy)

]
/dx

= P
[
X ∈ (x, x+ dx) | Y = y

]
/dx.
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This probability density has an expectation, which we write as E[X | Y = y]. When we

pre-compose this function of y with Y , we get the random variable E[X | Y ]. Equation

(1.5.1) holds too:↓

E
[
E[X | Y ]︸ ︷︷ ︸

function of Y

]
=

∫ ∞

−∞
E[X | Y = y] dFY (y) =

∫ ∞

−∞
E[X | Y = y]fY (y) dy

=

∫ ∞

−∞

∫ ∞

−∞
x
fX,Y (x, y)

fY (y)
dx fY (y) dy

=

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y) dy dx =

∫ ∞

−∞
xfX(x) dx [by Exercise 2]

= E(X).

↑2"

We also want to define E[X | Y ] when only one of X or Y is absolutely continuous.

First, if X is any random variable and A is an event of positive probability, then the

function

x 7→ P [X ≤ x | A]

is the c.d.f. of a random variable, because it is non-decreasing, tends to 0 as x→ −∞ and

to 1 as x → ∞, and is continuous from the right; its expectation is denoted E[X | A].
This allows us to define P [X ≤ x | Y = y] and E[X | Y = y] when Y is discrete. (It can

be shown using measure theory that if X above is absolutely continuous, then so is the

random variable with the above c.d.f.) Second, if A is an event and Y is an absolutely

continuous random variable, we define

P [A | Y = y] := lim
ǫ→0

P
(
A ∩ {Y ∈ (y − ǫ, y + ǫ)}

)

P
[
Y ∈ (y − ǫ, y + ǫ)

]

when the limit exists. When X is discrete and Y is absolutely continuous, this allows us

to define

E[X | Y = y] :=
∑

x

xP [X = x | Y = y].

Once we have defined E[X | Y = y] in either of these cases, we define E[X | Y ] as before

by pre-composing with Y .

In all cases, it can be shown that (1.5.1) still holds.

WhenX and Y are both discrete, then one can verify the following conditional change-

of-variable formula (Exercise 6):

E
[
h(X,Y )

]
= E

[
E[h(X,Y ) | Y ]

]
=

∫ ∞

−∞
E[h(X, y) | Y = y] dFY (y). (N2)
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In fact, this holds in complete generality.

In particular,

P (A) = E[1A] = E
[
E[1A | Y ]

]
= E

[
P (A | Y )

]
.

. . . Also, it follows from (1.5.1) and (N2) that1"

E
[
h(Y )E[X | Y ]

]
= E

[
E[h(Y )X | Y ]

]
= E[h(Y )X].

. . . We can condition on several random variables, too:1"

E
[
E[X | Y1, Y2, . . .]

]
= E[X].

All these uses of (1.5.1) are extremely useful!

Two random variables X and Y are independent iff the conditional distribution of X

given Y = y is equal to the unconditional distribution of X (for all y ∈ A for some set A

where P [Y ∈ A] = 1).

We now give some applications of conditioning.

Example PM 3.15 (Analyzing the Quick-Sort Algorithm). Given a list of dis-

tinct numbers x1, . . . , xn, the goal is to place them in increasing order, that is, to sort

them, as quickly as possible. (A list is the same as a sequence.) The quick-sort algorithm

works as illustrated in an example: Suppose that the original list is 10, 5, 8, 2, 1, 4, 7.

Choose one at random, say, 4. Compare 4 to the others: {2, 1}, 4, {10, 5, 8, 7}. Now apply

the same procedure to the set < 4 and the set > 4:

→ 1, 2, 4, {10, 5, 8, 7} → choose at random from 2nd set, say 7:

→ 1, 2, 4, 5, 7, {10, 8} → 1, 2, 4, 5, 7, 8, 10.

The number of comparisons here was 6 + 1 + 3 + 1 = 11. This is a random “divide

and conquer” algorithm. How well does it do? The slowest would be if we always pick

the smallest or the largest one; then every pair must be compared and it takes ∼ n2/2

comparisons. The fastest possible would be if every time, the median were chosen; then

the number of comparisons would be

∼ n+
n

2
× 2 +

n

4
× 4 + · · · (∼ log2 n terms) ∼ n log2 n.

It turns out that this is quite close to Mn, the expected number of comparisons in quick-

sort!
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To calculate Mn, condition on the rank of the initial value selected:↓

Mn =

n∑

j=1

E[number of comparisons | initial value is jth smallest]P [initial value is jth smallest]

=

n∑

j=1

(n− 1 +Mj−1 +Mn−j) ·
1

n
= n− 1 +

2

n

n−1∑

k=1

Mk.

Thus

nMn = n(n− 1) + 2
n−1∑

k=1

Mk.

To solve this recursion, substitute n− 1 for n and subtract:

nMn − (n− 1)Mn−1 = 2(n− 1) + 2Mn−1,

whence

nMn = (n+ 1)Mn−1 + 2(n− 1),

which is
Mn

n+ 1
=
Mn−1

n
+

2(n− 1)

n(n+ 1)
.

Iterating gives

Mn

n+ 1
= 2

∑

n≥k≥1

k − 1

k(k + 1)
= 2

n∑

k=1

[ 2

k + 1
− 1

k

]

∼ 2(2 log n− log n) = 2 log n,

whence

Mn ∼ 2n log n.

Note that 2 > (log 2)−1.↑7"

Remark: Mn = 2(n+ 1)
(
−2 + log n+ γ + 3/n+O(1/n2)

)
.

Example 1.5(e) (The Ballot Theorem). In an election, A receives n votes and B

receives m votes, n > m. If all orderings of the n+m votes are equally likely, then

P [A always (strictly) ahead of B] =
n− m

n+ m
.

↓
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Proof. Let Pn,m be the desired probability. Then

Pn,m = P [A always ahead | A gets last vote]P [A gets last vote]

+ P [A always ahead | B gets last vote]P [B gets last vote]

= Pn−1,m · n

n+m
+ Pn,m−1 ·

m

n+m
.

Here, we make the convention that Pn−1,m := 0 if n = m + 1; note that this fits our

formula nicely, so we needn’t consider that case separately when we claim that our for-

mula fits the equation. Note why we conditioned on the last vote, rather than

the first. Now use induction on n+m.

↑4"

This also holds assuming only that all cyclic orderings of the votes are

equally likely. In other words, given a cyclic order, the number of linear

orders is n +m, of which n −m have A ahead always. This requires a dif-

ferent argument; see the proof by the cycle lemma of Dvoretzky and Motzkin.

Example 1.5(a) (The Sum of a Random Number of Random Variables). Let Xi

be i.i.d. (i ≥ 1) and N be a random variable with values in N := {0, 1, 2, . . .}, independent
of all Xi. Let Y :=

∑N
i=1Xi, which means Y (ω) :=

∑N(ω)
i=1 Xi(ω).

Examples:

• Queueing: N := the number of customers arriving in a specific time period, Xi

:= the service time required by the ith customer. Then
∑N

1 Xi = the total service time

required by customers arriving in that time period.

• Risk Theory: N := the number of claims arriving at an insurance company in a

given week, Xi := the amount of the ith claim. Then
∑N

1 Xi = the total liability for that

week.

• Population Model: N := the number of plants of a given species in a certain

area, Xi := the number of seeds produced by the ith plant.
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c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



To compute moments of Y , we compute the moment generating function:

E
[
etY

]
= E

[
E[etY | N ]

]
.

Now↓

E[etY | N = n] = E
[
et
∑N

1 Xi

∣∣∣ N = n
]
= E

[
et
∑n

1 Xi

∣∣∣ N = n
]
by (N3) below

= E
[
et
∑n

1 Xi

]
by independence

= E[etX ]n by independence,

where X
D
= Xi. Therefore E[etY ] = E

[
E[etX ]N

]
,

d

dt
E[etY ] = E[Y etY ] = E

[
NE[etX ]N−1E[XetX ]

]
,

d2

dt2
E[etY ] = E[Y 2etY ]

= E
[
N(N − 1)E[etX ]N−2E[XetX ]2

]
+ E

[
NE[etX ]N−1E[X2etX ]

]
,

so

E[Y ] = E
[
NE[X]

]
= E[N ]E[X],

E[Y 2] = E
[
N(N − 1)

]
E[X]2 + E[N ]E[X2],

and

Var(Y ) = E[N ]E[X2] +
{
E[N2]− E[N ]− E[N ]2

}
E[X]2

= E[N ] Var(X) + Var(N)E[X]2.

↑7"

⊲ Read pp. 1--9, 15--16, 18, and 20--24 in the book.
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Given an event A of positive probability and a random variable X with finite ex-

pectation, we have defined E[X | A] as E[Y ], where Y has the distribution of X given

A. There is another definition of conditional probability used in measure-theory-based

courses, which we will occasionally find useful:

E[X | A] = E[X1A]/P (A). (N3)

Note that this equation immediately gives linearity of conditional expectation. To see

(N3), we may assume that X ≥ 0 by decomposing X = X+ −X−: see Exercise 10. Then

we can use the tail formula, Exercise 11 (p. 46, 1.1 in the book), as follows:

E[Y ] =

∫ ∞

0

P [Y > y] dy =

∫ ∞

0

P [X > y | A] dy =

∫ ∞

0

P [A, X > y]/P (A) dy

=
1

P (A)

∫ ∞

0

E[1A1[X>y]] dy =
1

P (A)
E
[ ∫ ∞

0

1A1[X>y] dy
]

=
1

P (A)
E
[
1A

∫ ∞

0

1[X>y] dy
]
=

1

P (A)
E
[
1AX

]
.

§1.6. The Exponential Distribution, Lack of Memory, and Hazard Rate Functions.

If X ∼ Exp(λ), then FX(x) = e−λx. Such a random variable is memoryless:

P (X > s+ t | X > t) = P (X > s) for all s, t ≥ 0. (N4)

. . . In other words, the conditional distribution of X − t given that X > t is the same as1"

the unconditional distribution of X.

Example: A post office has 2 clerks. The customer service time of each clerk is Exp(λ).

Neither clerk is busy. One customer arrives at a random time and, while that customer

is still being served, another customer arrives at a random time and begins service with

the other clerk. What is the chance that the first customer finishes first? (Note that in

problems like this, we assume a lot of independence that is not stated explicitly. What

such assumptions can you identify?) . . .1"
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Solution. The answer is 1/2 by the (strong) memoryless property and symmetry. Sym-

metry here is the following principle: If two random variables T1 and T2 are IID, then

P [T1 < T2] = P [T2 < T1]. The proof is that (T1, T2)
D
= (T2, T1). If, in addition, T1 is con-

tinuous, then these probabilities must equal 1/2, because P [T1 = T2] = E
[
P [T1 = T2 | T2]

]

and for all t, we have P [T1 = T2 | T2 = t] = P [T1 = t | T2 = t] = P [T1 = t] = 0. . . .1"

The strong memoryless property says that if X ∼ Exp(λ) and Y ≥ 0 is inde-

pendent of X, then for all s ≥ 0, we have P [X > s + Y | X > Y ] = P [X > s]. The

book does not mention that the strong memoryless property needs to be established. We

prove this by writing the conditional probability as a quotient; calculate both numerator

and denominator by conditioning on Y . E.g., P [X > s + Y,X > Y ] = P [X > s + Y ] =

E
[
P [X > s + Y | Y ]

]
and P [X > s + Y | Y = y] = P [X > s + y | Y = y] = e−λ(s+y)

by independence, whence P [X > s + Y ] = E[e−λ(s+Y )]. Likewise, P [X > Y ] = E[e−λY ].

Thus, the quotient is e−λs.

For this problem, let A1 and A2 be the arrival times and S1, S2 be the service times.

We want to show symmetry, i.e., for all t > 0, we want

P [A1 + S1 −A2 > t | A1 < A2 < A1 + S1] = P [S2 > t | A1 < A2 < A1 + S1] = e−λt

and that A1 + S1 −A2 is independent of S2 given A1 < A2 < A1 + S1, which follows from

the assumed mutual independence. . . . We have1"

P [A1 + S1 −A2 > t | A1 < A2 < A1 + S1] = P [S1 > A2 −A1 + t | 0 < A2 −A1 < S1]

= e−λt

by the strong memoryless property, where we use the random variables S1 and A2 − A1

with respect to the probability measure where A2 −A1 is conditioned to be positive. . . .2"

Alternatively, we can formulate an even stronger memoryless property: if X ∼ Exp(λ)

and Y, Z ≥ 0 with X, Y and Z being mutually independent, then

P [X > Z + Y | X > Y ] = P [X > Z].

We prove this by re-using some of what we proved above, namely, P [X > Y ] = E
[
e−λY

]
,

P [X > Z] = E
[
e−λZ

]
and

P [X > Z + Y, X > Y ] = P [X > Z + Y ] = E
[
e−λ(Z+Y )

]
= E

[
e−λZ

]
E
[
e−λY

]
.

. . .1"

We can use this stronger memoryless property to give another solution:

P [A1 + S1 > A2 + S2 | A1 < A2 < A1 + S1] = P [S1 > S2 + (A2 −A1) | 0 < A2 −A1 < S1]

= P [S1 > S2] = 1/2.

. . .1"
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Example 1.6(a). A post office has 2 clerks. The customer service time of each clerk is

Exp(λ). You enter and are first in line, with both clerks already serving customers. What

is the chance that both customers currently being served will be finished before you are?

↓

Solution. Answer: The intuition is 1/2 by the strong memoryless property and symmetry,

measuring time from when the first customer leaves. To be rigorous, we will measure time

from when you arrive: as in the previous example, the strong memoryless property allows

us to assume that both previous customers began service when you entered. Let their

service times be S1 and S2, while yours is X. The chance that you are not the last to

finish is

P
[
X +min{S1, S2} < max{S1, S2}

]
= P

[
max{S1, S2} > X +min{S1, S2}

]

= P [S2 > X + S1 | S2 > S1]P [S2 > S1]+

P [S1 > X + S2 | S1 > S2]P [S1 > S2]

= P [S2 > X](1/2) + P [S1 > X](1/2) = 1/2.

↑3"

Example: Consider two teams of gladiators. At each round, each team sends one of

its gladiators to battle. Each gladiator has a fixed strength, and when two fight, the

probability of winning is proportional to the strength. The loser never plays again. Show

that the order in which teams send gladiators to battle does not change the probability of

having a surviving gladiator.

↓

Solution. Replace each gladiator by a light bulb with exponential lifetime whose mean

equals the strength of that gladiator. This replacement satisfies the terms of the compe-

tition by the strong memoryless property. Now consider turning on a light bulb when it

competes. If it burns out, it is thrown away. If it outlasts the other team’s light bulb,

then it can be turned off until used again, or it can continue to the next match. In any

case, a given bulb has some lifetime whatever we decide to do with it (think of predesti-

nation, where the future is determined though unknown to us), so the team that wins is

the one whose sum of bulb lifetimes is largest. To be less colorful, let X1, X2, . . . , Xn be

the exponential random variables for one team. For each ω ∈ Ω, the team’s total available

competition time is
∑n

i=1Xi(ω), regardless of the order of competition. If Y1, . . . , Ym are

the other team’s exponential random variables, then the first team wins with probability

P
[∑n

i=1Xi >
∑m

j=1 Yj
]
.↑3"
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Note that (N4) is the same as FX(s + t) = FX(s)FX(t). Thus, logFX satisfies the

functional equation

g(x+ y) = g(x) + g(y) (x, y ≥ 0).

Also, logFX is right-continuous (i.e., continuous from the right), written logFX ∈ Cr(R
+).

. . . To show that the exponential random variables are the only memoryless random1"

variables, we show that this equation has only the linear solutions g(x) = cx provided

g ∈ Cr(R
+). (This result will be useful later, too.) Here are the steps:

(1) Let c := g(1). Then g(x) = cx for x ∈ Q+. . . .2"

(2) Since g ∈ Cr(R
+), we’re done. . . .1"

In fact, the same result holds if g is assumed only to be right-continuous at 0: then

actually g ∈ Cr(R
+) since g(x0 + h)− g(x0) = g(h). . . .1"

For later use, we note that if g is bounded in some interval [0, δ] (δ > 0), say, by M ,

then |g(x)| = |g(nx)|/n ≤M/n for 0 ≤ x ≤ δ/n, whence g is right-continuous at 0.

Exponential as a limit of geometric, which is the discrete memoryless ran-

dom variable: n−1Geom(λ/n) ⇒ Exp(λ). . . .3"

In general, ifX has a probability density function, the failure or hazard rate function

λX(t) is λX(t) := fX(t)/FX(t). Thus P
[
X ∈ (t, t+dt) | X > t

]
≈ λX(t) dt, which explains

the name.

§1.8. Some Limit Theorems.

WLLN. If Xi are i.i.d. with mean µ ∈ (−∞,∞), then for all ǫ > 0, we have

lim
n→∞

P
( 1

n

n∑

i=1

Xi ∈ (µ− ǫ, µ+ ǫ)
)
= 1.

SLLN. If Xi are i.i.d. with mean µ ∈ [−∞,∞], then

P
(

lim
n→∞

1

n

n∑

i=1

Xi = µ
)
= 1.

CLT. If Xi are i.i.d. with finite mean µ and finite variance σ2, then ∀a ∈ R

lim
n→∞

P
( 1

σ
√
n

n∑

i=1

(Xi − µ) ≤ a
)
=

∫ a

−∞

1√
2π
e−x2/2 dx.
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I.e.,

1

σ
√
n

n∑

i=1

(Xi − µ) ⇒ N(0, 1).

(Let the random variables Xn have c.d.f. Fn and Y have c.d.f. F . We write that Xn ⇒
Y , Xn ⇒ F , or Fn ⇒ F if Fn(a) → F (a) at every a ∈ R where F (a) is continuous. This

is called convergence in distribution, convergence in law, or weak convergence.

The last name is because this kind of convergence follows from a.s. convergence; that is,

if P [Xn → Y ] = 1, then Xn ⇒ Y . The WLLN is about weak convergence to a constant

random variable, while the SLLN is about a.s. convergence. If Xn and Y are integer valued,

then Xn ⇒ Y iff P [Xn = k] → P [Y = k] for all k ∈ Z.)

We will use the following generalization only once:

CLT of Lindeberg. Let Xi be independent, Fi := the c.d.f. of Xi. Suppose that

E(Xi) = 0, Var(Xi) = σ2
i <∞,

s2n :=
n∑

i=1

σ2
i ,

and

∀t > 0 lim
n→∞

1

s2n

n∑

i=1

∫

|x|≥tsn

x2 dFi(x) = 0.

Then
1

sn

n∑

i=1

Xi ⇒ N(0, 1).

Note that this is a generalization. . . .2"
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Poisson Convergence (The Law of Rare Events). For every λ > 0, we have

Bin(n, λ/n) ⇒ Pois(λ)

as n → ∞. (See Exercise 14 (Exercise 1.3, p. 46), which extends this a bit.) More

generally, suppose that ∀n Xn,i (1 ≤ i ≤ n) are independent random variables with values

in N such that

pn,i := P [Xn,i = 1]

and

εn,i := P [Xn,i ≥ 2]

satisfy
n∑

i=1

pn,i → λ ∈ [0,∞],

max
1≤i≤n

pn,i → 0,

and
n∑

i=1

εn,i → 0.

Then
n∑

i=1

Xn,i ⇒ Pois(λ).

Note: There are two special interpretations: Pois(0) means the distribution of the

random variable that is identically 0; and Pois(∞) means the distribution of the random

variable that is identically ∞. In the latter case, to say that random variables Xn converge

weakly to ∞ means that for all t <∞, we have FXn(t) → 0 as n→ ∞.

The Monotone Convergence Theorem (MCT). If Xn → X a.s. and 0 ≤ Xn ≤ X

a.s., then E[Xn] → E[X].

The Lebesgue Dominated Convergence Theorem (LDCT). If Xn → X a.s.,

|Xn| ≤ Y , and E[Y ] <∞, then E[Xn] → E[X].

The Bounded Convergence Theorem (BCT). The LDCT for Y a constant.

Definition of independent increments and stationary increments for a sto-

chastic process. We will be dealing with two stochastic processes that have

independent and stationary increments: ones that jump (Poisson processes) and

ones that don’t (Brownian motion). . . .3"
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We’ll finish with a fun fact:

Example 1.9(a). There are n beads arranged on a circular necklace. Number them 1

through n. An ant starts at one of them, say, number 1, and takes a simple random walk

on the beads. . . . For each k 6= 1, what is the chance that bead number k is visited only1"

after all the other beads have been visited?

↓

Solution. Surprisingly, it is the same for all k, whence it is 1/(n− 1). To see this, consider

the first time that either bead k ± 1 is reached (counting mod n). At this time, what

matters is whether the other bead k ∓ 1 is reached before bead k. This does not depend

on the sign and clearly does not depend on k.↑3"

⊲ Read pp. 35--36, 37--39, and 41--42 in the book.
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Chapter 2

The Poisson Process

Poisson processes are examples of point processes, which are models for random dis-

tributions of “particles” (called “points”) in “space”. E.g., this might include defects on

a surface, raisins in cookies or cereal, misprints in books, stars in space, arrival times

of phone calls at an exchange, etc. Motivation for independent, stationary incre-

ments. The theory of Poisson processes when space is 1-dimensional, or more precisely,

R+, is especially important for its connections to many other stochastic processes. In this

case, “space” is usually called “time” and the “points” are usually called “events”.

Informally, we call 〈N(t)〉t≥0 a counting process if N(t) is the (finite) number of

“events” occurring in (0, t]. Thus, N(t)−N(s) = the number of events in (s, t]. Formally,

the definition of a counting process is that

• N(t) ∈ N,

• s < t⇒ N(s) ≤ N(t), and

• N(·) is right-continuous (with probability 1).

A counting process is called simple if it never jumps by more than 1 (with probability

1). Thus, if N(·) is a simple counting process, then N(t)−N(s) is equal to the number of

jumps that occur in (s, t]; we usually refer to the location of a jump as an event.

Theorem. Suppose that N(·) is a simple counting process with independent, stationary

increments. Suppose that P
[
N(0) = 0

]
= 1 and P

[
∀t N(t) = 0

]
= 0. Then ∃λ ∈ (0,∞)

such that ∀t N(t) ∼ Pois(λt).

Definition. A process satisfying these hypotheses is called a Poisson process with

rate λ.

Demo and figure. Note normal limit: adding Poisson random variables or

adding i.i.d. increments.
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A sample of a Poisson process.

Proof. In order to apply the Poisson convergence theorem, fix t and letXn,i be the indicator

that there is an event in
(
(i − 1)t/n, it/n

]
for 1 ≤ i ≤ n. Because N(·) is simple and

N(0) = 0, it follows that Yn :=
∑

iXn,i ↑ N(t) a.s. as n → ∞. . . . Therefore Yn ⇒ N(t)1"

as n→ ∞. By Exercise 14, it follows . . . that N(t) is a Poisson random variable. Let m(t)1"

denote its mean. Then m(t) <∞ and m(s+ t) = m(s) +m(t). . . . Since m is monotonic,1"

we get m(t) = λt for some λ ∈ [0,∞). . . . It follows that λ > 0. . . .0.5"1"
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We now show that such a process exists. Let Xn be i.i.d. Exp(λ). Set

N(t) := sup
{
n ;

n∑

k=1

Xk ≤ t
}
.

0 X1 X1 +X2 X1 +X2 +X3 t X1 + · · ·+X4

∞

Since
∑n

1 Xk/n → 1/λ a.s., we have N < ∞ a.s. Clearly N jumps by 1 and, by the

memoryless property, has independent, stationary increments. . . . Finally,1.5"

P
[
N(t) = 0

]
= P [X1 > t] = e−λt,

whence λ is the rate of the Poisson process N . This proves existence of the process. The

sequence 〈Xn ; n ≥ 1〉 is called the sequence of interarrival times.

Give the intuition in terms of coins and the limits of geometric/binomial

random variables.

A Poisson process is a scaling limit of Bernoulli trials.

Let 〈N(t) ; t ≥ 0〉 be a stochastic process with independent, stationary increments

that is right-continuous and all of whose discontinuities are jump discontinuities. Assume

N(0) ≡ 0.* The following properties can be shown:

• For all s > 0, if an event A is defined in terms of N(t) for t ≤ s and another event B

is defined in terms of the increments N(t)−N(s) for t > s, then A and B are independent.

. . .1"

* Such stochastic processes that are also nonnegative are called subordinators. The condition of no
jump discontinuities is the same as the existence of left limits everywhere once we assume right-continuity.
Another name for right-continuous functions with left limits is càdlàg, which is an abbreviation for the
French phrase, “continue à droite, limites à gauche”.
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• The Markov property holds: for all s > 0, if an event B is defined in terms of N(t)

for t > s, then P
(
B

∣∣ N(t), t ≤ s
)
= P

(
B

∣∣ N(s)
)
. . . .1"

• The strong Markov property holds: Suppose τ is a random variable with values in

[0,∞) such that for all s, the event that τ ≤ s depends only on N(t) for t ≤ s. Then if

an event A is defined in terms of N(t) for t ≤ τ and another event B is defined in terms

of N(τ + t) − N(τ) for t ≥ 0, then A and B are independent. Furthermore, the law of

〈N(τ + t)−N(τ) ; t ≥ 0〉 is the same as the law of 〈N(t) ; t ≥ 0〉. . . .1"

Now it is easily calculated (see p. 64) that the first arrival time of a Poisson

process with rate λ has an Exp(λ) distribution. . . . By the strong Markov property, all1"

the interarrival times have an Exp(λ) distribution and, in fact, the Poisson process is of

the type constructed. . . .2"

Thus, λ uniquely determines the law of the Poisson process. Here, “law” (or “distri-

bution”) is the analogue for processes of “c.d.f.” for a real-valued random variable. There

are, in fact, two interpretations of “law” for processes. The simpler one is the collection of

joint distributions of 〈N(ti)〉 for all finite {ti} ⊂ R. To be more explicit, these are called the

finite-dimensional marginals of the process N . This is often sufficient; but note that

N and N ′ may have the same finite-dimensional marginals, yet N may be right-continuous

and N ′ not be. Example: Poisson process made left-continuous.↓↑1"
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Thus, sometimes one introduces a space of functions that each N(·) belongs to. For

example, for counting processes, N , we have that a.s., N ∈ Cr

(
[0,∞)

)
. Then the law of

N is the collection of probabilities P [N ∈ A], where A ⊆ Cr

(
[0,∞)

)
.* In fact, in this

case, one can show that the finite-dimensional marginals determine the law in this case,

even if we use only rational times, because the values at rational times combined with

right-continuity determine the function values at all positive times.

In any case, when we say that two processes have the same law, it means that all

relevant probabilities are the same for the two processes: They are indistinguishable prob-

abilistically. (Of course, this does not mean they are the same process, just as we do not

say that two fair coins are the same coin.)

An equivalent definition of Poisson process is given in the book:

Theorem. Suppose that N(·) is a counting process with independent, stationary incre-

ments. If ∃λ ∈ (0,∞) such that ∀t N(t) ∼ Pois(λt), then N(·) is a Poisson process with

rate λ.

Proof. That P
[
N(0) = 0

]
= 1 is clear from N(0) ∼ Pois(0). Also, P

[
∀t N(t) = 0

]
≤

P
[
N(s) = 0

]
= e−λs for all s ≥ 0, whence P

[
∀t N(t) = 0

]
= 0. It remains to show that

N(·) is simple. It suffices to show that for each k ≥ 1, N(·) does not jump by more than

1 in [0, k]. . . . Fix k and let A be the event that there is a jump by more than 1 in [0, k].1"

Let An,i be the event that N(ik/n)−N
(
(i− 1)k/n

)
≥ 2. Then A ⊆ ⋃n

i=1An,i for each n.

Because

N(ik/n)−N
(
(i− 1)k/n

)
∼ Pois(λk/n),

it follows that P (An,i) = 1 − e−λk/n − (λk/n)e−λk/n = o(λk/n) as n → ∞. . . . Hence1"

P (A) ≤ ∑n
i=1 P (An,i) ≤ n · o(λk/n) = o(1), i.e., P (A) = 0.

In fact, we do not need the assumption of independent increments in the preceding theo-
rem, nor that the process be a counting process:

Lemma. If X ∼ Pois(λ) and Y is independent of X with X + Y ∼ Pois(λ + µ), then Y ∼
Pois(µ).

Proof. Recall that the probability generating function of a Pois(λ) random variable is z 7→
eλ(z−1). By independence of X and Y , the p.g.f. of X + Y divided by the p.g.f. of X is the

p.g.f. of Y . Since this quotient equals z 7→ eµ(z−1), it follows that Y ∼ Pois(µ).

* Technically, one needs to introduce a σ-field on Cr
(
[0,∞)

)
and then A 7→ P [N ∈ A] is a probability

measure on this σ-field.
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Corollary. Suppose that N(·) is a right-continuous process with independent increments.
If ∃λ ∈ (0,∞) such that ∀t N(t) ∼ Pois(λt), then N(·) is a Poisson process with rate λ.

Proof. Apply the lemma to N(·): Given 0 < s < t, let X := N(s) and Y := N(t) − N(s) in
the preceding paragraph. The assumptions that Y is independent of X, X ∼ Pois(λs), and
X + Y = N(t) ∼ Pois(λt) imply that Y ∼ Pois

(
λ(t− s)

)
. In other words, N(·) has stationary

increments. Furthermore, X(t) ∈ N a.s. for every t ∈ Q, whence by right-continuity, X(t) ∈ N

for every t ≥ 0 a.s. In addition, Y ≥ 0 a.s., so (using the rationals again) N(·) is a counting

process.

⊲ Read §2.2, pp. 64--66 in the book.

Let N1(·), . . . , Nk(·) be real-valued stochastic processes defined on the same proba-

bility space and indexed by a set T of “times”. The processes are called (mutually)

independent if for any events Ai (1 ≤ i ≤ k) such that Ai depends only on Ni(·), the
events Ai are independent; this is equivalent to the following condition: for all J ∈ N, all

ti,j ∈ T and all Ai,j ⊆ R (1 ≤ i ≤ k, 1 ≤ j ≤ J), we have

P
[
∀i ∀j Ni(ti,j) ∈ Ai,j

]
=

∏

i

P
[
∀j Ni(ti,j) ∈ Ai,j

]
.

Example PM 5.3.6 (Estimating Software Reliability). New software is tested

for time t. After the whole run is complete, the bugs discovered are fixed. What error

rate remains? Suppose the bugs cause errors like a Poisson process with rate λi (i ≥ 1).

Suppose also that they are independent. If ψi(t) is the indicator that bug i has not caused

an error by time t, then we want to estimate

Λ(t) :=
∑

i

λiψi(t).

(By Exercise 22, the remaining bugs cause errors together at the times of a Poisson process

with rate Λ(t).)

Naturally, the bugs with small λi are those remaining. Let Mj(t) := the number of↓
bugs that caused exactly j errors up to time t. If Xi(t) is the indicator that bug i has

caused exactly one error by time t, then

E[Λ(t)] =
∑

λie
−λit,

E[M1(t)] = E
[∑

Xi

]
=

∑
λite

−λit,

whence

E

[
Λ(t)− M1(t)

t

]
= 0.
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Thus, M1(t)/t may be a good estimate of Λ(t). In this way, we estimate the unknown

(unobserved) by the known (observed). This magic is made possible by probability and

is the foundation of statistics. Like the game of choosing the higher of 2 numbers

when we are allowed to see only one. To see how good this estimate is, compute

Var
(
Λ(t)− M1(t)

t

)
=
E[M1(t) + 2M2(t)]

t2

(after lengthy calculations, shown below). Thus, we may estimate the error by

√
M1(t) + 2M2(t)/t.

(Clearly, we should test until M1(t) and M2(t) are small compared to t2.)

For example, suppose that at t = 100, we discover 20 bugs, of which 2 cause 1 error

and 3 cause 2 errors. Then Λ(100) ≈ 2
100 ±

√
8

100 .

Here are the calculations: Recall that the variance of a Bin(1, p)-random variable is

p(1− p). Since ψi(t) ∼ Bin(1, e−λit) and Xi(t) ∼ Bin(1, λite
−λit), we have

Var
(
Λ(t)− M1(t)

t

)
= Var

(∑

i

(
λiψi(t)−Xi(t)/t

))

=
∑

i

Var
(
λiψi(t)−Xi(t)/t

)

=
∑

i

[
λ2i Var

(
ψi(t)

)
+

1

t2
Var

(
Xi(t)

)
− 2

λi
t
Cov

(
ψi(t), Xi(t)

)]

=
∑

i

[
λ2i e

−λit(1− e−λit) +
1

t2
λite

−λit(1− λite
−λit) + 2

λi
t
e−λitλite

−λit
]

since ψi(t)Xi(t) ≡ 0

=
∑

i

(
λ2i e

−λit +
1

t
λie

−λit
)

=
∑

i

λ2i e
−λit +

E
(
M1(t)

)

t2
.

On the other hand, if Yi(t) denotes the indicator that bug i has caused exactly 2 errors by

time t, then

E
(
M2(t)

)
=

∑

i

E
(
Yi(t)

)
=

∑

i

(λit)
2

2!
e−λit,

whence we obtain the desired formula.↑6"

. . .6"
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Suppose that each event of a Poisson process with rate λ is classified independently

as type i (1 ≤ i ≤ K) with probability pi, where
∑K

i=1 pi = 1. We also assume that the

type classification is independent of the times of the events. Let Ni(t) be the number of

type-i events by time t.* Here’s an amazing fact:

Theorem. For each i, Ni(·) is a Poisson process with rate λpi and these processes are

mutually independent.

Demo

Proof. This proof will use the following idea: Suppose we want to show that a random

variable X has the same distribution as a random variable Y . One way to do this would

be to work with X and manipulate its distribution function to show that it is the same

as that of Y . A second way would be to work with Y from the start and show it has the

same distribution as X. These strategies are obvious (and not the only useful strategies),

but it can be confusing when we do it the second way in the present context. We will use

this same idea repeatedly after the proof of this theorem.

Let Ñi(·) be independent Poisson processes with rates λpi. Set Ñ(t) :=
∑
Ñi(t).

By Exercise 22 (p. 89, 2.5, extended), Ñ(·) is a Poisson process with rate λ. Call the

events of Ñ(·) type i if they come from Ñi(·). Also by Exercise 22, the first event of

Ñ(·) is of type i with probability pi, independently of the time of the first event. By the

strong Markov property applied to all Ñi(·), the same holds for the second event of Ñ(·),
independently of the first, etc. . . . Thus, 〈Ñi(·) ; 1 ≤ i ≤ k〉 comes from Ñ(·) by the same1"

classification procedure that gives 〈Ni(·)〉 from N(·). Therefore 〈Ñi(·)〉 D
= 〈Ni(·)〉, from

which the theorem follows.

Give the intuition in terms of coins and limits.

Combining two Bernoulli processes.

* More formally, let Zn be i.i.d. random variables for n ≥ 1, independent also of the Poisson process,
with P [Zn = i] = pi. We call the nth event type Zn. Then Ni(t) is the number of events by time t whose
type is i.
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This proof is short, but subtle. (The proof of Exercise 22 is also short when done

the best way.) A calculational proof of the above theorem, if one wants one, proceeds

along the following lines: Look at the interarrival times of Ni(·). The combination of

the memoryless property of the geometric distribution and of the exponential distribution

shows that the interarrival times are i.i.d. with distribution equal to that of the sum of

Geom(pi) independent Exp(λ) random variables. What is this distribution? We claim

that it is Exp(λpi). [Note that this follows immediately from the theorem, but we are

trying to give a direct proof.] One method to prove this is calculational; e.g., calculate the

moment generating function and use the result that the m.g.f. determines the distribution

uniquely. A simpler way is to verify the memoryless property and calculate the mean.

. . . (And intuitively, if we think of an exponential random variable as a scaling limit of1"

geometric random variables, it follows from the fact that a geometric sum of geometrics

is geometric.) In any case, once we have this done, it follows that for each i, the process

Ni(·) is a Pois(λpi) process. To show that the processes are mutually independent requires

verifying a statement that is already complicated to state, still more to prove. Actually,

it is not too hard to prove, but it is messy. So we will just write out a very simple case:

Given any numbers ni and writing n :=
∑K

i=1 ni, we have

P
(
N1(t) = n1, N2(t) = n2, . . . , NK(t) = nK

)

= P
(
N1(t) = n1, N2(t) = n2, . . . , NK(t) = nK

∣∣ N(t) = n
)
P
(
N(t) = n

)

=

(
n

n1 n2 · · · nK

) K∏

i=1

pni
i · e−λt (λt)

n

n!

=
n!

n1!n2! · · · nK !

K∏

i=1

pni
i · e−λt (λt)

n

n!

=

K∏

i=1

e−λpit
(λpit)

ni

ni!

=

K∏

i=1

P
(
Ni(t) = ni

)
.

This is only the simplest case of independence, since here all the times were the same, t.

But this should be enough to give an idea of how much pain is saved by the conceptual

proof above.
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Corollary. The sum of independent Poisson random variables is a Poisson random

variable whose mean is the sum of the means. If a Pois(λ) number of objects is classi-

fied independently as type i with probability pi each, then the number of type-i objects is

Pois(λpi) and these numbers are independent.

Proof. The first part follows from Exercise 22 by embedding the Poisson random variables

in Poisson processes as their values at time 1. . . . Note that this proof is accomplished2"

without any real calculation (if Exercise 22 was done the best way) and gives the result of

Exercise 5(a) (p. 47, 1.8). The second part follows from the theorem also by embedding

and gives the result of Exercise 5(b). . . . Again, this requires no further calculation.1"

Example MASS 5.16. No device works perfectly. Suppose that a Geiger counter fails

to register an arriving radioactive particle with probability 0.1, independently of every-

thing else. Suppose also that radioactive particles arrive at the counter according to a

Pois(1000/sec) process. If during a certain 1/100 sec, the counter registered 4 particles,

what is the probability that actually more than 5 arrived?

↓

Solution. This is the probability that it missed at least 2. The missed particles form a

Pois(100/sec) process, so the chance that there were at least 2 in that interval is

1− (e−110/0! + e−111/1!) = 1− 2/e = 0.264+.

Alternatively, one can start with the fact that the number of arriving particles in that

interval is Pois(10) and then use the corollary.↑2"

If we classify the events of a Poisson process into only two types, “keep” and “remove”,

then we often refer to the kept events as a thinned process.

Another amazing fact about Poisson processes is that, for every t > 0, given that

N(t) = n, the n events in (0, t] are distributed the same as n i.i.d. Unif[0, t] points that

we’ll call “dots” (Theorem 2.3.1).

If we think about Bernoulli trials, then this is actually quite intuitive. . . . Moreover,2"

we see that to estimate the success probability in n trials, we can do no bet-

ter than use the total number of successes: Given that there are k successes,

the distribution of those k is uniform on the n trials. In particular, it does

not depend on p. Similarly, to estimate λ given N(s) for s ≤ t, we can do

no better than use N(t). These are so-called sufficient statistics.

In fact, another way to construct a Poisson process is to choose i.i.d. Y0, Y1, Y2, . . . ∼
Pois(λ) and, given 〈Yi〉∞i=0, choose Yi independent Unif[i, i + 1] random variables. The
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resulting set of dots on [0,∞) gives the arrival times. (Here, the positive integers

could be replaced by any sequence of times increasing to ∞, with a correspond-

ing change in the Poisson parameters.) To see that this is a Poisson process with

rate λ, we need only check that increments are independent and stationary. . . .0"

To check independence, it’s enough to show that 〈N(ti)−N(ti−1)〉ri=1 are independent

for 0 = t0 < t1 < · · · < tr = 1. . . . But these numbers are obtained by taking Y0 dots,1"

each independently having probability ti − ti−1 of falling in (ti−1, ti]; so we may apply the

above corollary.

Now we check that N(s + t) − N(s)
D
= N(t). This is clear for s + t ≤ 1. . . . To0"

see that it holds for s + t ≤ 2, it suffices to show that the dots in [0, 2] are uniform and

independent, given that their number is Y0 + Y1 ∼ Pois(2λ). . . . Stated another way, it0"

suffices to show that if we choose Pois(2λ) dots in [0, 2] independently and uniformly, then

the numbers in [0, 1] and [1, 2] are independent Pois(λ) and given that a point falls in one

of the two halves, it is uniformly distributed in that half. . . . But note that if we choose1"

Pois(2λ) dots in [0, 2] independently and uniformly, then each has chance 1/2 of falling in

[0, 1], so by the corollary, the number that fall in [0, 1] is Pois( 12 · 2λ) = Pois(λ) and they

are clearly i.i.d. Unif[0, 1]; similarly for those in [1, 2]; and these are independent of each

other. Likewise, we see it holds for s+ t ≤ n for every n.

A calculational proof of almost the same statement is given in the book on p. 67. It

is not long.

Example 2.3(a). Suppose that travelers arrive at a train station according to the times

of a Pois(λ) process during the interval [0, T ]. If the train leaves at time T , what is the

expected total waiting time of the passengers (i.e., the sum of all the waiting times)?

↓

Solution. Condition on the number of passengers and then use their uniform distribution.

↑3"

Example MASS 5.11. Suppose that customers arrive at an automatic teller machine

(ATM) according to the times of a Pois(λ) process. The ATM records the start and finish

times of each customer’s service, but not when the customers arrive (if they join a queue).

Suppose that the ATM is opened for business one day at 7:00am and that the log that day

turns out to begin as follows:
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Customer No. Service Start Time Service Completion Time

0 7:30 7:34

1 7:34 7:40

2 7:40 7:42

3 7:45 7:50

What is the expected arrival time of Customer 1 given the above information?

↓

Solution. Let An be the arrival time of customer n. We want

E
[
A1

∣∣ A0 = 7: 30, A1 ≤ 7: 34, A2 ≤ 7: 40, A3 = 7: 45
]
.

(The only other information we are given is the service times—i.e., we can reconstruct the

table from the service times and the conditioned event—, but these are independent of

the arrival times. We are making an implicit assumption of such independence; e.g., in

principle, it could be that a customer who starts service just after arriving takes longer to

be served, needing time to think about how much to withdraw.) This is the same as

E
[
A1

∣∣ A0 = 7: 30, A1 ≤ 7: 34, A2 ≤ 7: 40, N(7: 40)−N(7: 30) = 2
]
.

We begin by calculating the conditional distribution of A1. We also will convert time to

minutes after 7:30 and count arrivals only after that. We have for x ≤ 4,

P
[
A1 ≤ x

∣∣ A1 ≤ 4, A2 ≤ 10, N(10) = 2
]
= P

[
A1 ≤ x

∣∣ A1 ≤ 4, N(10) = 2
]

=
P
[
A1 ≤ x,A1 ≤ 4

∣∣ N(10) = 2
]

P
[
A1 ≤ 4

∣∣ N(10) = 2
]

=
P
[
A1 ≤ x

∣∣ N(10) = 2
]

P
[
A1 ≤ 4

∣∣ N(10) = 2
] .

Now we use the theorem to calculate that

P
[
A1 ≤ x

∣∣ N(10) = 2
]
= 1− P

[
A1 > x

∣∣ N(10) = 2
]
= 1−

(
10− x

10

)2

=
20x− x2

100
.

Therefore

P
[
A1 ≤ x

∣∣ A1 ≤ 4, A2 ≤ 10, N(10) = 2
]
=

20x− x2

64
.

This allows us to calculate the expectation as
∫ 4

0

x
20− 2x

64
dx = 11/6.

Converting to the original time scale, this gives exactly 7:31:50am. (That this is inde-

pendent of λ should have been anticipated once we formulated it as depending only on

probabilities conditional on N(10) = 2. It is earlier than 7:32, which it would be if cus-

tomer 2 did not arrive before 7:34, but there is a chance that he did. Likewise, it is

later than 7:31:20 because there is a chance that customer 2 arrived after 7:34. Therefore,

P [A2 ≤ 7 : 34] = 1/4.)↑8"
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Example PM 5.10 (The Coupon Collector’s Problem). There are m different

types of coupons. Each time you collect one, it has probability pj (1 ≤ j ≤ m) of being of

type j, independently of the past. How many coupons do you expect to have to collect in

order to have a complete set?

↓

Solution. We use a method known as “Poissonization”: it consists in introducing Poisson

random variables or processes where there are none apparent in the problem.

We may suppose that the coupons are collected at the times of a Poisson process N(·)
with rate 1. Classifying by type of coupon decomposes this into m independent Poisson

processes with rates pj . Let X(j) be the first waiting time of the jth process. Then

X := maxj X(j) is the time when a complete collection is amassed. We want to know how

many coupons, Y , have been collected at this time. Now X =
∑Y

i=1 Ti, where 〈Ti〉 are

the interarrival times of N(·). Therefore, E[X] = E[Y ]E[T ] = E[Y ]. (Note that although

Y = N(X), we cannot calculate E[Y ] = E
[
E[N(X) | X]

]
easily, since N(X) is at least m

and so does not have a Poisson distribution.*)

Thus, it remains to calculate E[X]. Now ∀t > 0

P [X ≤ t] = P [∀j X(j) ≤ t] =

m∏

j=1

(1− e−pjt).

Therefore

E[X] =

∫ ∞

0

P [X > t] dt =

∫ ∞

0

[
1−

m∏

j=1

(1− e−pjt)
]
dt.

(To get the maximum amount of fun out of this example, show that if pj ≡ 1
m , then

E[X] = m
∑m

i=1 1/i ∼ m logm by changing variables to x := 1 − e−t/m. Another way to

do this particular case is to calculate E[X] by the result of Exercise 26(b). Then show

that E[X] is a strict minimum when pj ≡ 1
m .)↑7"

We now study counting processes that may not have stationary increments, called

(nonhomogeneous) Poisson processes:

* However, 〈N(t) − t〉 is a martingale and X is a stopping time with respect to an appropriate
filtration, so the optional stopping theorem gives E

[
N(X)

]
= E[X].
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Theorem. Suppose that N(·) is a simple counting process with independent increments,†

N(0) ≡ 0, and ∀t P [N(·) jumps at t] = 0. Then ∀t ∃m(t) <∞ and

∀s < t N(t)−N(s) ∼ Pois
(
m(t)−m(s)

)
.

Also, m is continuous.

If m(t) =
∫ t

0
λ(s) ds for some function λ(·), then λ(·) is called the intensity function

of N(·).
Intuition: when there is an intensity function, we use coins of varying

probabilities of heads.

Proof. A similar proof as the stationary case works, except that we use the Poisson con-

vergence theorem in greater generality. Fix t and let Xn,i be the indicator that there is an

event in the interval
(
(i− 1)t/n, it/n

]
for 1 ≤ i ≤ n. We first show that

max
1≤i≤n

P [Xn,i = 1] → 0.

If this were not true, then since every bounded sequence has a convergent subsequence, we

could find t0 ∈ [0, t], integers ik and nk, and p > 0 such that ∀k P [Xnk,ik = 1] ≥ p and

ikt/nk → t0. . . . We can enlarge the intervals so as to be decreasing and contain t0, while1"

still having length tending to 0. But then P
[
N(·) jumps at t0

]
≥ p > 0, a contradiction.

. . .2"

The fact that N(·) is simple guarantees that
∑

iXn,i ↑ N(t) a.s., whence the Poisson

convergence theorem implies that N(t) is a Poisson random variable. Let m(t) ∈ [0,∞)

be its mean.

We finally show that m is continuous. Given t0, let s < t0 < t. Since N(s) ≤
N(t0) ≤ N(t), we know that m(s) ≤ m(t0) ≤ m(t). The number of events in (s, t] is

Pois
(
m(t) −m(s)

)
: By the above argument starting at time s, it is Poisson; its mean is

E
[
N(t)−N(s)

]
= m(t)−m(s). If m(t)−m(s) 6→ 0 as t− s→ 0, then the probability of

an event occurring in (s, t] 6→ 0 either, making the probability of an event at t0 positive, a

contradiction. . . .1"

As before, an equivalent definition of nonhomogeneous Poisson process is the following:

† We will not actually use the full strength of the assumption of independent increments, only that
the events of having no arrivals within disjoint intervals are independent.
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Theorem. Suppose that N(·) is a counting process with independent increments and

N(0) ≡ 0. If there is a continuous function m: [0,∞) → [0,∞) such that

∀s, t ≥ 0 N(s+ t)−N(s) ∼ Pois
(
m(s+ t)−m(s)

)
,

then N(·) is a nonhomogeneous Poisson process.

Proof. Looking at small intervals surrounding a fixed time, we see that the probability that

N(·) jumps at that fixed time is 0. . . . To prove that N(·) is simple, it suffices, as before,1"

to show that for each k ≥ 1, N(·) does not jump by more than 1 in [0, k]. . . . Fix k. The1"

Maclaurin series with remainder tells us that for x ≥ 0, we have ex = 1 + x + eξx2/2 for

some ξ ∈ [0, x]. Since eξ ≤ ex, we obtain upon dividing by ex that 1− e−x − xe−x ≤ x2/2

for x ≥ 0. Let ǫ > 0. Because m(·) is continuous, m is uniformly continuous on [0, k],

so ∃δ > 0 such that if s, t ∈ [0, k] satisfy |s − t| < δ, then |m(s) − m(t)| < ǫ. Let A

be the event that there is a jump by more than 1 in [0, k]. Let An,i be the event that

N(ik/n)−N
(
(i− 1)k/n

)
≥ 2. Then A ⊆ ⋃n

i=1An,i for each n. Let n > 1/δ. Because

N(ik/n)−N
(
(i− 1)k/n

)
∼ Pois

(
m(ik/n)−m((i− 1)k/n)

)
,

it follows that

P (An,i) ≤
(
m(ik/n)−m((i− 1)k/n)

)2
/2 ≤ ǫ

(
m(ik/n)−m((i− 1)k/n)

)
/2.

Hence P (A) ≤
∑n

i=1 P (An,i) ≤ ǫm(k)/2. Since this holds for all ǫ > 0, it follows that

P (A) = 0.

We can weaken this in the same way we did for the homogeneous case:

Theorem. Suppose that N(·) is a right-continuous process with independent increments and
N(0) ≡ 0. If there is a continuous function m: [0,∞) → [0,∞) such that

∀t ≥ 0 N(t) ∼ Pois
(
m(t)

)
,

then N(·) is a nonhomogeneous Poisson process.

Example PM 5.20. Dogbert runs a hotdog stand. He observes that customers arrive at

an increasing rate from opening time at 8:00am until 11:00am, then at a steady rate until

1:00pm, and then at a decreasing rate until closing at 5:00pm. He models the arrival times

as a nonhomogeneous Poisson process with piecewise linear continuous intensity (with 3

pieces). He measures that on average, the number of customers before 11am is 37.5, the

number at lunch (the steady period) is 40, and the number after 1pm is 64.

(a) Assume Dogbert’s model. What is the expected number of customers arriving between

8:30am and 9:30am?

(b) What is the probability that no customers arrive between 8:30am and 9:30am?

↓
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Solution. The lunch rate per hour is 20, the 8am rate is 5, and (not needed) the

5pm rate is 12. This gives (a) 10 and (b) e−10.↑7"

Discuss why nonhomogeneous Poisson processes might be reasonable models

in general.

Here is a way to construct nonhomogeneous Poisson processes. Let m: [0,∞) →
[0,∞) be a continuous, nondecreasing function with m(0) = 0. Suppose that Ñ(·) is a

homogeneous Poisson process of rate 1. Define N(t) := Ñ
(
m(t)

)
. Then N(·) is a Poisson

process with mean function m. . . .2"

Using measure theory, one can prove that the mean function m(·) uniquely determines

N(·) (in law). . . .1"

It is easy to check that the sum of a finite number of independent (nonhomogeneous)

Poisson processes is a Poisson process. . . . For simplicity, we state the following for Poisson1"

processes with continuous intensity:

Theorem. Let N(·) be a Poisson process with continuous intensity λ(·). Let pi(·) (i =

1, . . . , k) be continuous functions with values in [0, 1] and
∑k

i=1 pi(t) = 1 for all t ≥ 0.

Classify each event as type i with probability pi(t) if it occurs at time t, independently

of other events.* Then the type-i events form a Poisson process with intensity λi(t) :=

λ(t)pi(t) and these k Poisson processes are mutually independent.

The theorem holds even if pi(·) are not continuous, but we won’t prove that.

Proof. Let Ni(·) be independent Poisson processes with intensity λi(t). Then their sum

has the same law as N(·). It suffices to show that the events are classified independently

as given.

Consider a very small interval (t− h, t+ h]. With probability o(h), it has ≥ 2 events.

. . . Thus, the probability that there exists an event in (t − h, t + h] of type i given that2"

there exists an event in (t− h, t+ h] is . . ..5"

∫ t+h

t−h
λi(s) ds

∫ t+h

t−h
λ(s) ds

+ o(1),

. . . whence an event at time t is type i with probability pi(t). . . . This is independent of.5"1"

other events, as seen by considering disjoint intervals. . . .1"

* More formally, if the events of N(·) are S1 < S2 < · · ·, then for all n ≥ 1, the conditional probability
that the first n events have types i1, . . . , in given N(·) is

∏n
k=1 pi(Sk).
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Example 2.3(b), 2.4(b) (The M/G/∞ Queue). There is a standard scheme for coding

the type of queue considered. The last of the three symbols indicates the number of servers

(here, ∞); they are always assumed to have i.i.d. service times. The first symbol indicates

the type of arrival stream: “M” stands for “memoryless”, which means that the arrivals

form a homogeneous Poisson process. The middle symbol indicates the type of service

distribution; “M” would be exponential, while “G” is “general”, with c.d.f. equal to G.

Let N1(t) be the number of customers that have completed service by time t and

N2(t) be the number still in service at time t. What is their joint distribution? Is N1(·) a
Poisson process?

↓

Solution. Now N1(t) +N2(t) is the Poisson arrival process. Let its rate be λ. A customer

that arrives at time s ∈ (0, t] has completed service by time t with probability G(t − s).

Fix t0. Then on (0, t0], we see the arrival Poisson process with an event at time s classified

as “done” or “in service” with probability G(t0 − s) and G(t0 − s). This gives that

N1(t0) ∼ Pois
(∫ t0

0

λG(u) du
)
,

. . .0"

N2(t0) ∼ Pois
(∫ t0

0

λG(u) du
)
,

(here, we should assume that G is continuous to apply the theorem) and N1(t0), N2(t0)

are independent (we changed variable to u := t0−s). (The same holds for Ni(t) for t 6= t0,

but those are not meaningful random variables.) (Alternatively, we could have used the

fact that unordered arrivals are independent, uniform on (0, t0] given their number. Then

we could have used the earlier corollary, which would avoid the assumption that G is

continuous.)

Of course, N2(·) is not an increasing process, but N1(·) is. In fact, it is a counting pro-

cess that jumps by 1 and starts at 0. Also, it has no chance of jumping at any prespecified

(deterministic) time, so to prove that N1(·) is, in fact, a Poisson process, we need to show

that it has independent increments. If we consider any finite collection of disjoint intervals

and classify arrivals according to during which of these intervals they have completed ser-

vice, or none (draw two timelines, one for arrivals and the other for completion of service),

then the theorem gives what we want. (Here, we can classify all arrivals for all time, but

after the last interval, they will all be classified as “none”.) We also have that the intensity

function of N1(·) is λG(·) by what we have already calculated. (Alternatively, we could
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again have used the fact that unordered arrivals are independent, uniform on (0, t0] given

their number for a t0 large enough that [0, t0] includes all the intervals in question. Then

we could have used the earlier corollary by the same classification as here, which would

again avoid the assumption that G is continuous.)

Note that if
∫∞
0
G(u) du = ∞, i.e., G has infinite expectation, then we may change

time in N2(·) to get a process N(·) such that ∀t N(t) ∼ Pois(t), yet N(·) is not even a

counting process, much less a Poisson process. From our earlier theorem, it follows that

N2(·) does not have independent increments.↑5"

⊲ Read (if you wish an alternative development) pp. 69--70 and §2.4 (pp. 78--

82) in the book.

We can think of a Poisson process as a random set of points in [0,∞). This leads us

to consider random points in other settings, such as euclidean space. A point process is

a random (finite or infinite) set of points; equivalently, it is a stochastic process N indexed

by sets in euclidean space: N(A) is the number of points in A ⊆ Rd. Clearly, if 〈Ai〉 are
disjoint, then N(

⋃
Ai) =

∑
N(Ai). We assume that if A is bounded, then N(A) <∞ a.s.

(i.e., we make this part of our hypotheses without stating this assumption explicitly, or in

other words, these are the only point processes we will study).

Demo

A sample of a Poisson point process of intensity 1000.
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Denote the size (length, area, volume, etc.) of A by |A|.

Theorem. Let N(·) be a point process such that when 〈Ai〉ri=1 are disjoint, 〈N(Ai)〉ri=1

are independent and such that N(A) has a distribution depending only on |A|. Then

∃λ ∈ [0,∞) such that ∀A N(A) ∼ Pois
(
λ|A|

)
.

This is called a Poisson point process with intensity λ.

More generally, we have:

Theorem. Let N(·) be a point process such that 〈Ai〉ri=1 disjoint ⇒ 〈N(Ai)〉ri=1 inde-

pendent and ∀x P
[
N({x}) = 0

]
= 1. Then there exists a function µ ≥ 0 on subsets such

that

∀A N(A) ∼ Pois
(
µ(A)

)
,

A bounded ⇒ µ(A) <∞,

〈Ai〉 disjoint ⇒ µ
(⋃

Ai

)
=

∑
µ(Ai),

and ∀x µ({x}) = 0.

Conversely, for all such µ, there is such a point process.

↓

Proof. ⇒: Similar to before, but subdivide euclidean space by regions.

⇐: Start with a subdivision of euclidean space by regions. In region A, take a

Pois
(
µ(A)

)
number of dots distributed independently according to µ/µ(A), i.e., P [dot ∈

B] = µ(B)/µ(A) for B ⊆ A. This really needs measure theory for full justification. The

proof that this works is as before.

↑4"
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§2.5. Compound Poisson Random Variables and Processes.

If Xi ∼ F are i.i.d. and N is a Pois(λ) random variable independent of all Xi, then

the sum

W :=
N∑

i=1

Xi

is called a compound Poisson random variable with parameters λ and F . Similarly,

if N(·) is a Poisson process independent of all Xi (which are still i.i.d.), then

W (t) :=

N(t)∑

i=1

Xi

is called a compound Poisson process. Thus, eachW (t) is a compound Poisson random

variable. E.g., N(·) might describe the times of insurance claims and Xi the amounts of

the claims. As another example, the special case where Xi ∼ Bern(p) gives the thinned

Poisson processes considered before. Note that the compound Poisson random variable

with parameters λ and Bern(p) is a Pois(λp) random variable.

Example 2.5(a). Suppose that Xs (s ≥ 0) are independent random variables but not

necessarily identically distributed. Let 〈Si〉 be the event times of a Poisson process N(·),
independent of all Xs. Interestingly, it turns out that

W (t) :=

N(t)∑

i=1

XSi ,

although not necessarily a compound Poisson process, is, for each t, a compound Poisson

random variable!

↓

Solution. For each t, condition on N(t) and use the fact that the event times are indepen-

dent and uniform on [0, t]. If N(·) is Pois(λ) and Xs ∼ Fs, then W (t) has parameters λt

and F , where

F (x) :=
1

t

∫ t

0

Fs(x) ds.

Even if we allow Xi in the definition of compound Poisson process to have different

distributions, we may still not get a compound Poisson process.↑3"
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Chapter 3

Renewal Theory

We now generalize Poisson processes to counting processes where the interarrival times

are i.i.d. with an arbitrary nonnegative distribution. Let 〈Xi〉∞i=1 be i.i.d. ≥ 0, P [X = 0] <

1, µ := E[X] ∈ (0,∞], Sn :=
∑n

i=1Xi. Since Sn/n → µ a.s. by the SLLN, we may define

(a.s.)

N(t) := max{n ; Sn ≤ t}

for t ≥ 0. This counting process is called a renewal process. We even allow Xi to take

the value +∞ with positive probability, but this will be useful only in the chapter on

Markov chains.

The time Sn is called the nth renewal more often than it is called an arrival.

The reason for the name is that if we count time from Sn onwards, then process starts

afresh, independent of the past, in the sense that if f(x1, x2, x3, . . .) is a function, then

f(Xn+1, Xn+2, Xn+3, . . .) has the same distribution regardless of n, and is also independent

of X1, X2, . . . , Xn.

If X1 has (or may have) a different distribution than all the Xn for n ≥ 2, then the

process is called a delayed renewal process.

Examples:

• Replace light bulbs when they burn out, assuming that only a single bulb is lit at

each instant.

• Cars passing a fixed location in one direction on a two-lane road. (Since some

distance between cars is necessary, a Poisson process would not be as accurate.)

• If customer arrival times in a queueing process form a renewal process, then the

times of the starts of successive busy periods (“busy” means someone is being served) gen-

erate a second (delayed) renewal process. . . . In case the arrival times are exponential, then2"

also the times of the starts of successive free periods (no customers) determine a renewal

process. But not in general: . . . Suppose that the arrivals occur with interar-3"

rival times 1 or 5 and that the service time is always 2, with only 1 server.

Suppose that the arrival times start as 1, 2, 3, 8, 13. Let S1, S2, S3, . . . be
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the beginnings of the free periods. Then S1 = 7 and S2 = 10. In particu-

lar, P [S2 − S1 = 3] > 0. However, P [S3 − S2 = 3 | S2 − S1 = 3] = 0: indeed,

S2 − S1 = 3 implies that the last customer arrival before S2 was at S2 − 2,

whence the next customer arrival will be at S2−2+5 = S2+3, so that P [S3−
S2 ≥ 5 | S2 − S1 = 3] = 1. Thus, S3 − S2 and S2 − S1 are dependent. (Note that

S1 would be the delay.)

Deciding whether certain times are renewals can be tricky. Although we need to verify

only that the times between (proposed) renewals are i.i.d., it is usually easier to verify the

stronger property that what happens after every renewal has the same distribution and

that it is independent of what happens before that renewal.

We have the following important and intuitive property:

Proposition 3.3.1. limt→∞N(t)/t = 1/µ a.s.

In words, the rate of renewals is 1/µ.

Proof. If P [X = ∞] > 0, then µ = ∞ and limt→∞N(t) < ∞ a.s., whence the result is

clear. Otherwise, we compare to the previous and the next arrival times: . . . Important1.5"

picture here SN(t) ≤ t < SN(t)+1, so

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t) + 1
· N(t) + 1

N(t)
.

The left-hand side tends to µ, as does the first term on the right-hand side, while the last

term tends to 1.

Note that if N(·) is a delayed renewal process, then the same result holds (provided

P [X1 <∞] = 1). . . .2"

We start with a straightforward example.

Example PM 7.5. A battery has a lifetime that is Unif[30, 60] in hours. If a battery is

replaced as soon as it fails, what is the long-run rate at which batteries are replaced?

↓

Solution. We have µ = 45 hours, so the rate is one battery every 45 hours.↑3"

Next is a somewhat more complicated example.
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Example on p. 154, Problem 3.9(a),(b). Customers arrive at a single-server bank

at the times of a Poisson process with rate λ. If the server is free, an arriving customer

enters the bank; otherwise, the customer goes elsewhere rather than waits (the customer is

“lost”). Let the service time be random with c.d.f. G. (This is called an M/G/1/1 queue,

where the 4th number indicates the capacity of the system.)

(a) At what rate do customers enter the bank?

(b) What proportion of arrivals actually enter the bank?

↓

Solution. (a) Consider starts of busy periods as renewals. By the memoryless property,

the mean time between entering customers is µ = µG + 1/λ, whence the rate is 1/µ =

λ/(1 + λµG).

(b) LetNA be the arrival process andNE the entering process. Then limNE(t)/NA(t) =

lim(NE(t)/t)/(NA(t)/t) = 1/(1 + λµG).↑5"

In the preceding examples, we used Proposition 3.3.1 in the way one would expect.

However, it can also be used to deduce probabilities where there is no renewal process;

rather, one introduces a renewal process and uses Proposition 3.3.1 in the reverse direction.

This will become clearer in an example. It is a useful method more generally.

Example PM 7.8. The following game is played by n players. A spinner has n outcomes.

Outcome i has probability pi, where
∑n

i=1 pi = 1. Also given are ki ∈ Z+. The spinner is

spun until some i appears ki times in a row; player i is then declared the winner. Determine

each player’s chance of winning and the expected number of spins in a game.

Solution. Suppose that this game is played repeatedly. By the SLLN, the probability that

i wins is the long-run proportion of games that i wins. Consider wins per game divided

by spins per game to get that i wins with probability

ri

/ n∑

j=1

rj ,

where rj := rate per spin that j wins. . . . For each j, wins by player j constitute renewals.2"

Thus, by Proposition 3.3.1, rj = 1/(expected number of spins until j wins), so by Exercise

15 (p. 50, 1.18), rj = (1− pj)/(p
−kj

j − 1). Therefore,

P [i wins a game] =
(1− pi)/(p

−ki
i − 1)

∑n
j=1(1− pj)/(p

−kj

j − 1)
.
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Also, the endings of games constitute a renewal process, so by Proposition 3.3.1, the

expected number of spins per game is 1/(rate per spin at which games end)

= 1/
n∑

j=1

rj = 1/
n∑

j=1

(1− pj)/(p
−kj

j − 1).

E.g., if n = 2 and k2 = 1, then the game is fair iff p1 = 2−1/k1 .

E.g., if we draw cards with replacement from a standard deck, then the expected

number of cards until we draw 4 consecutive cards of the same suit is 85. This is problem

3.24.

Renewal processes “begin anew” after each renewal, just as Poisson processes do after

each event. (In addition, Poisson processes begin anew at each instant by the memoryless

property.) We justified that in one sense earlier. Here is another formal statement and

proof for the first renewal; induction gives the same for later renewals.

Theorem. If N(·) is a renewal process with first arrival time X1, then 〈N(X1+t)−1 ; t ≥
0〉 has the same distribution as N(·), even conditional on X1.

Proof. They are both counting processes, so we have to show that they have the same

finite-dimensional marginals. Let 0 < t1 < t2 < · · · < tn < ∞ and k1, k2, . . . , kn be

nonnegative integers. We have to show that

P
[
∀i N(X1 + ti)− 1 = ki

∣∣ X1

]
= P

[
∀i N(ti) = ki

]
.

Write out the left-hand side in terms of Ski+1 and Ski+2. . . .3"

The function m(t) := E
[
N(t)

]
is called the renewal function of the process. The

previous theorem implies that

m(t) = E
[
N(t)

]
= E

[
E[N(t) | X1]

]

= E
[(
1 +m(t−X1)

)
1[X1≤t]

]
=

∫

[0,t]

(
1 +m(t− x)

)
dFX(x)

= FX(t) +

∫

[0,t]

m(t− x) dFX(x).

. . . This is called the renewal equation, but it is usually too hard to solve (for m(·) in2"

terms of FX(·)).
Nevertheless, we can prove that Proposition 3.3.1 holds also in expectation:
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Theorem 3.3.4 (The Elementary Renewal Theorem). limt→∞m(t)/t = 1/µ.

In order to prove this, we will take expectation of

SN(t)+1 =

N(t)+1∑

i=1

Xi

and get

(3.3.3) E
[
SN(t)+1

]
= µ

(
m(t) + 1

)
.

Note that the analogous equation is not true for E[SN(t)], even if X is ex-↓
ponential.↑1"

However, (3.3.3) doesn’t follow from our preceding work (Example 1.5(a)) since N(t)+

1 is not independent of 〈Xi〉. However, for each n, the event [N(t)+1 = n] is independent

of 〈Xi ; i ≥ n+1〉. Thus, (3.3.3) follows from the following theorem that extends Example

1.5(a). [Note that (3.3.3) is trivial if µ = ∞ since N(t) + 1 ≥ 1.]

We are paying close attention in the statement and proof to hypotheses in-

volving finiteness of expectations because later we will use this to deduce

that some expectations are infinite. The notation ∧ is used for minimum; later,

we will use ∨ for maximum.

Theorem 3.3.2 (Wald’s Equation). Let Xn be random variables all with the same

mean µ ∈ (−∞,∞]. Suppose that N is an N-valued random variable such that

∀n ≥ 0 ∀i ≥ 1 [N = n] is independent of Xn+i.

If either

(a) all Xn ≥ 0 or

(b) E[N ] <∞ and supnE|Xn| <∞,

then

E
[ N∑

n=1

Xn

]
= µ · E[N ].

Proof. Fix n ∈ N. Let In := 1[N≥n] = 1 −
∑n−1

i=0 1[N=i]. Suppose temporarily that Xn is

bounded. Since Xn and 1[N=i] are independent for i ≤ n− 1, we have

E[XnIn] = E
[
Xn(1 −

n−1∑

i=0

1[N=i])
]
= EXn −

n−1∑

i=0

EXnE1[N=i] = E[Xn]E[In].
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It follows from this result that even if Xn is not bounded, then, since
(
|Xn| ∧M

)
sgnXn

is bounded and independent of 1[N=i] for i ≤ n− 1, we have

E
[(
|Xn| ∧M

)
sgnXnIn

]
= E

[(
|Xn| ∧M

)
sgnXn

]
E[In].

Taking M → ∞, we get that E[XnIn] = E[Xn] · E[In]: in case (a), we use the MCT,

whereas in case (b), we use the LDCT. Likewise, E
[
|Xn|In

]
= E

[
|Xn|

]
E[In].

Therefore, in case (a), we have by the MCT that

E
[ N∑

n=1

Xn

]
= E

[ ∞∑

n=1

XnIn

]
=

∞∑

n=1

E[XnIn] =

∞∑

n=1

E[Xn]E[In] = µ

∞∑

n=1

E[In]

= µ

∞∑

n=1

P [N ≥ n] = µE[N ].

In case (b), calculate first E
[∑ |XnIn|

]
≤ E[N ] · supE|Xn| < ∞, so we may apply the

LDCT to justify the previous calculation. . . .1"

Proof of Theorem 3.3.4. We are going to prove this by proving two inequalities,↓
a lower bound on the liminf and an upper bound on the limsup.↑1"

We first show lim infm(t)/t ≥ 1/µ. Since SN(t)+1 > t, we have µ(m(t) + 1) =

E[SN(t)+1] > t, whence we get the inequality. . . ..5"

For the other direction, that is, lim supm(t)/t ≤ 1/µ, the difficulty is that XN(t)+1

may be very large (we want to use an upper bound on SN(t)+1). Thus, we use the method

of truncation: Fix M ∈ (0,∞) and define

Xn := Xn ∧M.

This gives a new renewal process N(t) ≥ N(t) with mean m(t) ≥ m(t). Write µM :=

E[X ∧M ]. Note that limM→∞µM = µ by the MCT. Now (3.3.3) gives

µM (m(t) + 1) = E
[
SN(t)+1

]
≤ t+M,

so lim supm(t)/t ≤ 1/µM . Therefore lim supm(t)/t ≤ 1/µM . Since M is arbitrary, we get

lim supm(t)/t ≤ 1/µ.

46
c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



The same holds for delayed renewal processes, provided X1 <∞ a.s.: Conditional on

X1, the expected number of renewals of the delayed process ND(·) by time t is 0 if X1 > t

and is 1+m(t−X1) otherwise, wherem is the renewal function for the non-delayed renewal

process determined by X2, X3, . . .. Therefore

mD(t) := E[ND(t)] = E[(1 +m(t−X1))1[X1≤t]].

Sincem(t)/t→ 1/µ, there is some constant c such that for all large t, we have (1+m(t))/t ≤
c. Therefore we can apply the BCT to conclude that mD(t)/t→ 1/µ. . . .2"

⊲ Read pp. 98--108 in the book.

According to both Proposition 3.3.1 and the elementary renewal theorem, N(t) is

approximately t/µ. In fact, we can say more: it is approximately normally distributed.

This is not an instance of the CLT, since N(t) is not a sum. However, N(·) is related to

sums, so we will be able to deduce it from the usual CLT.

Theorem 3.3.5. Let N(·) be a renewal process whose interarrival times have finite mean

µ and finite standard deviation σ. Then as t→ ∞,

N(t)− t/µ

(σ/µ)
√
t/µ

⇒ N(0, 1).

Note that t/µ is not (usually) the mean of N(t), but we saw in the elementary renewal

theorem that the mean is asymptotic to t/µ. We can also see intuitively why the standard

deviation of N(t) is asymptotic to the denominator above: To first order, N(t) is about

t/µ, so

N(t) ≈ t/µ ≈ SN(t)/µ ≈ S⌊t/µ⌋/µ.

Since S⌊t/µ⌋ has a standard deviation of σ
√
⌊t/µ⌋, this tells us that the standard deviation

of N(t) is roughly σ
√
t/µ/µ.

Proof. Given any real y, write rt := t/µ+ y(σ/µ)
√
t/µ. Also, write r′t := ⌈rt⌉. We have

[
N(t)− t/µ

(σ/µ)
√
t/µ

< y

]
= [N(t) < rt] = [N(t) < r′t] = [Sr′t

> t]

=

[
Sr′t

− r′tµ

σ
√
r′t

>
t− r′tµ

σ
√
r′t

]
.

Now
t− rtµ

σ
√
rt

=
−y

√
t/µ√
rt

=
−y√
(µ/t)rt

= −y
(
1 +

yσ√
tµ

)−1/2

→ −y

as t → ∞. . . . Since |r′t − rt| < 1, the same holds with r′t in place of rt: divide both1"

numerator and denominator by
√
t. . . . Therefore the CLT tells us that the probability of1"

the event above tends to 1− Φ(−y) = Φ(y), where Φ is the c.d.f. of N(0, 1). . . .2"
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Example MASS 8.13. Suppose that a part in a machine can be obtained from two

different sources, A and B. Each time the part fails, it is replaced by a new one, but the

sources are i.i.d., coming from A with probability 0.3 and from B with probability 0.7.

(The source is also independent of everything else.) Lifetimes of parts are exponentially

distributed; if the source is A, the mean is 8 days, while if B, the mean is only 5 days.

However, parts from A take 1 day to install, while those from B take only 1/2 day to

install. Installation times are not random. What is the approximate distribution of the

number of part failures during a year?

↓

Solution. If X is the interfailure time, then E[X] = 6.55 days, E[X2] = 82.175 days2,

whence Var(X) = 39.2725 days2. This gives an answer of N(55.725, 51.01). Note that

replacements of parts are not renewals, but failures are.↑5"

The bus-waiting paradox: Suppose bus times are deterministic and alternate between↓
1 minute and 10 minutes. Thus, half of the buses take 10 minutes. But if you go out at a

random time, you are more likely to get a bus that takes longer. Most (10/11) of the time

it seems that buses take 10 minutes. The paradox lies partly in conflating two different

measures of “time”: real time or counting buses. When the interarrival times are random,

if we condition on the interarrival times, the same thing holds, of course.↑4"

Recall from Exercise 38 that XN(t)+1 is stochastically larger than X (i.e., FXN(t)+1
≥

FX). This is intuitive from the viewpoint that longer intervals have a greater chance of

capturing a given point, t. As t→ ∞, we should expect the length XN(t)+1 to converge in

law to a size-biased version of X, . . . where we say that X̂ is a size-biased version of X1"

if

F
X̂
(x) =

1

E[X]

∫ x

0

s dFX(s) : think dF
X̂
(x) =

1

E[X]
x dFX(x).

(Examples: If X ∼ 1
2δ1 + 1

2δ10, . . . then X̂ ∼ 1
11δ1 + 10

11δ10. If X ∼ 1
3δ1 + 2

3δ10, then1"

X̂ ∼ 1
21δ1 +

20
21δ10.) This is the same as

for all bounded h E
[
h(X̂)

]
=

1

E[X]
E
[
Xh(X)

]
,

as shown by the change-of-variable formula. . . . E.g.,1"

E[X̂] = E[X2]/E[X].

Furthermore, if we let

A(t) := t− SN(t)
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be the age of the process at time t, then we expect that the law of A(t) given XN(t)+1 = x

converges to Unif[0, x), and thus that

(
A(t), XN(t)+1

)
⇒ L

(
(Unif[0, X̂), X̂)

)
. (N1)

Actually, if X is a lattice random variable, i.e., ∃d > 0 such that P [X ∈ dZ] = 1, then

this cannot be true because of periodicity; instead, if d is the largest real number such that

P [X ∈ dZ] = 1, where d is called the period of X, then

(
A(t), XN(t)+1

)
⇒ L

(
(Unifd[0, X̂), X̂)

)
(N2)

as t → ∞ in dZ, where Unifd[0, dn) is the uniform distribution on {0, d, . . . , (n − 1)d}.
These two limit results, (N1) for nonlattice random variables and (N2) for lattice random

variables, are true when E[X] <∞, but we won’t prove them.

Example (Poisson Process). Suppose that X ∼ Exp(λ). Then SN(t)+1− t ∼ Exp(λ).

What is the distribution of A(t)?

↓

Solution. By embedding the Poisson process in a point process on all of R, we see that it

is exponential truncated at t, i.e., the minimum of an exponential random variable and t.

Alternatively, use that
[
A(t) > s

]
is the event that there are no arrivals in [t − s, t]. For

one more solution, see Exercise 44. Note what happens as t→ ∞.↑3"

Assume that X is nonlattice Then as we said above,

A(t) ⇒ L
(
Unif[0, X̂)

)
,

i.e., if g has the form g = 1(−∞,x], then

lim
t→∞

E
[
g
(
A(t)

)]
= E

[
g
(
Unif[0, X̂)

)]
= E

[
E
[
g
(
Unif[0, X̂)

) ∣∣ X̂
]]

= E
[ 1

X̂

∫ X̂

0

g(s) ds
]
=

1

µ
E[X · 1

X

∫ X

0

g(s) ds
]

=
1

µ
E
[ ∫ ∞

0

g(s)1[X>s] ds
]
=

1

µ

∫ ∞

0

g(s)F (s) ds. (N3)

Actually, this holds for other g as well. We also need µ = E[X] < ∞ in order to define

X̂. However, this is not needed for the final result, as long as we interpret 1/µ = 0 when

µ = ∞. The full theorem is as follows:
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Theorem 3.4.2 (Probabilistic Form of the Key Renewal Theorem). If F is

not lattice, µ = E[X] ≤ ∞, and gF is directly Riemann integrable on [0,∞), then

lim
t→∞

E
[
g
(
A(t)

)]
=

1

µ

∫ ∞

0

g(s)F (s) ds.

Likewise, if F is lattice with period d, µ = E[X] ≤ ∞, and
∑∞

n=0 g(nd)F (nd) exists and

is finite, then

lim
n→∞

E
[
g
(
A(nd)

)]
=
d

µ

∞∑

n=0

g(nd)F (nd).

Here, we say that a function L is directly Riemann integrable on [0,∞) if the

upper and lower Riemann integrals of L over all of [0,∞) are equal and finite, when

using equally spaced divisions of [0,∞) for integrating over [0,∞). It can be shown that

besides L ∈ Cc

(
[0,∞)

)
, . . . it suffices that L be a decreasing nonnegative function with0"

limx→∞
∫ x

0
L(t) dt <∞.

The lattice case actually can be written in the very same form as the nonlattice case,

as long as we restrict t to dZ.

It is not hard to check that (N1), (N2), and the key renewal theorem hold for delayed

renewal processes since they hold for renewal processes (with the usual caveat on X1 being

finite).

We still have to justify heuristically the lattice case. This follows similar reasoning as
above (when µ < ∞): Since

A(nd) ⇒ L
(
Unifd[0, X̂)

)
,

we have

lim
n→∞

E
[
g
(
A(nd)

)]
= E

[
g
(
Unifd[0, X̂)

)]
= E

[
E
[
g
(
Unifd[0, X̂)

) ∣∣ X̂
]]

= E
[ 1

X̂/d

X̂/d−1∑

n=0

g(nd)
]
=

1

µ
E[X · d

X

X/d−1∑

n=0

g(nd)
]

=
d

µ
E
[ ∞∑

n=0

g(nd)1[X>nd]

]
=

d

µ

∞∑

n=0

g(nd)F (nd).

Note that the residual life or excess at t, defined to be Y (t) := SN(t)+1−t, intuitively
has the same limit law as A(t) in the nonlattice case, since it is Unif(0, X̂], which is the

same as Unif[0, X̂). (In the lattice case, there is a difference since A(t) cannot be equal to

X̂, while Y (t) can be.) This makes sense intuitively if we look backwards in time.

The statement you will see of the key renewal theorem in the book and in other books

looks quite different. It is phrased purely analytically, with no apparent probabilistic

content:

50
c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



Theorem 3.4.2 (Analytic Form of the Key Renewal Theorem). If F is not

lattice, µ = E[X] ≤ ∞, and h is directly Riemann integrable on [0,∞), then

lim
t→∞

∫

[0,t]

h(t− x) dm(x) =
1

µ

∫ ∞

0

h(s) ds.

Likewise, if F is lattice with period d, µ = E[X] ≤ ∞, and
∑∞

n=0 h(nd) exists and is finite,

then

lim
n→∞

n∑

k=0

h
(
(n− k)d

)[
m(kd)−m

(
(k − 1)d

)]
=
d

µ

∞∑

n=0

h(nd).

Here, we are using the notion of Stieltjes integral with respect tom(·), which is defined

just as it was with respect to c.d.f.’s.

To discuss this form of the theorem, we will use the fact that
∫
h(x) dm1(x)+

∫
h(x) dm2(x) =∫

h(x) d(m1 +m2)(x).
When the theorem is applied in a probabilistic context, it is usually more useful to have it

stated probabilistically. But here is the heuristic reason why the theorems are the same. Write

Fn := FSn .

We have, for every function g that is 0 on (−∞, 0),

E
[
g
(
A(t)

)]
= E

[
g
(
A(t)

) ∑

n≥0

1[N(t)=n]

]

= E
[∑

n≥0

g
(
A(t)

)
1[Sn≤t,Sn+1>t]

]

=
∑

n≥0

E
[
g
(
t− Sn

)
1[Sn≤t,Sn+1>t]

]

=
∑

n≥0

E
[
g
(
t− Sn

)
1[Sn+1>t]

]

=
∑

n≥0

E
[
E
[
g
(
t− Sn

)
1[Sn+1>t]

∣∣∣ Sn

]]

=
∑

n≥0

E
[
g
(
t− Sn

)
P
[
Sn+1 > t

∣∣∣ Sn

]]

=
∑

n≥0

E
[
g
(
t− Sn

)
F (t− Sn)

]

=
∑

n≥0

∫

[0,t]
g
(
t− s

)
F (t− s) dFn(s)

= g(t)F (t) +

∫

[0,t]
g
(
t− s

)
F (t− s) dm(s)

since F0(s) = 1[0,∞) and

m(s) = E
[
N(s)

]
=

∑

n≥1

P
[
N(s) ≥ n

]
=

∑

n≥1

P [Sn ≤ s] =
∑

n≥1

Fn(s).

Now let t → ∞ and use the probabilistic form of the key renewal theorem. To get the theorem
in the analytic form above, use g := h/F . . . .1"
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Theorem 3.4.1 (Blackwell’s Renewal Theorem). For a nonlattice renewal process,

E
[
number of renewals in (t, t+ a]

]
= m(t+ a)−m(t) → a/µ

as t→ ∞. If X is lattice with period d, then

E[number of renewals at nd] → d/µ

as n → ∞. In the lattice case, if only one renewal can occur at a given time, this is

equivalent to

P [renewal at nd] → d/µ.

This follows from the analytic form of the key renewal theorem by using h := 1[0,a)

in the nonlattice case and h := 1{0} in the lattice case. . . .2"

Example 3.5(a) (Application of Delayed Renewal Processes to Patterns).

Let Xn be i.i.d. and discrete. Given a pattern, i.e., a sequence of possible values of X,

say, 〈x1, x2, . . . , xk〉, let N(t) be the number of times the pattern occurs by time ⌊t⌋. E.g.,
if the pattern is 〈0, 1, 0, 1〉 and the sequence 〈Xn〉 is 〈1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, . . .〉, then
the pattern occurs at times 5, 7, 13, . . . and N(13) = 3. Clearly N(·) is a delayed renewal

process. What’s the expected time µ between patterns?

Solution. By Blackwell’s theorem,

1

µ
= lim

n→∞
P [pattern at time n] =

k∏

i=1

P [X = xi].

. . .1"

Remark. We could also use simply the elementary renewal theorem:

1

µ
= lim

n→∞
m(n)

n
= lim

n→∞
1

n

n∑

i=1

P [pattern at time i].

Then we use the following fact:

If limk→∞ ak = a ∈ R, then lim
n→∞

1

n

n∑

k=1

ak = a.

The limit of the averages is called the Cesàro limit of the sequence 〈ak〉; it can exist even

when the sequence itself does not converge.
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To prove the above fact, let ǫ > 0. Choose K so that |ak − a| < ǫ for k > K. Let M :=
max

{
|ak − a| ; k ≤ K

}
. Then for n > KM/ǫ,

∣∣∣∣
1

n

n∑

k=1

ak − a

∣∣∣∣ ≤
1

n

n∑

k=1

|ak − a| = 1

n

K∑

k=1

|ak − a|+ 1

n

n∑

k=K+1

|ak − a| ≤ KM

n
+

(n−K)+

n
ǫ < 2ǫ.

This proves the result. The same result holds if a = ±∞.

If a coin has probability p of H, what is the expected number of tosses until the pattern

HTHT occurs?

By the above, the expected time from HTHT to the next occurrence is 1/p2q2, where

q := 1 − p. Note that this is less than the expected time to see the first HTHT because

it helps to have the last HT from HTHT that can be part of the next HTHT, whereas if

we wait from HTHT to the next HTHT that does not overlap with the given HTHT, it is

the same as starting from nothing. Now, to get to the first HTHT, one must first see HT.

Also, to get from HT to HTHT has the same expected number of tosses as to get from

HTHT to the next HTHT, i.e., 1/p2q2, so (the expected time to the first HTHT) = (the

expected time to HT) + 1/p2q2. Since (the expected time to HT) = (the expected time

between HT’s) = 1/pq, we get 1/pq + 1/p2q2 as our answer. . . .3"

Note how this method also provides another solution to Exercise 15 (p. 50, 1.18 in the

book). . . .2"

Similar reasoning works with an underlying i.i.d. process having more than 2 possible

outcomes. E.g., if P (outcome j) = pj , then

E[time to 012301] = E[time to 01] +
1

p20p
2
1p2p3

=
1

p0p1
+

1

p20p
2
1p2p3

.

Suppose that a system is on for time Z1, then off for time Y1, then on for time Z2,

then off for time Y2, etc. We assume that the intervals of on times and of off times are

closed on the left and open on the right. We suppose that (Zn, Yn) are i.i.d., but for each

n, Zn and Yn may be dependent. Still, the partial sums of 〈Zn+Yn ; n ≥ 1〉 form a renewal

process. The times Z1, Z1+Y1, Z1+Y1+Z2, Z1+Y1+Z2+Y2, Z1+Y1+Z2+Y2+Z3, . . .

form what is called an alternating renewal process.
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Theorem 3.4.4. For an alternating renewal process, if Z + Y has finite mean and is

nonlattice then

lim
t→∞

P [system is on at time t] =
E[Z]

E[Z] + E[Y ]
.

Proof. Let N(·) be the renewal process corresponding to 〈Zn + Yn〉 and A(·) be the asso-

ciated age process. We have P [on at t] = E
[
P
[
on at t

∣∣ A(t), N(t)
]]
. Now for a ≥ 0,

P [on at t | A(t) = a,N(t) = n] = P [on at t | A(t) = a, Sn ≤ t, Sn+1 > t]

= P [Zn+1 > a | Sn = t− a, Sn ≤ t, Sn+1 > t]

= P [Zn+1 > a | Sn = t− a, Zn+1 + Yn+1 > a]

= P [Zn+1 > a | Zn+1 + Yn+1 > a]

= FZ(a)/FZ+Y (a).

Therefore, P [on at t] = E
[
FZ

(
A(t)

)
/FZ+Y

(
A(t)

)]
. We can apply the key renewal theo-

rem with g(s) := FZ(s)/FZ+Y (s) (and F := FZ+Y ) since FZ is a nonnegative decreasing

function with finite integral E[Z]. This tells us that P [on at t] converges to

1

E[Z + Y ]

∫ ∞

0

FZ(s)

FZ+Y (s)
FZ+Y (s) ds.

. . .2"

Of course,

lim
t→∞

P [off at time t] = 1− E[Z]

E[Z] + E[Y ]
=

E[Y ]

E[Z] + E[Y ]
.

Note that limt→∞ P [on at t] is equal to the long-run expected proportion of time that

the system is on, since if I(t) is the indicator that the system is on at time t, then this

long-run expected proportion is

lim
t→∞

E

[
1

t

∫ t

0

I(s) ds

]
= lim

t→∞
1

t

∫ t

0

E
[
I(s)

]
ds = lim

t→∞
1

t

∫ t

0

P [on at s] ds.

As for sums, we have Cesàro limits for integrals with a very similar proof:

If lims→∞ f(s) = a, then lim
t→∞

1

t

∫ t

s=0

f(s) ds = a.

In Exercise 56, you will be asked to show that also in the lattice case, the long-run

proportion of time that the system is on equals E[Z]/
(
E[Z] + E[Y ]

)
.

As usual, the same results hold for delayed alternating renewal processes provided

that the delay is finite a.s.
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Example MASS 8.29. Let an M/G/1/1 queue have arrival rate λ. If Q(t) denotes the

number of customers in the system at time t (which is either 0 or 1), find limt→∞ P
[
Q(t) =

1
]
.

↓

Solution. If we interpret Q(t) = 1 as on time and Q(t) = 0 as off time, then we see a

(delayed) alternating renewal process. (It could be done the other way, too. Recall the

example of a delayed renewal process at the beginning of the chapter.) The mean on

time is µG and the mean off time is 1/λ (by the memoryless property), so the answer is

µG/(µG + 1/λ) = λµG/(1 + λµG).↑2"

Example MASS 8.30. Let a G/M/1/1 queue have service rate µ. If Q(t) denotes the

number of customers in the system at time t, find limt→∞ P
[
Q(t) = 1

]
.

↓

Solution. If we interpret Q(t) = 1 as on time and Q(t) = 0 as off time, then we see a

(delayed) alternating renewal process. (This will not work the other way, however.) The

mean on time (length of busy period) is 1/µ, but the mean off time is more difficult

to calculate. We will calculate the mean cycle time, which is the denominator anyway.

Condition that a certain busy period has length s. The arrivals starting at the beginning

of this service period form a renewal process with interarrival distribution G(·). The

total cycle time is then the time that this renewal process first exceeds s. By (3.3.3),

this has expectation µG(mG(s) + 1). Therefore, the unconditioned expected cycle time is∫∞
0
µG(mG(s) + 1)µe−µs ds, which gives the answer 1/

(
µ2µG

∫∞
0

(mG(s) + 1)e−µs ds
)
.

We did not actually need the service distribution to be memoryless.↑4"

Note that these answers agree for an M/M/1/1 queue.

Example 3.4(a). A store stocks a certain commodity. It tries to keep the amount on

hand in the interval [s, S]. It does this by ordering S − x whenever the amount on hand

dips to x < s, but not ordering otherwise. Thus, the store restocks to level S after such an

order, which is assumed to be executed and received instantaneously. Customers arrive at

the times of a renewal process with nonlattice interarrival distribution F . Each customer

independently buys an amount with distribution G. (If a customer wants to buy more

than is on hand, then the customer buys only what is on hand.) What is the limiting

distribution of the inventory level (the amount on hand), which is considered always to be

in [s, S]?

↓
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Solution. Let V (t) denote the inventory at time t. We will calculate limt→∞ P
[
V (t) ≥ x

]
.

Fix x ∈ [s, S]. Say that the system is on when V (t) ≥ x and off otherwise. Then we

see a nonlattice alternating renewal process, with the beginning of a cycle at the time of

each restocking order. In order to apply Theorem 3.4.4, let Dk be i.i.d. with the purchase

distribution G. For every y, define

Ly := min
{
n ;

n∑

k=1

Dk > S − y
}
.

Then in each cycle, the number of customers until the inventory falls below x has distribu-

tion equal to that of Lx, while the number of customers in the total cycle has distribution

equal to that of Ls. Also, let Xi ∼ F be i.i.d. independent of Dk. Then in each cycle, the

time until the inventory falls below y has distribution equal to that of
∑Ly

i=1Xi. Thus,

lim
t→∞

P
[
V (t) ≥ x

]
=
E
[∑Lx

i=1Xi

]

E
[∑Ls

i=1Xi

] =
E[Lx]µF

E[Ls]µF
=
E[Lx]

E[Ls]
.

Now if NG(·) is the renewal process defined by 〈Dk〉, then Ly = NG(S − y) + 1, whence

E[Ly] = mG(S − y) + 1 in the notation of the renewal function for NG(·). In conclusion,

lim
t→∞

P
[
V (t) ≥ x

]
=
mG(S − x) + 1

mG(S − s) + 1
.

(If x = S, this is still correct: the numerator is 1, and indeed V (t) = S generally holds for

intervals of t. If we wanted x > S, this is not correct, but then Lx = 0, so E[Lx] = 0. If

x = s, this is correct because V (t) ≥ s always. If x < s, then Lx = Ls, so the formula

again has to be modified.) Of course, this isn’t so explicit, but in any particular case, one

can calculate numerically mG(·) by iterating the renewal equation,

mG(t) = G(t) +

∫

[0,t]

mG(t− x) dG(x).

↑7"

⊲ Read pp. 109--119 in the book.

Now we go the other way: we use Theorem 3.4.4 in order to calculate the means.

56
c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



Example 3.5(b). Suppose that a machine has n components, each of which functions

during the on times of an independent alternating renewal process. More precisely, compo-

nent i functions for an Exp(λi) time, then is down for an Exp(µi) time. (Note: I switched

the notation from the book, which gave the means, not the parameters.) The machine as

a whole functions as long as at least one component functions. What is the mean time

between breakdowns? What is the mean length of a functioning period?

↓

Solution. Note that the breakdowns of the machine constitute a delayed renewal process.

When the periods of functioning are considered as the off periods, we see a delayed alter-

nating renewal process. This relies on the memoryless property, because the breakdowns

do not coincide with a change of state of all the components at once. (We could also use

the ends of the non-functioning periods as renewals, but this is harder to see. To see it,

realize that we can choose which component becomes functional at those times always with

the same distribution, but that what happens until the end of such a functioning period

is complicated. In any case, the functioning periods then become the on periods.)

Component i has a limiting down probability (1/µi)/(1/λi + 1/µi) = λi/(λi + µi).

Since the components operate independently, the limiting down probability of the machine

is the product
∏n

i=1 λi/(λi + µi). By Theorem 3.4.4, this equals the mean down time

divided by the mean cycle time. Now the mean cycle time is what we want to know. By the

memoryless property, the down periods have distribution Exp
(∑n

i=1 µi

)
, whence the mean

down length is 1/
∑

i µi. Therefore, the mean cycle time is
(∑

j µj

∏n
i=1 λi/(λi + µi)

)−1
.

The mean length of an up period is the difference between the mean cycle time and the

mean down period.↑4"

Suppose that at the nth renewal (i.e., nth event of a renewal process), we receive a

reward Rn. We allow Rn to depend on Xn, but assume that (Xn, Rn) are i.i.d. The total

reward earned by time t is

R(t) :=

N(t)∑

n=1

Rn.

The stochastic process R(·) is called a renewal-reward process. For example, a renewal

process is a renewal-reward process; and a compound Poisson process is a renewal-reward

process.
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Theorem 3.6.1. If E
[
|R|

]
<∞ and E[X] <∞, then as t→ ∞, we have

R(t)

t
→ E[R]

E[X]
a.s.

and
E
[
R(t)

]

t
→ E[R]

E[X]
.

Proof. The first statement is rather easy to prove, but the 2nd will require some work. For

the first, write the quotient as

R(t)

t
=
R(t)

N(t)

N(t)

t
→ E[R] · 1

E[X]
a.s.

by the SLLN, using the fact that N(t) → ∞ as t→ ∞ and Proposition 3.3.1.

For the second statement, we use truncation, as in the proof of Theorem 3.3.4, the

elementary renewal theorem. In order to do that, we need to decompose Rn as Rn =

R+
n − R−

n , where R
±
n ≥ 0. Defining R±(t) :=

∑N(t)
n=1 R

±
n , we have R(t) = R+(t) − R−(t),

so we see that it suffices to prove the result when Rn ≥ 0. . . .2"

Assume now that Rn ≥ 0. We have that [N(t)+1 = n] is independent of 〈Ri ; i > n〉.
. . . Therefore Wald’s equation gives us1"

E



N(t)+1∑

n=1

Rn


 = (m(t) + 1)E[R].

Since m(t)/t → 1/E[X], the result desired follows if E[RN(t)+1]/t → 0 as t → ∞. Rather

than show this directly, we take an easier approach. Namely, this certainly holds if Rn is

bounded. Therefore, given M <∞, we have

lim inf
t→∞

E[R(t)]/t ≥ lim
t→∞

E


1

t

N(t)∑

n=1

(Rn ∧M)


 = E[R ∧M ]/E[X].

Taking the limit as M → ∞ and using the MCT, we obtain lim inft→∞E[R(t)]/t ≥
E[R]/E[X]. . . . On the other hand, we have1"

lim sup
t→∞

E[R(t)]/t ≤ lim
t→∞

E


1

t

N(t)+1∑

n=1

Rn


 = lim

t→∞
m(t) + 1

t
E[R] = E[R]/E[X].

Putting these inequalities together gives us the desired limit. . . .1"
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The reward need not be given exactly at the renewal times. It could accumulate

during the renewal cycle. For example, as long as we define R(t) to lie between
∑N(t)

n=1 Rn

and
∑N(t)+1

n=1 Rn, then the theorem applies to R(t). This is because, as shown during the

proof,
∑N(t)

n=1 Rn/t and
∑N(t)+1

n=1 Rn/t have the same limit. . . .1"

Example 3.6(a). Consider an alternating renewal process. Suppose that a reward

accumulates at a unit rate during the on periods, but not during the off periods. Then

Theorem 3.6.1 tells us that a.s., the long-run proportion of time that the system is on is

equal to the same limit as in Theorem 3.4.4. . . . So this gives us another way to interpret1"

all our results about alternating renewal processes. It also tells us that the on period

during a cycle need not be an interval at the beginning of the cycle. Finally, it says that

even in the lattice case, the long-run proportion that the system is on is equal to the same

limit as in Theorem 3.4.4.

Example 3.6(c). An amusement park ride only starts when there are N passengers

waiting. Passengers arrive at the times of a renewal process with mean interarrival time µ.

The management must endure the grumbling of waiting passengers, which it quantifies as

a cost of c dollars per unit time per waiting passenger. Also, it costs K dollars each time

the ride is started. What is the average cost per unit time of this operation, and what N

minimizes it?

↓

Solution. The mean cycle time is Nµ and the mean cost during a cycle is, if Sn are the

arrival times, E[
∑N

n=1(SN − Sn)c] + K =
∑N

n=1(N − n)µc + K = cµN(N − 1)/2 + K.

Dividing, we get c(N − 1)/2 +K/(Nµ). This is minimized when N is one of the integers

nearest to
√
2K/(cµ).↑4"

Example PM 7.11. Let Xn be the lifetimes of items assumed i.i.d. with c.d.f. F . It may

be that failure of an item is costly, and so replacement is done when an item has reached

age T if it has not yet failed. Suppose that each replacement costs cr and each failure costs

an additional cf . Show that the long-run cost per unit time is (a.s. and in mean)

cr + cfF (T )∫ T

0
F (x) dx

.

↓
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Solution. Each replacement constitutes a renewal. The expected cycle length is thus

E[X ∧ T ] =
∫ ∞

0

P [X ∧ T > x] dx =

∫ T

0

F (x) dx,

while the expected cost during a cycle is cr + cfF (T ). Now apply Theorem 3.6.1.

For example, if X ∼ Unif[0, a], then the long-run cost rate is (2acr+2cfT )/(2aT−T 2)

for 0 ≤ T ≤ a, and this is minimized at

T

a
= − cr

cf
+

√(
cr
cf

+ 1

)2

− 1.

↑4"

⊲ Read pp. 125--126, 128--129, 133--137 in the book.

One way that delayed renewal processes arise is by beginning our observation of a

renewal process at time t, rather than at time 0. Then the first renewal time is Y (t) later,

where Y (t) is the residual life at time t. Now if t happens to be large, µ < ∞, and the

interarrival time X ∼ F is nonlattice then we know that Y (t) is approximately a uniform

pick on (0, X̂]. Use g := 1[0,x] in the key renewal theorem to get

lim
t→∞

P
(
A(t) ≤ x

)
= lim

t→∞
E
[
g
(
A(t)

)]
=

1

µ

∫ ∞

0

g(s)F (s) ds =
1

µ

∫ x

0

F (s) ds

if X is nonlattice Define

Fe := the c.d.f. of Unif[0, X̂).

If we write U ∼ Unif[0, X̂), then

Fe(x) = P [U ≤ x] = E[(x ∧ X̂)/X̂] = E[x ∧X]/µ =
1

µ

∫ x

0

F (s) ds

by Exercise 13 in the homework. Thus, we have proved that A(t) ⇒ Fe from the key

renewal theorem. To see more formally that Y (t) ⇒ Fe as we argued intuitively before,

use Theorem 3.4.4:* Fix x. Let the system be “on” at time t when Y (t) > x and “off”

when Y (t) ≤ x. The beginnings of the on periods are the ends of the off periods; we use

this convention even if an on period has length 0 (i.e., is empty). In this way, the renewals

in the alternating renewal process are the same as the renewals in the original renewal

process we started with. Thus, limt→∞ P
[
Y (t) ≤ x

]
= E[x ∧X]/µ = Fe(x).

Let’s consider a delayed renewal process with initial time Unif(0, X̂]; the other inter-

arrival times have the same distribution as X. This is called the equilibrium renewal

process associated to the original process because of the following result:

* This also follows from (N1), which one can prove similarly to Exercise 47 by considering the c.d.f.
of αA(t) + βXN(t)+1 for real α, β and using the Cramér-Wold device.
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Theorem 3.5.2. Let Ne(·) be a nonlattice equilibrium renewal process. Then Ne(·) has

stationary increments and ∀t ≥ 0 me(t) = t/µ and Ye(t) ∼ Fe.

Proof. Since Y (t) ⇒ Fe as t→ ∞, we have that for s ≥ 0, . . .2"

N(t+ s)−N(t) ⇒ Ne(s) as t→ ∞.

In fact, this is true jointly in all s ≥ 0; for example, if s1, s2 ≥ 0, then

(
N(t+ s1)−N(t), N(t+ s1 + s2)−N(t)

)
⇒

(
Ne(s1), Ne(s1 + s2)

)
as t→ ∞.

Thus, given s1, s2 ≥ 0, we have

L
(
Ne(s1 + s2)−Ne(s1)

)
= lim

t→∞
L
(
N(t+ s1 + s2)−N(t+ s1)

)

= lim
t→∞

L
(
N(t+ s2)−N(t)

)

= L
(
Ne(s2)

)
,

i.e., Ne(·) has stationary increments.

In particular, me(kt) = kme(t) for all positive integers k and every fixed t. . . .1"

Therefore, by the elementary renewal theorem applied to the equilibrium renewal process,

which is a delayed renewal process, we have me(t)/t = me(kt)/(kt) → 1/µ as k → ∞.

Finally, because the increments of Ne(·) are stationary, L
(
Ye(s)

)
= L

(
Ye(0)

)
= Fe.

. . .1"

Is a Poisson process an equilibrium renewal process? . . .1"

⊲ Read pp. 125--126, 128--129, 131--132 in the book.
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Chapter 4

Markov Chains

We now go beyond having real-valued random variables. In this chapter, we consider

stochastic processes indexed by N (or Z+) and which can take values in a finite or countable

set called the state space. For simplicity, the states will often be labelled 0, 1, 2, . . ., but

there may be no numerical significance to the labels.

What replaces independence of increments is the Markovian property that the

future and the past are independent given the present: given n, r, i0, i1, . . . , in+r with

P [Xn = in] > 0, consider the past event A := [X0 = i0, X1 = i1, . . . , Xn−1 = in−1] and

the future event B := [Xn+1 = in+1, Xn+2 = in+2, . . . , Xn+r = in+r]. Then

P (A,B | Xn = in) = P (A | Xn = in)P (B | Xn = in). (N1)

These events A and B are very basic events. If we sum over all possibilities, then we see

that the same equation holds for all pairs of events A and B where A depends only on Xj

for j < n and B depends only on Xk for k > n. . . ..5"

The Markovian property is equivalent to the following property: ∀n ∀i0, . . . , in+1 with

P [X0 = i0, . . . , Xn = in] > 0,

P [Xn+1 = in+1 | X0 = i0, . . . , Xn = in] = P [Xn+1 = in+1 | Xn = in]. (N2)

To see this, suppose first that the Markov property (N1) holds; let A be as in the definition↓
and let B := [Xn+1 = in+1]. Then the left-hand side of (N2) is equal to

P (B | A, Xn = in) =
P (A,B | Xn = in)

P (A | Xn = in)
= P (B | Xn = in)

by (N1), which shows (N2). Conversely, suppose that (N2) holds. The calculation we

just did shows that (N1) holds for A as in the definition and for B of the special form

B := [Xn+1 = in+1]. Summing over possibilities shows that it also holds for every A that

depends only on times before the present, n. We can also reformulate (N1) as

P (B | A, Xn = in) = P (B | Xn = in). (∗)
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Now suppose that B is general, as in the definition. Let A depend only on the past, Xj

for j < n. Then we have

P (B | A, Xn = in) =

r∏

j=1

P (Xn+j = in+j | A, Xn = in, Xn+1 = in+1, . . . , Xn+j−1 = in+j−1)

=
r∏

j=1

P (Xn+j = in+j | Xn+j−1 = in+j−1)

by (∗). Since this does not depend on A, it follows that (N1) holds.↑5"

The right-hand side of (N2) is known as a transition probability. The analogue of

stationary increments is that this doesn’t depend on n, only on in and in+1; that is,

P [Xn+1 = j | Xn = i] =: pij

does not depend on n. In this case, the process is called a (homogeneous) Markov

chain. From the transition probabilities and the initial distribution pi := P [X0 = i], we

can calculate all probabilities:

P [X0 = i0, X1 = i1, . . . , Xn = in] = pi0pi0i1pi1i2 . . . pin−1in .

. . .3"

It’s really better to say that a Markov chain is a collection of probability measures Pi,

representing the chain when it starts in state i, with the property that

Pi0 [X1 = i1, . . . , Xn−1 = in−1, Xn = in, Xn+1 = in+1, Xn+2 = in+2, . . . , Xn+r = in+r]

= Pi0 [X1 = i1, . . . , Xn−1 = in−1, Xn = in]Pin [X1 = in+1, . . . , Xr = in+r]

for all n, r, and i0, . . . , in+r. This avoids problems of pi possibly being 0 for some (even

most) i. Again, by summing over all possibilities, we see that for all pairs of events A and

B where A depends only on Xm for m < n and B depends only on Xk for k > n, we have

Pi[A, Xn = j, B] = Pi[A, Xn = j]Pj(τnB).

Here, we define τn of an event that depends only on Xk for k > n by subtracting n from

all the indices of the random variables; i.e.,

τn[Xn+1 = in+1, Xn+2 = in+2, . . . , Xn+r = in+r] := [X1 = in+1, X2 = in+2, . . . , Xr = in+r]

and similarly for unions of such events.
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Example (I.I.D. Trials). If Xn are i.i.d., then 〈Xn〉 is a Markov chain.

Example 4.1(c) (Sums of I.I.D. Z-valued Random Variables). Here, the state

space is Z. . . .2"

Example 4.1(a) (The M/G/1 Queue). Let Xn := the number of customers in the

system when the nth customer leaves the system, and X0 := 0. The memoryless property

of the arrival stream shows that this is a Markov chain. . . . Now2"

Xn+1 =

{
Xn − 1 + Yn+1 if Xn ≥ 1,
Yn+1 if Xn = 0,

where Yn+1 := the number of arrivals during the period of service of the (n+1)st customer.

(Note that those customers who arrive during a free period are not counted by any of the

Yn. Only customers who have to wait in queue are counted by some Yn.) Thus, Yn are

i.i.d. and for j ∈ N, with λ denoting the rate of the arrivals, we have

P [Y = j] = E
[
P [Y = j | service time︸ ︷︷ ︸

Z∼G

]
]

= E
[
e−λZ(λZ)j/j!

]
=

∫ ∞

0

e−λx (λx)
j

j!
dG(x).

Thus,

pi =

{
1 if i = 0,
0 otherwise,

p0j =

∫ ∞

0

e−λx (λx)
j

j!
dG(x) (j ≥ 0),

pi,i−1+j = p0j (i ≥ 1, j ≥ 0),

pi,j = 0 (i ≥ 2, j ≤ i− 2).

⊲ Read pp. 163--165 in the book.

Note: In Example 4.1(d), Ross says that the case of summands Xi = ±1 is “sim-

ple random walk”. Usually, this is called “nearest-neighbor random walk” and the term

“simple” is reserved for the case when P [Xi = 1] = 1
2 . We will not use Ross’s terminology.

Example 4.4(a) (The Gambler’s Ruin Problem). A gambler needs $N but has only

$i (1 ≤ i ≤ N − 1). He plays games that give him chance p of winning $1 and q := 1− p

of losing $1 each time. When his fortune is either $N or 0, he stops. What is his chance

of success?

↓
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Solution. The gambler’s fortune is a Markov chain on {0, 1, . . . , N}. Let αi be the proba-

bility of success. Then α0 = 0, αN = 1, and

for 1 ≤ i ≤ N − 1 αi = pαi+1 + qαi−1,

which gives

αi+1 − αi =
q

p
(αi − αi−1).

Therefore

αi+1 − αi =
(q
p

)i

(α1 − α0) =
(q
p

)i

α1.

To determine α1, add these up:

1 = αN =
N−1∑

i=0

(αi+1 − αi) =
N−1∑

i=0

(q
p

)i

α1,

so

α1 = 1
/N−1∑

i=0

(q
p

)i

.

By adding only the equations for α1 − α0, α2 − α1, . . . , αi − αi−1, we get

αi =
i−1∑

j=0

(q
p

)j/N−1∑

j=0

(q
p

)j

.

For example, when p = 1
2 , we have αi = i/N .↑6"

For an application to statistics, see Exercise 4.30, p. 224 (with answer in the back).
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§4.2. Chapman–Kolmogorov Equations and Classification of States.

Let p
(n)
ij be the n-step transition probabilities, i.e.,

p
(n)
ij := Pi[Xn = j].

Note that . . .1"

p
(n+m)
ij =

∑

k

Pi[Xn+m = j,Xn = k] =
∑

k

Pi[Xn = k]Pk[Xm = j] =
∑

k

p
(n)
ik p

(m)
kj .

Notice that this is matrix multiplication: If P (n) := (p
(n)
ij ), then the above equation is

P (n+m) = P (n)P (m), whence P (n) = Pn, where P := (pij).

We say that state j is accessible from state i if ∃n ≥ 0 p
(n)
ij > 0. If i and j are

accessible from each other, we say they communicate and write i ↔ j. It is not hard

to check that ↔ is an equivalence relation. . . . If there is only one equivalence class, the3"

Markov chain is called irreducible. The period of state i is the g.c.d. of {n ≥ 0 ; p
(n)
ii > 0},

written d(i). If d(i) = 1, then state i is called aperiodic.

Proposition 4.2.2. If i↔ j, then d(i) = d(j).

Proof. It suffices to show that d(j)
∣∣ d(i). [The symbol k

∣∣ n here stands for “divides” and

means that n/k ∈ Z.] Let p
(s)
ii > 0 and choose m, n such that p

(m)
ij > 0 and p

(n)
ji > 0.

First, we have p
(n+m)
jj ≥ p

(n)
ji p

(m)
ij > 0, so d(j)

∣∣ (n+m). Second, we have

p
(n+s+m)
jj ≥ p

(n)
ji p

(s)
ii p

(m)
ij > 0,

so d(j)
∣∣ (n+ s+m). Therefore, d(j)

∣∣ s, so d(j)
∣∣ d(i).

Let f
(n)
ij be the probability that the first* transition into j is at time n when the chain

starts in state i: f
(0)
ij := 0 and for n ≥ 1,

f
(n)
ij := Pi

[
Xn = j and ∀k ∈ [1, n− 1] Xk 6= j

]
.

Then fij :=
∑∞

n=1 f
(n)
ij is the probability of ever making a transition into state j when the

chain starts in i. We call j recurrent if fjj = 1 and transient otherwise. The function

G(i, j) :=

∞∑

n=0

p
(n)
ij ,

the expected number of visits to j for the chain started at i, . . . is called the Green1"

function of the Markov chain.

* f stands for “first”
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Proposition 4.2.3. State j is transient iff G(j, j) <∞. If state j is transient, then a.s.

the number of visits to j starting from j is finite, while if state j is recurrent, then a.s. the

number of visits to j starting from j is infinite.

Proof. Each visit to j is followed (at some time) by another visit to j with probability

fjj . Hence the number of visits is geometric with mean (1 − fjj)
−1. . . . But we already2"

know that the mean number of visits to j when the chain starts in j is G(j, j). Therefore

(1 − fjj)
−1 = G(j, j), so that fjj < 1 iff G(j, j) < ∞ iff the geometric distribution of the

number of visits to j has finite mean and hence is finite a.s. . . .1"

Corollary. If a Markov chain has only finitely many states, then some state is recur-

rent.

. . .2"

Corollary 4.2.4. If i↔ j and i is recurrent, then j is recurrent.

Proof. Fix m and n such that p
(m)
ij > 0 and p

(n)
ji > 0. Then

∀s ≥ 0 p
(n+s+m)
jj ≥ p

(n)
ji p

(s)
ii p

(m)
ij ,

whence
∑

s p
(n+s+m)
jj ≥ p

(n)
ji p

(m)
ij G(i, i) = ∞.

Proposition. If i is recurrent and j is accessible from i, then fij = 1 and i↔ j.

Proof. Let X0 = i and fix n such that p
(n)
ij > 0. Let A0 := [Xn = j] and let T1 := min{k ≥

n ; Xk = i}. Let A1 := [XT1+n = j] and T2 := min{k ≥ T1 + n ; Xk = i}. In general, set

Ar := [XTr+n = j] and Tr+1 := min{k ≥ Tr + n ; Xk = i}. Then 〈Ar〉 are independent

and each have probability p
(n)
ij , so one of them occurs. . . . Thus, fij = 1; since fii = 1, it2"

follows that i is accessible from j. . . .1"

Actually, we are using something stronger than the Markov property here and in the

proof of Proposition 4.2.3, namely, a special case of what is called the strong Markov

property. It always holds for discrete-time Markov chains, and usually, but not always,

for continuous-time ones. It says the following. Given a Markov chain 〈Xn〉, call a random

variable N with values in N ∪ {∞} a stopping time if for all n, the event [N = n] (or,

if you prefer, its indicator 1[N=n]) depends only on X0, X1, . . . , Xn, written [N = n] ∈
σ
(
X0, X1, . . . , Xn

)
; in other words, there are functions φn:N

n+1 → {0, 1} such that N = n

iff φn
(
X0, X1, . . . , Xn

)
= 1. Write ψ(i, B) := Pi

[(
X0, X1, . . .

)
∈ B

]
. The strong Markov

property says that if N is a stopping time and B is an event, then

P
[(
XN , XN+1, . . .

)
∈ B

∣∣∣ X0, X1, . . . , XN

]
= ψ(XN , B)
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on the event that N <∞. In the cases we are using, XN is a fixed state, so this is easier to

interpret. Note that the conditioning on X0, X1, . . . , XN implicitly includes conditioning

on N . The proof of the strong Markov property is not hard: Given i0, i1, . . . and n with

φn(i0, i1, . . . , in) = 1, the event [N = n] is implied by the event [X0 = i0, X1 = i1, . . . , Xn =

in], whence

P
[(
XN , XN+1, . . .

)
∈ B

∣∣∣ N = n,X0 = i0, X1 = i1, . . . , Xn = in

]

= P
[(
Xn, Xn+1, . . .

)
∈ B

∣∣∣ X0 = i0, X1 = i1, . . . , Xn = in

]

= P
[(
Xn, Xn+1, . . .

)
∈ B

∣∣∣ Xn = in

]

= ψ(in, B)

by the Markov property and homogeneity.

An irreducible Markov chain is called transient or recurrent according as its states

are.

In particular, the Markov chain of Example 1.9(a) is recurrent and a.s. every bead is

visited.

Example 4.2(a). Consider the Markov chain on Z such that, for a given p and all i,

pi,i+1 = p and pi,i−1 = 1 − p. If p 6= 1
2 , then the SLLN shows that the chain is transient.

We show that for p = 1/2, it is recurrent. Note that it has period 2. Now

p
(2n)
00 =

(
2n

n

)
1

22n
.

. . . Stirling’s approximation n! ∼
√
2πn(n/e)n yields2"

p
(2n)
00 ∼ 1√

πn
, (N3)
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whence G(0, 0) = ∞.

Second proof. Let q := 1− p. Then p
(2n)
00 =

(
2n
n

)
pnqn. Now

(− 1
2

n

)
= (−1)n

(
2n

n

)
1

22n
.

. . . Therefore G(0, 0) =
∑

n≥0

(−1/2
n

)
(−4pq)n = (1 − 4pq)−1/2 = |1 − 2p|−1. Thus, . . .2"2"

G(0, 0) = ∞ iff p = 1/2. Also, we see that f00 = 2(p ∧ q). . . .2"

Third proof when p = 1/2. Let a := f10. By symmetry, we have a = f−1,0, whence f00 = a.

. . . We also have a = (1 + f20)/2 . . . and f20 = f21f10 = a2, . . . whence (a − 1)2 = 0, so.5".5".5"

a = 1.

10,000 steps of 2D random walk.

One of the most famous theorems in probability extends this to higher dimensions:

Pólya’s Theorem. Simple random walk on the lattice Zd is transient iff d ≥ 3.

This follows from:

Proposition. For simple random walk on Zd,

p
(2n)
00

∼ 2
( d

4πn

)d/2

as n→ ∞.

Idea of proof: Let Ni(n) be the number of steps among the first n in direction i. By the

WLLN, Ni(2n) ∼ 2n/d and P
[
∀i Ni(2n) is even

]
→ 2−(d−1). Given the values of Ni(2n),

the d coordinates of X2n are independent, so the result follows from (N3). . . .2"
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§4.3. Limit Theorems.

Let µii denote the expected number of transitions needed to return to i starting from

i. Let Nj(n) be the number of visits to j by time n. These visits form a delayed renewal

process if j is recurrent. Actually, even when j is transient, the visits form a delayed

renewal process, albeit one with only a finite number of renewals a.s. Thus, with the

convention that a/∞ := 0 for any finite a, our results on renewal theory give:

Theorem 4.3.1. If i↔ j, then

(i) when the Markov chain starts from state i, we have lim
n→∞

Nj(n)

n
=

1

µjj
a.s.;

(ii) lim
n→∞

1

n

n∑

k=1

p
(k)
ij =

1

µjj
;

(iii) when j is aperiodic, we have lim
n→∞

p
(n)
ij =

1

µjj
;

(iv) lim
n→∞

p
(nd)
jj =

d

µjj
, where d := d(j) is the period of j.

The results we are using are: (i) Proposition 3.3.1; (ii) The elementary renewal↓
theorem; (iii) and (iv) Blackwell’s renewal theorem. Here, if j (and so i) is transient, then

we consider separately the two conditions that j is visited or not.↑3"

We call a recurrent state i positive recurrent if µii < ∞ and null recurrent

otherwise.

Proposition. Every finite-state Markov chain has a state that is positive recurrent.

. . .2"

Proposition 4.3.2. If i↔ j and i is null recurrent, then so is j.

Proof. Let k and ℓ be such that p
(k)
ij > 0 and p

(ℓ)
ji > 0. Let d = d(i) = d(j). Since i is null

recurrent, Theorem 4.3.1(iv) tells us that

0 = lim
n→∞

p
(nd+k+ℓ)
ii ≥ lim sup

n→∞
p
(k)
ij p

(nd)
jj p

(ℓ)
ji = p

(k)
ij p

(ℓ)
ji · d

µjj
,

whence µjj = ∞.
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As was the case for renewal processes, stationary Markov chains arise from limit-

ing probabilities used as initial distributions. Recall that 〈Xn〉 is stationary if ∀k ≥ 0

〈Xn, Xn+1, . . . , Xn+k〉 has a joint distribution that is the same for each n. The homoge-

neous Markov property shows that this follows for all k if it holds for k = 0 and n ∈ {0, 1}:

∀j pj = P [X0 = j] = P [X1 = j] =
∞∑

i=0

P [X0 = i,X1 = j]

=
∞∑

i=0

pipij .

. . . We call an initial distribution 〈pj〉 stationary if this holds.4"

An irreducible Markov chain is called positive recurrent or null recurrent accord-

ing as its states are.

Theorem 4.3.3. Consider an irreducible aperiodic Markov chain and write

πj := lim
n→∞

p
(n)
ij =

1

µjj
.

The following are equivalent:

(i) the chain is positive recurrent;

(ii) ∃ a stationary probability distribution;

(iii) 〈πj〉 is the unique stationary probability distribution.

In this case, if xi ≥ 0, c :=
∑

j xj > 0, and ∀j xj =
∑

i xipij, then c <∞ and ∀i xi = cπi.

Lemma (Fatou’s Lemma for Series). If αn(j) ≥ 0, limn→∞ αn(j) = α(j), and

lim
n→∞

∑

j

αn(j) = α, then α ≥
∑

j

α(j).

Proof. ∀J
∑

j≤J

α(j) = lim
n

∑

j≤J

αn(j) ≤ lim
n

∞∑

j=0

αn(j) = α, so
∞∑

j=0

α(j) ≤ α.

Lemma (LDCT for Series). If |αn(j)| ≤ β(j),
∑∞

j=0 β(j) < ∞, and lim
n→∞

αn(j) =

α(j), then

lim
n→∞

∞∑

j=0

αn(j) =
∞∑

j=0

α(j).

Proof. We have

∣∣∣
∞∑

j=0

αn(j)−
∞∑

j=0

α(j)
∣∣∣ ≤

∞∑

j=0

∣∣∣αn(j)− α(j)
∣∣∣ ≤

J∑

j=0

∣∣∣αn(j)− α(j)
∣∣∣+

∑

j>J

2β(j).

Now let n→ ∞. Then let J → ∞.
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Proof of Theorem 4.3.3. (i) ⇒ (ii): Since p
(n+1)
ij =

∑
k p

(n)
ik pkj , Fatou’s lemma gives

πj ≥
∑

k πkpkj . Since
∑

j p
(n)
ij = 1, Fatou’s lemma also gives

∑∞
j=0 πj ≤ 1. Thus

∑
j πj ≥∑

j

∑
k πkpkj =

∑
k πk

∑
j pkj =

∑
k πk, whence ∀j πj =

∑
k πkpkj . . . . Therefore, pi :=1"

πi/
∑
πj form a stationary probability distribution, where the denominator is positive

since each πj > 0.

(ii) ⇒ (iii): If 〈pi〉 is any stationary probability distribution, then ∀n, j pj =
∑∞

i=0 pip
(n)
ij ,

. . . whence by the LDCT, pj =
∑∞

i=0 piπj = πj . That is, 〈πj〉 is a stationary probability2"

distribution and is unique.

(iii) ⇒ (i) since some πj > 0.

Finally, in the case of positive recurrence and xj =
∑

i xipij , we have ∀n xj =
∑

i xip
(n)
ij (as [xj ] is a left eigenvector for P ), . . . so xj ≥

∑
i xiπj = cπj . This means2"

that c <∞, whence the LDCT gives xj = cπj .

In the irreducible positive recurrent periodic case, the unique stationary probability

distribution is still πj := 1/µjj = limn→∞p
(nd)
jj /d. See Exercise 4.17, p. 221 (solution in

the back of the book).

Example (Simple Random Walk on Z). This is null recurrent. If not, then every

solution to ∀j xj =
∑

i xipij satisfies
∑

j xj <∞. However, xj ≡ 1 is a solution. . . .2"

Example 4.4(a) (The Gambler’s Ruin Problem). A gambler needs $N but has only

$i (1 ≤ i ≤ N − 1). He plays games that give him chance p of winning $1 and q := 1− p

of losing $1 each time. When his fortune is either $N or 0, he stops. What is his chance

of success?

↓

Solution. The gambler’s fortune is a Markov chain on {0, 1, . . . , N}. Let αi be the proba-

bility of success. Then α0 = 0, αN = 1, and

for 1 ≤ i ≤ N − 1 αi = pαi+1 + qαi−1,

which gives

αi+1 − αi =
q

p
(αi − αi−1).

Therefore

αi+1 − αi =
(q
p

)i

(α1 − α0) =
(q
p

)i

α1.

To determine α1, add these up:

1 = αN =
N−1∑

i=0

(αi+1 − αi) =
N−1∑

i=0

(q
p

)i

α1,
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so

α1 = 1
/N−1∑

i=0

(q
p

)i

.

By adding only the equations for α1 − α0, α2 − α1, . . . , αi − αi−1, we get

αi =

i−1∑

j=0

(q
p

)j/N−1∑

j=0

(q
p

)j

.

For example, when p = 1
2 , we have αi = i/N .↑6"

For an application to statistics, see Exercise 4.30, p. 224 (with answer in the back).

§4.5. Branching Processes.

An individual has k children with probability pk, where
∑∞

k=0 pk = 1. The children

reproduce independently according to the same offspring distribution. Let Zn be the size of

the nth generation. Clearly Zn is a Markov chain, called a Galton–Watson branching

process. The initial state Z0 is usually assumed to be 1.

This was introduced in order to study British family names. It is also of interest in

biology, chain reactions, electron multipliers, and analysis of various probabilistic processes.

Many, many variations have been (and continue to be) studied.

Let L be a random variable with P [L = k] = pk and let 〈L(n)
i ; n, i ≥ 1〉 be independent

copies of L, so that Zn+1 =
∑Zn

i=1 L
(n+1)
i . The probability generating function (p.g.f.)

of L is

f(s) := E[sL] =
∑

k≥0

pks
k (0 ≤ s ≤ 1).

Proposition. The p.g.f. of Zn is f (n) := f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

Proof. E[sZn ] = E
[
E
[
s
∑Zn−1

i=1
L

(n)
i

∣∣ Zn−1

]]
= E

[∏Zn−1

i=1 E[sL]
]
= E[f(s)Zn−1 ]. Apply

this n times.

Write q := P [Zn → 0] = P [∃n Zn = 0].

Corollary. q = limn→∞f (n)(0).

Proof. q = limnP [Zn = 0] = limnf
(n)(0).

Looking at a graph of f , which is increasing and convex, we see that . . .3"

Proposition. Suppose p1 6= 1. We have q = 1 ⇐⇒ f ′(1) ≤ 1. Also, q is the smallest

root of f(s) = s in [0, 1] — the only other possible root being 1.

Note that f ′(1) = E[L] =: m, the mean number of offspring per individual.
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§4.6. Applications of Markov Chains.

§4.6.1. A Markov Chain Model of Algorithmic Efficiency.

Certain optimization algorithms move from a point to a better point repeatedly until

reaching an optimal point. How many steps do they take? We model this very generally

and very crudely as follows. There are a known number of points, N , and we start at the

worst one. Each step chooses randomly uniformly among the better points, independently

of the past points. Thus, we can call the jth best point state j; then we see a Markov

chain on the states {1, 2, . . . , N} that starts at state N and ends at state 1. To end at

state 1 means that the transition probability from state 1 to state 1 is 1. We will analyze

TN , the number of steps until state 1 is reached. Note that

TN =
N−1∑

j=1

Ij ,

where Ij := indicator of ever being in state j.

Lemma 4.6.1. I1, . . . , IN−1 are independent and P [Ij = 1] = 1/j.

Proof. It suffices to show that

P
[
Ij = 1 | Ij+1, . . . , IN−1

]
=

1

j
.

This is clear for j = N−1. For j < N−1, given Ij+1, . . . , IN−1, let K := min{k > j ; Ik =

1}. Then on the event that K = n, we have

P [Ij = 1 | Ij+1, . . . , IN−1] = P [Ij = 1 | K = n]

= P [Ij = 1 | Ij+1 = 0, . . . , In−1 = 0, In = 1]

=
P [Ij = 1, Ij+1 = 0, . . . , In−1 = 0 | In = 1]

P [Ij+1 = 0, . . . , In−1 = 0 | In = 1]

=
1/(n− 1)

j/(n− 1)
=

1

j
.

Proposition 4.6.2. E[TN ] =
∑N−1

j=1 1/j, Var(TN ) =
∑N−1

j=1 (1/j)(1− 1/j), and

TN − logN√
logN

⇒ N(0, 1) as n→ ∞.

Proof. Use Lindeberg’s CLT: since the random variables are bounded, this . . . requires2"

merely that the variance of the sum tend to infinity.

(Note: the book says that TN ≈ Pois(logN). This is also true. On the other hand,

Probability Models gives the normal limit!)
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§4.7. Time-Reversible Markov Chains.

The definition of the Markovian property shows that given a finite time N , the se-

quence

XN , XN−1, . . . , X0

arises from N steps of a possibly nonhomogeneous Markov chain. Now, the transition

probabilities are

P
[
Xm = j | Xm+1 = i

]
=
P [Xm = j,Xm+1 = i]

P [Xm+1 = i]
=
P [Xm+1 = i | Xm = j]P [Xm = j]

P [Xm+1 = i]
.

Therefore, if 〈Xn〉 is stationary with stationary probabilities P [X0 = i] = πi, then the

transition probabilities are homogeneous and equal

P [Xm = j | Xm+1 = i] =
πjpji
πi

=: p∗ij .

Since P [Xk = i] = πi, this time-reversed chain has the same stationary probabilities. If

it happens that ∀i, j p∗ij = pij , then the Markov chain is called reversible. This can be

written as

∀ i, j πipij = πjpji.

If the chain is irreducible and ∃xi ≥ 0 such that
∑
xi = 1 and ∀i, j xipij = xjpji, then

actually xi = πi and so the chain is reversible since

∀j
∑

i

xipij =
∑

i

xjpji = xj .

We can also write wij := πipij , so that wji = wij and

∀i
∑

j

wij =
∑

j

πipij = πi,

whence pij = wij/
∑

k wik. Conversely, if ∃wij = wji ≥ 0 with 0 < w :=
∑

i,jwij <∞ and

pij = wij/
∑

k wik, then set wi :=
∑

kwik and

πi :=
wi∑
ℓ wℓ

=
wi

w
.

We have

πipij =
wi

w
· wij

wi
=
wij

w
=
wji

w
= πjpji,

so the chain is reversible with these stationary probabilities.

Note that this is the same as a random walk on a graph with weighted edges. . . .3"
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To find a condition for reversibility not requiring finding numbers xi or wij , consider

pij
pji

=
πj
πi
.

This means that around every cycle i0, i1, . . . , in, in+1 = i0 where the successive transitions

have positive probability, we have

n∏

j=0

pij ,ij+1

pij+1,ij

=

n∏

j=0

πij+1

πij
= 1.

Conversely, if this holds and the chain is irreducible, then we may define numbers xℓ by

making x0 > 0 arbitrary and setting

xℓ := x0

k−1∏

j=0

pij ,ij+1

pij+1,ij

for any path 0 = i0, i1, . . . , ik = ℓ since any two paths give the same value. . . . This implies2"

that xipij = xjpji, . . . so xj =
∑

i xjpji =
∑

i xipij . By our version of Theorem 4.3.3, if1"

the chain is positive recurrent, this means
∑
xj <∞ and xj = πj

∑
i xi, so πipij = πjpji.

Thus, we have proved

Theorem 4.7.1. An irreducible stationary Markov chain is reversible iff for every cycle

i0, i1, . . . , in, in+1 = i0 where the successive transitions have positive probability, we have

n∏

j=0

pij ,ij+1

pij+1,ij

= 1. (N4)

In fact, we extend the notion of reversibility beyond positive recurrent chains to include

all those Markov chains for which ∃xi > 0 ∀i, j xipij = xjpji. We still have pij = wij/xi

if wij := xipij = wji, but it may be that
∑
xi = +∞. Likewise, if wij = wji are given

with ∀i xi :=
∑

j wij < ∞ and pij = wij/xi, then the chain is reversible. Theorem 4.7.1

extends to say that any irreducible Markov chain is reversible iff (N4) holds for all cycles.

Furthermore, the chain has a stationary probability distribution iff
∑
xi < ∞ (i.e., the

sum of the weights is finite) by Theorem 4.3.3. . . .2"

Example 4.7(a). Any nearest-neighbor random walk on Z or on a tree is reversible.

Example: Simple random walk on any graph, such as the lattice Zd, is reversible. If the

graph is infinite, then simple random walk is not positive recurrent.
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Suppose we toss a fair coin repeatedly. What is the expected number of

tosses until the numbers of heads and tails are equal?

We will later study reversibility in continuous time and see that certain diffusions,

including Brownian motion, are reversible.

We now show that electrical networks are intimately connected to reversible Markov

chains. The states i will now be vertices x and the weights wij of edges will now be

conductances Cxy.

Let G be a finite connected graph, x a vertex of G, and A, Z disjoint subsets of

vertices of G. Let TA be the first time that the random walk visits (“hits”) some vertex in

A; if the random walk happens to start in A, then this is 0. Occasionally, we will use T+
A ,

which is the first time after 0 that the walk visits A; this is different from TA only when

the walk starts in A. Usually A and Z will be singletons. Often, all the edge weights are

equal; we call this case simple random walk.

Consider the probability that the random walk visits A before it visits Z as a function

of its starting point x:

F (x) := P x[TA < TZ ]. (N5)

We use ↾ to denote the restriction of a function to a set. Then clearly F ↾A ≡ 1, F ↾Z ≡ 0,

and for x 6∈ A ∪ Z,

F (x) =
∑

y

P x[first step is to y]P x[TA < TZ | first step is to y]

=
∑

x∼y

pxyF (y) =
1

Cx

∑

x∼y

Cx,yF (y),

where x ∼ y indicates that x, y are adjacent in G. In the special case of simple random

walk, this equation becomes

F (x) =
1

deg x

∑

x∼y

F (y),

where deg x is the degree of x, i.e., the number of edges incident to x. That is, F (x) is

the average of the values of F at the neighbors of x. In general, this is still true, but the

average is taken with weights. We say that F is harmonic at such a point. Now harmonic

functions satisfy a maximum principle: For H ⊆ G, write H for the set of vertices that are

either in H or are adjacent to some vertex in H. When we say that a function is defined

on a graph, we mean that it is defined on its vertex set.
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Maximum Principle. If H ⊆ G, H is connected, f :G → R, f is harmonic on H, and

max f↾H = max f , then f↾H ≡ max f .

Proof. Let K := {y ∈ H ; f(y) = max f}. Note that if x ∈ H, x ∼ y, and f(x) = max f ,

then f(y) = max f by harmonicity of f at x. Thus, K ∩H = K. Since H is connected, it

follows that K = H.

This leads to the

Uniqueness Principle. If H ( G, f, g:G → R, f, g are harmonic on H, and f↾(G \
H) = g↾(G \H), then f = g.

Proof. Let h := f − g. We claim that h ≤ 0. This suffices to establish the corollary since

then h ≥ 0 by symmetry, whence h = 0.

Now h = 0 off H, so if h 6≤ 0 on H, then h is positive somewhere on H, whence

maxh↾H = maxh. Therefore, according to the maximum principle, h is a positive constant

on the closure of some component K of H. In particular, h > 0 on the non-empty set

K \K. However, K \K ⊆ G \H, whence h = 0 on K \K. This is a contradiction.

Thus, the harmonicity of the function x 7→ P x[TA < TZ ] (together with its values

where it is not harmonic) characterizes it.

Existence Principle. If H ( G and f0 : G \ H → R, then ∃f :G → R such that

f↾(G \H) = f0 and f is harmonic on H.

Proof. Let X be the first vertex in G \H visited by the corresponding random walk. Set

f(x) := Ex[f0(X)].

This is the solution to the so-called Dirichlet problem. The function F of (N5) is the

particular case H = G \ (A ∪ Z), f0↾A ≡ 1, and f0↾Z ≡ 0.

In fact, we could have immediately deduced existence from uniqueness or vice versa:

The Dirichlet problem on a finite graph consists of a finite number of linear equations, one

for each vertex in H. Since the number of unknowns is equal to the number of equations,

we get the equivalence of uniqueness and existence.

In order to study the solution to the Dirichlet problem, especially for a sequence

of subgraphs of an infinite graph, we will discover that electrical networks are useful.

Electrical networks, of course, have a physical meaning whose intuition is useful to us, but

also they can be used as a rigorous mathematical tool.

Mathematically, an electrical network is just a weighted graph. But now we call the

weights of the edges conductances and write them as Cxy; their reciprocals are called

resistances, written Rxy. We hook up a battery or batteries (this is just intuition)
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between A and Z so that the voltage (or potential) at every vertex in A is 1 and in Z is

0 (more generally, so that the voltages on G \H are given by f0). Voltages V are then

established at every vertex and current I runs through the edges. These functions are

implicitly defined and uniquely determined, as we will see, by two “laws”:

Ohm’s Law : If x ∼ y, the current flowing from x to y satisfies (Vx − Vy) =

IxyRxy.

Kirchhoff’s Node Law: The sum of all currents flowing out of a given vertex

is 0, provided the vertex is not connected to a battery.

Physically, Ohm’s law, which is usually stated as V = IR in engineering, is an empiri-

cal statement about linear response to voltage differences — certain components obey this

law over a large range of voltage differences. Kirchhoff’s node law expresses the fact that

charge does not build up at a node (current being charge per unit time). If we add wires

corresponding to the batteries, then the proviso in Kirchhoff’s node law is unnecessary.

Mathematically, we’ll take Ohm’s law to be the definition of current in terms of voltage.

In particular, Ixy = −Iyx. Then Kirchhoff’s node law presents a constraint on what kind

of function V can be. Indeed, it determines V uniquely: Current flows into G at A and

out at Z. Thus, we may combine the two laws on G \ (A ∪ Z) to obtain

∀x 6∈ A ∪ Z 0 =
∑

x∼y

Ixy =
∑

x∼y

(Vx − Vy)Cxy,

or

Vx =
1

Cx

∑

x∼y

CxyVy,

where

Cx :=
∑

y∼x

Cxy.

That is, V• is harmonic on G \ (A ∪ Z). Since V ↾A ≡ 1 and V ↾Z ≡ 0, it follows that

V = F ; in particular, we have uniqueness and existence of voltages. The voltage function

is just the solution to the Dirichlet problem.

Suppose that A = {a} is a singleton. What is the chance that a random walk starting

at a will hit Z before it returns to a? Write this as

P [a→ Z] := P a[TZ < T+
{a}].
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Impose a voltage of Va at a and 0 on Z. Since V• is linear in Va, we have that P x[T{a} <

TZ ] = Vx/Va, whence

P [a→ Z] =
∑

x

pax

(
1− P x[T{a} < TZ ]

)
=

∑

x

Cax

Ca
(1− Vx/Va)

=
1

VaCa

∑

x

Cax(Va − Vx) =
1

VaCa

∑

x

Iax.

In other words,

Va =

∑
x Iax

Ca P [a→ Z]
.

Since
∑

x Iax is the total amount of current flowing into the circuit at a, we may regard the

entire circuit between a and Z as a single conductor of net, or effective, conductance

Ceff := Ca P [a→ Z] =: C(a↔ Z), (N6)

where the last notation indicates the dependence on a and Z. We define the effective

resistance R(a ↔ Z) to be its reciprocal. One answer to our question above is thus

P [a→ Z] = C(a↔ Z)/Ca. Later, we will see some ways to compute effective conductance.

Now the number of visits to a before hitting Z is a geometric random variable with

mean P [a → Z]−1 = CaR(a ↔ Z). This generalizes as follows. Let G(a, x) be the

expected number of visits to x strictly before hitting Z by a random walk started at a.

Thus, G(a, a) = CaR(a↔ Z) and G(a, x) = 0 for x ∈ Z. The function G(·, ·) is the Green

function for the random walk absorbed on Z.

Theorem (Green Function = Voltage). When a voltage is imposed so that a unit

current flows from a to Z, then Vx = G(a, x)/Cx for all x.

Proof. We have just shown that this is true for x ∈ {a} ∪ Z, so it suffices to establish

that G(a, x)/Cx is harmonic elsewhere. But by Exercise –?– , we have that G(a, x)/Cx =

G(x, a)/Ca and the harmonicity of G(x, a) is established just as for the function of (N5).

Given that we have two probabilistic interpretations of voltage, we naturally wonder

whether current has a probabilistic interpretation. We might guess one by the following

unrealistic but simple model of electricity: positive particles enter the circuit at a, they

do Brownian motion on G (taking longer to pass through small conductors) and, when

they hit Z, they are removed. The net flow of particles across an edge would then be the

current on that edge. It turns out that in our mathematical model, this is correct:
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Proposition (Interpretation of Current). Start a random walk at a and absorb

it when it first visits Z. For x ∼ y, let Sxy be the number of transitions from x to y. Then

E[Sxy] = G(a, x)pxy and E[Sxy −Syx] = Ixy, where I is the current in G when a potential

is applied between a and Z in such a way that unit current flows in at a.

Note that we count a transition from y to x when y 6∈ Z but x ∈ Z, although we do

not count this as a visit to x in computing G(a, x).

Proof. We have

E[Sxy] = E

[ ∞∑

k=0

1[Xk=x]1[Xk+1=y]

]
=

∞∑

k=0

P [Xk = x, Xk+1 = y]

=

∞∑

k=0

P [Xk = x] pxy = E

[ ∞∑

k=0

1[Xk=x]

]
pxy = G(a, x)pxy.

Hence by the preceding theorem, we have ∀x, y,

E[Sxy−Syx] = G(a, x)pxy−G(a, y)pyx =

(
G(a, x)

Cx
− G(a, y)

Cy

)
Cxy = (Vx−Vy)Cxy = Ixy.

Effective conductance is a key quantity because of the following relationship to the

question of transience and recurrence whenG is infinite. For an infinite graphG, we assume

that there are only a finite number of edges incident to each vertex. But we allow more

than one edge between a given pair of vertices: each such edge has its own conductance.

Loops are also allowed (edges with only one endpoint), but these may be ignored since

they only delay the random walk. Strictly speaking, then, G may be a multigraph, not a

graph. However, we will ignore this distinction.

Let 〈Gn〉 be any sequence of finite subgraphs of G that exhaust G, i.e., Gn ⊆ Gn+1

and G =
⋃
Gn. Let Zn be the set of vertices in G\Gn. (Note that if Zn is contracted to a

point, the graph will have finitely many vertices but may have infinitely many edges.) Then

for each a ∈ G, the limit limn P [a→ Zn] is the probability of never returning to a in G —

the escape probability from a. This is positive iff the random walk on G is transient. By

(N6), limn→∞ C(a↔ Zn) has the same property. We call limn→∞ C(a↔ Zn) the effective

conductance from a to ∞ in G and denote it by C(a↔ ∞) or, if a is understood, by Ceff .

Its reciprocal, effective resistance, is denoted Reff . We have shown:
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Theorem (Transience Equivalent to Finite Effective Conductance). Ran-

dom walk on a connected network is transient iff the effective conductance from any of its

vertices to infinity is positive.

How do we calculate effective conductance of a network? Since we want to replace

a network by an equivalent single conductor, it is natural to attempt this by replacing

more and more of G through simple transformations. There are, in fact, three such simple

transformations, series, parallel, and star-triangle, and it turns out that they suffice to

reduce all finite planar networks by a theorem of Epifanov.

I. Series. Two resistors R1 and R2 in series are equivalent to a single resistor R1+R2. In

other words, if v ∈ G \ (A ∪ Z) is a node of degree 2 with neighbors u1, u2 and we replace

the edges (ui, v) by a single edge (u1, u2) having resistance Ru1v+Rvu2 , then all potentials

and currents in G \ {v} are unchanged and the current that flows from u1 to u2 equals

Iu1v.

Proof. It suffices to check that Ohm’s and Kirchhoff’s laws are satisfied on the new network

for the voltages and currents given. This is easy.

II. Parallel. Two conductors C1 and C2 in parallel are equivalent to one conductor

C1 + C2. In other words, if two edges e1 and e2 that both join vertices v1, v2 ∈ G are

replaced by a single edge e joining v1, v2 of conductance Ce := Ce1 +Ce2 , then all voltages

and currents in G \ {e1, e2} are unchanged and the current Ie equals Ie1 + Ie2 . The same

is true for an infinite number of edges in parallel.
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Proof. Check Ohm’s and Kirchhoff’s laws with Ie := Ie1 + Ie2 .

Example (Gambler’s Ruin). Consider simple random walk on Z. Let 0 ≤ k ≤ n.

What is P k[T0 < Tn]? It is the voltage at k when there is a unit voltage imposed at 0 with

0 voltage at n. If we replace the resistors in series from 0 to k by a single resistor with

resistance k and the resistors from k to n by a single resistor of resistance n− k, then the

voltage at k does not change. But now this voltage is simply the probability of taking a

step to 0, which is thus (n− k)/n.

Example: Suppose that each edge in the following network has equal conductance.

What is P [a → z]? Following the transformations indicated in the figure, we obtain

C(a↔ z) = 7/12, so that

P [a→ z] =
C(a↔ z)

Ca
=

7/12

3
=

7

36
.

1
1

1
1

1

1/2
1/4

1/3

a z a z

a za z

a z

1/2
1

1

1/2

1/2
1/2

1/2

1/21

1

1
1

1
1

11

1

7/12

1

1

1
1

1

1

1 1/2
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Example: What is P [a→ z] in the following network?

1

1
1

1

1

1

1

a z

There are 2 ways to deal with the vertical edge:

(1) Remove it: by symmetry, the voltages at its endpoints are equal, whence no current

flows on it.

(2) Contract it, i.e., remove it but combine its endpoints into one vertex (we could

also combine the other two unlabelled vertices with each other): the voltages are the same,

so they may be combined.

In either case, we get C(a↔ z) = 2/3, whence P [a→ z] = 1/3.

III. Star-triangle. The configurations below are equivalent when

∀i ∈ {1, 2, 3} CuviCvi−1vi+1 = γ,

where indices are taken mod 3 and

γ :=

∏
i Cuvi∑
i Cuvi

=

∑
iRvi−1vi+1∏
iRvi−1vi+1

.

We won’t prove this equivalence.

  

  

 

 
 

 

 

   

 

Actually, there is a fourth trivial transformation: we may prune (or add) vertices of

degree 1 (and attendant edges) as well as loops.

Either of the transformations star-triangle or triangle-star can also be used to reduce

the network in the preceding example.

Example: What is P x[τa < τz] in the following network?
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a

a

z

z

a

z

a

x

x

z

x

x

1/3

1/11

3/11

1/2

1/3

1

1/3

1/2

1

1/11

15/22

2/11

1/2

1

1

1

1

1

1

1

1

1

1

20/33

Following the transformations indicated in the figure, we obtain

P x[τa < τz] =
10/33

10/33 + 15/22
=

4

13
.

Theorem. For any positive recurrent Markov chain and any states a 6= z,

Ea[time to first return to a that occurs after Tz] = EaTz + EzTa =
1

πaPa[Tz < T+
a ]
.

If the chain is reversible, this equals 2γ/C(a↔ z) [where γ =
∑

x∼y Cxy].

Proof. Pa

[
Tz < T+

a

]
= rate of commutes to z among excursions from a

=
rate of commutes to z among steps

rate of excursions from a among steps
=

1/expected commute time

πa
.

In the reversible case, use (N6) and the fact that πa = Ca/(2γ).

Another important concept concerns energy, but we omit it in favor of simply reciting

some of its consequences.

Rayleigh’s Monotonicity Law. If C and C ′ are two assignments of conductances on

the same graph and C ≤ C ′ on each edge, then C(a↔ Z) ≤ C′(a↔ Z) for any a, Z.

Corollary. If C ≍ C ′ (i.e., ∃k1, k2 k1C ≤ C ′ ≤ k2C on each edge), then the corre-

sponding random walks are both transient or both recurrent.

To generalize this, given two networks G, G′ with conductance C, C ′, call a map φ

from the vertices of G to those of G′ bounded if ∃k < ∞ ∃ map Φ on edges of G such

that
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(i) ∀ edge (v, w) ∈ G, Φ(v, w) is a path of edges joining φ(v) and φ(w) with

∑

e′∈Φ(v,w)

C ′(e′)−1 ≤ kC(v, w)−1; and

(ii) ∀ edge e′ ∈ G′, there are ≤ k edges in G whose image under Φ contains e′.

[Think of resistances as lengths of edges.]

Example: G ≤ G′, φ = inclusion, C ≤ kC ′. We call two networks roughly equivalent

if there are bounded maps in both directions.

Theorem (Kanai). Two roughly equivalent networks are both transient or both recur-

rent. In fact, if there is a bounded map from G to G′ and G is transient, then G′ is

transient.

New proof of Pólya’s Theorem in Z2. In Z2, short together all (x, y) with constant |x| ∨ |y|.
This is recurrent since

∑
1
n = ∞.

Give idea for Z3. Talk about continuous case (spherical symmetry helps).

Give spherically symmetric tree examples.
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Chapter 5

Continuous-Time Markov Chains

We will do only §§2–4.

§5.2. Continuous-Time Markov Chains.

This section consists of definitions.

A stochastic process with time being an interval in R is called Markov if the future

and past are independent given the present: ∀t 〈X(s) ; s > t〉 and 〈X(s) ; s < t〉 are

independent given X(t). If the number of states is countable, the process is called a chain.

We then identify the states with N. We will deal only with Markov chains that do not have

instantaneous states and are right-continuous, i.e., with probability 1 ∀i ∈ N ∀t X(t) =

i⇒ ∃ε > 0 ∀s ∈ (0, ε) X(t+s) = i. We also assume homogeneous transition probabilities

pij(s) := P
[
X(t+ s) = j | X(t) = i

]
.

By the Markov property, the time spent in each state is a memoryless random variable,

hence is an exponential random variable; call the rate νi when in state i. Let the probability

distribution of the next state visited be Pij ; the next state is independent of the time spent

in i by the Markov property again. This gives a constructive view of a continuous time

Markov chain: use a timer at each state; when it rings, move according to a discrete-

time Markov chain. However, there is a difficulty: what if we make an infinite number of

transitions in a finite time period? Example: Pi,i+1 = 1, νi = i2. If τi is the time spent in

i, then

E[τi] =
1

i2
, so E

[∑
τi

]
<∞,

so
∑
τi < ∞ a.s. The paradox of Lincoln’s penny. We will not treat such chains,

only regular ones, i.e., ones defined on [0,∞) that with probability 1 make only a finite

number of transitions in [0, N) for every N <∞.

Another construction of continuous-time Markov chains is as follows. Let qij := νiPij

for i 6= j. This is the transition rate from i to j. We could have at state i timers . . .1"

with rates qij ; the first to ring determines the next state: from Problem 1.34, p. 53, the

probability of being the first to ring is proportional to the rate. . . .1"
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§5.3. Birth and Death Processes.

In case Pij = 0 for |i − j| > 1, the chain is called a birth and death process.

We think of the state as representing the size of a population. Let the birth rates be

λi := qi,i+1 and the death rates be µi := qi,i−1.

If there are no deaths, the process is called a pure birth process. The Poisson

process, λn = λ for n ≥ 0, is such a process. Another is the Yule process, where λn = nλ

for n ≥ 0.

A sample of a Yule process.

A sample of 300 scaled Yule processes, dividing by et.
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. . . The Yule process is regular: as shown on p. 235 of the book, if τi denotes the time1"

spent in state i, then for every k ≥ 1 and t ∈ (0,∞), we have (if the chain starts in state

1)

P
[ k∑

i=1

τi ≤ t
]
=

(
1− e−λt

)k
,

whence P
[∑∞

i=1 τi ≤ t
]
= 0. . . .1"

Another way to see this result, which says that P
[
X(t) > k

]
=

(
1 − e−λt

)k
, or

that X(t) ∼ Geom
(
e−λt

)
, is the following. The time τi ∼ Exp(λi), which is also the

distribution of the minimum of i independent Exp(λ) random variables. Thus,
∑k

i=1 τi

has the same distribution as max1≤i≤k Zi, where Zi ∼ Exp(λ) are independent: τk has

the same distribution as min1≤i≤k Zi, then τk−1 the same as the minimum of the time

from the minimum of Zi to the next smallest, etc. But the cdf of max1≤i≤k Zi is easy to

calculate.

Example 5.3(a).

(i) Let X(t) be the number of people in the system of an M/M/s queue, where arrivals

have rate λ and service has rate µ. Then λn = λ for n ≥ 0, µn = nµ for 1 ≤ n ≤ s,

and µn = sµ for n > s.

(ii) A linear growth process with immigration assumes that each individual in the pop-

ulation gives birth at exponential rate λ and dies at rate µ, while there is also im-

migration at rate θ. Thus λn = nλ + θ for n ≥ 0 and µn = nµ for n ≥ 1. This

can be shown to be regular by a more general method than the one we used for a

Yule process. Namely, note that Mn := E
[∑n

i=1 τi

]
→ ∞ as n → ∞ and show that

P
[
M−1

n

∑n
i=1 τi → 1

]
= 1 by calculating the variance of

∑n
i=1 τi. . . .2"
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§5.4. The Kolmogorov Differential Equations.

A pure birth process is the easiest to analyze, since it can always be reduced to a

sum of independent (though not necessarily identically distributed) exponential random

variables. . . . For other processes, we require new tools.2"

Recall that pij(t) = P
[
X(s + t) = j | X(s) = i

]
. There are two sets of differential

equations that these functions satisfy, obtained by conditioning on intermediate states.

Theorem 5.4.3 (Kolmogorov’s Backward Equations). ∀i, j, t

p′ij(t) =
∑

k 6=i

qikpkj(t)− νipij(t).

This can be written with matrices as

P ′(t) = QP (t),

where P (t) :=
(
pij(t)

)
i,j
, Q := (qij)i,j , and

qii := −νi = the negative of the rate of transition out of i.

Proof. First we write an integral equation for pij(t). Either the chain has jumped by time

t or not; if it has, then its first jump is to some state k 6= i, from which it eventually

reaches state j. Let τ be the time of the first jump. Thus, we have

pij(t) = Ei

[
Pi[X(t) = j | τ ]

]
= Ei

[
δij1[τ>t] + Pi[X(t) = j | τ ]1[τ≤t]

]

= δije
−νit + Ei

[∑

k 6=i

Pikpkj(t− τ)1[τ≤t]

]

= δije
−νit +

∫ t

0

∑

k 6=i

Pikpkj(t− s)νie
−νis ds

= δije
−νit +

∫ t

0

∑

k 6=i

qikpkj(u)e
−νi(t−u) du

= e−νitHij(t),

where

Hij(t) := δij +

∫ t

0

∑

k 6=i

qikpkj(u)e
νiu du.

Observe that the integrand is bounded by νie
νit. . . . Therefore Hij(·) is continuous,1"

and thus so is pij(·). But this means that the integrand is continuous by the LDCT for

series, . . . whence Hij(·) and pij(·) are differentiable and we can apply the Fundamental2"

Theorem of Calculus to derive

p′ij(t) = −νipij(t) + e−νit
∑

k 6=i

qikpkj(t)e
νit,

as desired.
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If we use t := 0, then we get that p′ij(0) = qij .

The name “backward equations” arises because we conditioned all the way back to the

time of the first jump. The forward equations come from a more natural conditioning, yet

are more difficult to establish—indeed, they do not always hold. The forward equations

arise as follows. Since

pij(t+ h) =
∑

k

pik(t)pkj(h) (h > 0),

we have
pij(t+ h)− pij(t)

h
=

∑

k 6=j

pik(t)
pkj(h)

h
− pij(t)

1− pjj(h)

h
.

If we could interchange limh→0+ with
∑

k 6=j , e.g., if there are only finitely many states,

then we would get

p′ij(t) =
∑

k 6=j

pik(t)qkj − pij(t)νj ,

or

P ′(t) = P (t)Q

in matrix notation. (Note that the continuity of pik(·) allows a similar argument for the

left-hand derivative.)

Example 5.4(a) (The Two-State Chain). Let q01 = λ and q10 = µ. Then ν0 = λ,

ν1 = µ, and

Q =

(
−λ λ
µ −µ

)
.

Since the matrices are finite, the solution to P ′(t) = QP (t) is

P (t) = eQt (the multiplicative constant = 1 since P (0) = I).

This is intuitive from the following calculation:

P (t) = P (t/n)n =
(
I + [P (t/n)− I]

)n
=

(
I +Qt/n+ o(1/n)

)n
= eQt.

Exponentiation is calculated via diagonalization: If Q = ADA−1, then

eQt = AeDtA−1.
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Here, it is easily calculated that the eigenvalues of Q are 0 and −(λ+µ), with corresponding

eigenvectors
(
1
1

)
and

(
λ
−µ

)
. Thus, we use

D :=

(
0 0
0 −(λ+ µ)

)
, A :=

(
1 λ
1 −µ

)
, A−1 =

1

λ+ µ

(
µ λ
1 −1

)
,

so

eQt =
1

λ+ µ

(
1 λ
1 −µ

)(
1 0
0 e−(λ+µ)t

)(
µ λ
1 −1

)

=
1

λ+ µ

(
µ+ λe−(λ+µ)t λ− λe−(λ+µ)t

µ− µe−(λ+µ)t λ+ µe−(λ+µ)t

)
.

E.g., p00(t) = (µ+ λe−(λ+µ)t)/(λ+ µ).
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Chapter 6

Martingales

§6.1. Martingales.

Recall

Theorem 3.3.2 (Wald’s Equation). Let Xn be random variables all with the same

mean µ. Suppose that N is an N-valued random variable such that ∀n ≥ 0 ∀i ≥ 1 [N = n]

is independent of Xn+i. If either

(a) all Xn ≥ 0 or

(b) E[N ] <∞ and supnE|Xn| <∞,

then

E
[ N∑

n=1

Xn

]
= µ · E[N ].

A modification of Wald’s equation is:

Theorem (Extension of Wald’s Equation). Let Xk be random variables for k ≥ 1,

N an N-valued random variable, µ ∈ R,

(i) ∀k E[Xk1[N≥k]] = µP [N ≥ k], and

(ii) either

(a) ∀k Xk ≥ 0 or

(b) E
[∣∣ N∑

k=1

Xk

∣∣
]
<∞ and limn→∞E

[ n∑
k=1

Xk1[N>n]

]
= 0.

Then

E
[ N∑

k=1

Xk

]
=

{
µE[N ] if µ 6= 0,

0 if µ = 0.

Proof. The case (ii)(a) is as before, since this is what we really used in the proof of that

case. However, we won’t use it, so assume (ii)(b). Write Zn :=
∑n

k=1Xk. By the first part

of (ii)(b) and the LDCT, E[ZN ] = limn→∞E[ZN1[N≤n]]. Now

E
[
ZN1[N≤n]

]
= E

[ n∑

k=1

Xk1[k≤N≤n]

]
=

n∑

k=1

E
[
Xk(1[N≥k] − 1[N>n])

]
,
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which, by (i),

=

n∑

k=1

{
µP [N ≥ k]− E[Xk1[N>n]]

}
= µ

n∑

k=1

P [N ≥ k]− E[Zn1[N>n]].

Consider separately the cases µ = 0 and µ 6= 0 and apply the second part of (ii)(b). . . .1"

Definition. We call 〈Zn ; n ≥ 0〉 a martingale if

(i) ∀n E
[
|Zn|

]
<∞ and

(ii) ∀n ≥ 1 E[Zn | Z0, Z1, . . . , Zn−1] = Zn−1.

In particular, E[Zn] does not depend on n by the tower property (1.5.1).

⊲ Read pp. 296--297 in the book.

We say that an N ∪ {∞}-valued random variable N is a stopping time with respect

to 〈Zn ; n ≥ 0〉 if ∀n 1[N=n] is a function of Z0, . . . , Zn. This is equivalent to the condition

that ∀n 1[N≤n] is a function of Z0, . . . , Zn.

Corollary (The Optional Stopping Theorem). Let 〈Zn ; n ≥ 0〉 be a martingale

and N be an a.s. finite stopping time. If E|ZN | <∞ and limn→∞E[Zn1[N>n]] = 0, then

E[ZN ] = E[Z0].

Proof. Apply the extension of Wald’s equation with Xn := Zn − Zn−1 for n ≥ 1 and

µ := 0. Note that 1[N≥k] = 1−1[N≤k−1] is a function of Z0, . . . , Zk−1, so we can compute↓
E[Xk | N ≥ k] via the tower property.↑2"

In fact, the same proof works for N that is a finite stopping time with respect to a

stochastic process of the form 〈(Zn,Wn) ; n ≥ 0〉: we simply use the tower property a bit

more. Typically, this is used when Zn is a function of Wn.

For example, the hypotheses of this corollary hold if N is a bounded stopping time,

but not if you gamble on fair games until you are ahead. If N ≤ A a.s., then |ZN | ≤↓
maxn≤A |Zn| ≤

∑A
n=0 |Zn| and Zn1[N>n] = 0 for large enough n.↑2"

The hypotheses also hold if Zn1[N≥n] is bounded uniformly in n. If |Zn1[N≥n]| ≤ B,↓
then |ZN | = |Zn1[N=n]| ≤ B and E[Zn1[N>n]] → 0 by the BCT.↑2"
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More generally, it suffices that there is some nonnegative random variable W with

E[W ] <∞ such that for all n ≥ 0, we have |ZN∧n| ≤ W . Use the LDCT and note that

Zn1[N>n] = ZN∧n1[N>n].

For some nice applications of the optional stopping theorem, note that if N is a

stopping time and n ∈ N, then N ∧ n is a (bounded) stopping time: . . .1"

Example 6.2(a) and more of 3.5(a) (Computing Mean Time to Occurrence of

a Pattern). Suppose Yn are i.i.d. for n ≥ 1, with values 0, 1, 2 that have corresponding

probabilities 1
2 ,

1
3 ,

1
6 . Let N be the first time we see the pattern 020. What is E[N ]?

Suppose that at each time n, gambler number n begins betting the pattern will occur

starting then. More precisely, at time n, gambler n pays us 1. If Yn 6= 0, he gets nothing

and quits. If Yn = 0, then we pay him 2 (to be fair) and gambler n bets 2 on [Yn+1 = 2].

If Yn+1 6= 2, then we keep the 2 of gambler n, but if Yn+1 = 2, then we pay him back

6×2 = 12 and gambler n bets 12 on Yn+2 = 0. If he loses, then we keep his 12. If he wins,

we pay back 2× 12 = 24. At this point, gambler n quits.

Let Xn be our net gain after seeing Y1, . . . , Yn and write Rn := n − Xn. At each

time, one gambler pays us 1. Sometimes a gambler pays us some other amount to place a

new bet, but at those times, the amount equals what we paid the gambler on the previous

(winning) bet. Thus, Xn = n− Rn and Rn is the total we have paid all the gamblers up

through time n. If a gambler has lost a bet before time n, then we will have paid that

gambler nothing (while we have still collected the initial 1 from that gambler). Thus, at

time N , every gambler who started before play N − 2 has lost, whereas we have paid 24

to player N − 2, nothing to player N − 1, and 2 to player N . Thus RN = 24 + 2 = 26.

. . . Since 〈Xn〉 is a martingale (all bets being fair), it follows (since N is a stopping time).5"

that ∀n
0 = E[XN∧n] = E[N ∧ n]− E[RN∧n].

Since 0 ≤ RN∧n ≤ 26, it follows that E[N ∧ n] is bounded, whence E[N ] < ∞ by the

MCT. In particular, N <∞ a.s., so we may deduce that RN∧n → RN = 26 as n→ ∞ by

the BCT. It follows that E[N ] = 26. . . ..5"

Similarly, the mean time until HHTTHH if P (H) = p is equal to the payback at the

corresponding time N , i.e., p−4q−2 + p−2 + p−1, where q := 1− p. . . .1"

We now compute the chance that one pattern occurs before another, e.g., A := 〈0, 2, 0〉
before B := 〈1, 0, 0, 2〉 in the first game above. The key is the use of the following relations.

Let NA, NB be the first time A, B occur, respectively, M := NA ∧ NB , and PA be the
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probability that A occurs before B. Let NA|B be the number of trials after B occurs until

A occurs, and define NB|A likewise. Then

E[NA] = E[M + (NA −M)] = E[M ] + E[NA −M | NB < NA](1− PA)

= E[M ] + (1− PA)E[NA|B ],

E[NB ] = E[M ] + PAE[NB|A].

. . . Solving for PA and E[M ] gives1"

PA =
E[NB ] + E[NA|B ]− E[NA]

E[NB|A] + E[NA|B ]

and

E[M ] = E[NB ]− PAE[NB|A].

In the case at hand, we already have E[NA] = 26. Similar reasoning gives E[NB ] = 72.

Clearly E[NB|A] = 72 as well. To calculate E[NA|B ], we could use the same scheme as

before, with gamblers starting to bet at each trial hoping to get A, but now we simply

assume that B occurs immediately, i.e., the first 4 trials are 1, 0, 0, 2: what occurs after this

is still a martingale, but X4, our net gain after these 4 trials, no longer has expectation

0. However, this is a little confusing, so instead, we do the following. We have that

NA|B = NA|〈0,2〉 and NA = N〈0,2〉+NA|〈0,2〉, . . . whence E
[
NA|B

]
= E[NA]−E

[
N〈0,2〉

]
=.5"

26− 12 = 14. Substitution into our formulas gives

PA =
30

43
and E[M ] =

936

43
.

Example (Problem 6.11). Let 〈Zn〉 be simple random walk on Z starting from Z0 = 0;

this means that Zn =
∑n

k=1Xk, where Xk are i.i.d. for k ≥ 1 and equal ±1 with equal

probability. Let τa := inf{n ; Zn = a}. Set τ := τa ∧ τ−b for a, b > 0. The process〈
(a− Zn)(Zn + b) + n

〉
is a martingale: . . . Fix N ∈ N. Then we may apply the optional2"

stopping theorem to get

ab = (a− Z0)(Z0 + b) + 0 = E
[
(a− Zτ∧N )(Zτ∧N + b) + τ ∧N

]
.

Since Zτ∧N is bounded, it follows that so is E[τ ∧ N ], whence E[τ ] < ∞ by the MCT.

This implies that τ <∞ a.s., whence letting N → ∞ gives E[τ ] = ab. . . .1"

Now 〈Zn〉 is itself a martingale, whence . . ..5"

0 = E[Zτ ] = aP [τa < τ−b]− b P [τ−b < τa],
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giving P [τa < τ−b] = b/(a+ b).

If we let b → ∞, we obtain that τa < ∞ a.s. Thus, simple random walk is recurrent,

i.e., it visits every integer a.s., whence it visits every integer infinitely many times a.s. In

addition, the conclusion of Wald’s equation Theorem 3.3.2 does not hold for the stopping

time τa, whence E[τa] = ∞.

Example 6.2(c) and Problem 6.12. Consider three players, A, B, and C, who play

the following game: They begin with fortunes a, b, c ∈ N+, respectively. At each time, a

pair of the players whose fortunes are strictly positive is chosen at random and a random

one of that pair gives one unit to the other. Let Xn, Yn, Zn be their respective fortunes

after n plays. What is the expected time until some player’s fortune is zero? What is the

expected time until two players’ fortunes are zero (at which time the game ends)?

↓

Solution. The previous example shows that with only two players, A and B, the process

〈XnYn + n〉 is a martingale. It follows that 〈XnYn + YnZn + ZnXn + n〉 is a martingale.

Because XnYn + YnZn + ZnXn is bounded, we get as above that the expected time until

two players’ fortunes are zero equals ab+ bc+ ca.

For the first question, we get the idea of somehow using XnYnZn. Indeed, calculating

with it, we find that 〈XnYnZn + n(Xn + Yn + Zn)/3〉 is a martingale. Because XnYnZn,

again, is bounded, we obtain that the expected time until some player’s fortune is zero

equals 3abc/(a+ b+ c).↑5"

Example: Let 〈Zn〉 be asymmetric random walk on Z starting from Z0 = 0; this means

that Zn =
∑n

k=1Xk, where Xk are i.i.d. for k ≥ 1 and equal ±1 with probabilities p and

q := 1 − p, respectively. For which s, r > 0 is 〈sZnr−n〉 a martingale? Choose s and r to

deduce that P [τa ≥ n] ≤ (q/p)−a/2(2
√
pq)n for a ≥ 1 and p > q. Thus, E[τa] < ∞ when

p > q (due to the inequality (a+ b)/2 ≥
√
ab with equality iff a = b). Make another choice

of s and r to calculate E[τa ∧ τ−b] when p 6= q.

↓

Solution. We get the condition ps + qs−1 = r. Note that r ≥ 2
√
pq with equality iff

s =
√
q/p. We make that choice. Then

1 = E
[
sZτa∧nr−(τa∧n)

]
≥ E[sar−n ; τa ≥ n]

because s ≤ 1. Thus, P [τa ≥ n] ≤ s−arn.
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Next choose r = 1 and s = q/p to obtain that 〈(q/p)Xn〉 is a martingale. Write

τ := τa ∧ τ−b. This martingale is bounded up to time τ , whence the optional stopping

theorem applies:

1 = E
[
(q/p)X0

]
= E

[
(q/p)Xτ

]
= (q/p)a P [τa < τ−b] + (q/p)−b P [τ−b < τa].

We can solve this to derive the probabilities in gambler’s ruin when p 6= q.↑5"

Example 6.2(b). For asymmetric random walk, what is E[τa] when p > q, a ≥ 1, and

Z0 = 0?

↓

Solution. We use another martingale: 〈Zn − (p− q)n〉. Fix N ∈ N and define τ := τa ∧N .

Then τ is bounded, so 0 = E[Z0 − (p − q)0] = E[Zτ − (p − q)τ ], i.e., (p − q)E[τa ∧N ] =

E[Zτa∧N ]. By the MCT, E[τa ∧N ] → E[τa] as N → ∞. Since |Zτa∧N | ≤ τa ∧N ≤ τa and

E[τa] < ∞ by the previous example (the book neglected to verify this), the LDCT gives

E[Zτa∧N ] → E[Zτa ] = a as N → ∞. In conclusion,

E[τa] =
a

p− q
.

We could also have applied Wald’s equation Theorem 3.3.2.↑4"
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Chapter 7

Random Walks

§7.1. Duality in Random Walks.

If 〈Xi〉 are i.i.d. and Sn :=
∑n

i=1Xi is the corresponding random walk, then a useful

observation is the “duality” property that 〈X1, X2, . . . , Xn〉 D
= 〈Xn, Xn−1, . . . , X1〉. We

give two applications. Let

N : = min{n ; Sn > 0},
M : = number of new minima of 〈Sn〉

= |{n ; ∀k ∈ [0, n) Sn ≤ Sk}|,
Rn : = number of distinct values of 〈Sk ; 0 ≤ k ≤ n〉

= |{S0, S1, . . . , Sn}|
= |{k ∈ [0, n] ; ∀j ∈ [0, k) Sk 6= Sj}|
= |{k ∈ [0, n] ; ∀j ∈ (k, n] Sk 6= Sj}|.

Rn is called (the size of) the range of 〈Sk ; 0 ≤ k ≤ n〉. If E[X] exists and is positive,

then by the SLLN, Sn → ∞ a.s., whence N < ∞ a.s. and M < ∞ a.s. Always Rn → ∞
a.s. (except if X = 0 a.s.).

Proposition 7.1.1. If µ := E[X] > 0, then E[N ] = E[M ] <∞ and E[SN ] = µE[N ].

Proposition 7.1.2. Without any assumption on E[X],

lim
n→∞

E[Rn]

n
= P [no return to 0] = P [∀n > 0 Sn 6= 0].

Hence limE[Rn]/n = 0 ⇐⇒ the random walk is recurrent.

Proof of Proposition 7.1.1. We have

E[N ] =

∞∑

n=0

P [N > n] =
∑

n≥0

P [∀k ≤ n Sk ≤ 0].
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By duality, this . . .1"

=
∑

n≥0

P [∀k ≤ n Sn − Sn−k ≤ 0] =
∑

n≥0

P [Sn is a new minimum] = E[M ].

Now the sequence of times at which minima occur form a renewal sequence with interarrival

times allowed to be infinite. Indeed, there are only a finite number of renewals since µ > 0;

their number is a geometric random variable, so E[M ] < ∞. Since this means that

E[N ] < ∞ also, we may apply Wald’s equation (not its extension) to conclude when

µ < ∞. If µ = ∞, then E[SN ] ≥ E[SN1[N=1]] = E[X11[X1>0]] ≥ E[X1] = ∞, so the

result holds still.

Proof of Proposition 7.1.2. We have

E[Rn] =

n∑

k=0

P [∀j ∈ (k, n] Sk 6= Sj ]

. . .1"

=

n∑

k=0

P [∀i ∈ (0, n− k] S0 6= Si]

=
n∑

k=0

P [∀i ∈ (0, k] Si 6= 0].

Since the summands → P [no return to 0], the result follows.

Remark. For the proof of Proposition 7.1.2, we used stationarity and reversed counting,

rather than duality (which the book uses). Thus, the result is more general: it applies

to stationary 〈Xi〉. We also don’t need the values of X to lie in R. It is also true that

Rn/n → P [no return] a.s. (Kesten, Spitzer, and Whitman; use the Kingman subadditive

ergodic theorem to prove this).

Example 7.1(a). Suppose that X = ±1 with probability 1
2 ± α. Then P [no return] =

1 − f00 = 2|α| (see the calculation of the Green function or the gambler’s ruin problem).

. . .1"

⊲ Read Proposition 7.1.3 in the book.
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Chapter 8

Brownian Motion and Other Markov Processes

§8.1. Introduction and Preliminaries.

The motion of a particle floating on water seems random. Model one coordinate

〈X(t)〉 as follows: 〈X(t)〉 is a stochastic process with independent, stationary increments

and continuous paths. Because of momentum, the independence of increments is not a

great assumption, but we will not study a better model.

For 0 ≤ s ≤ t, define

M(s, t) := max
{
|X(u)−X(v)| ; s ≤ u ≤ v ≤ t

}
.

Now, because 〈X(t)〉 is uniformly continuous on [0, 1], we have

Jn := max
|s−t|=1/n
s,t∈[0,1]

M(s, t) → 0 as n→ ∞,

whence ∀δ > 0 P [Jn ≥ δ] → 0. . . . These events are decreasing to ∅, but the.5"

BCT would give this even if not. In particular, if

Hn := max
1≤k≤n

M
(
(k − 1)/n, k/n

)
,

then ∀δ > 0 P [Hn ≥ δ] → 0 since Hn ≤ Jn. Now

P [Hn ≥ δ] = 1− P [Hn < δ] = 1−
n∏

k=1

P
[
M

(
(k − 1)/n, k/n

)
< δ

]

= 1− P
[
M(0, 1/n) < δ

]n

= 1−
[
1− P

[
M(0, 1/n) ≥ δ

]]n

≥ 1− e−nP [M(0,1/n)≥δ]
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since 1 − x ≤ e−x for all x ∈ R. Therefore, nP
[
M(0, 1/n) ≥ δ

]
→ 0. . . . By considering1"

the largest n for which h ≤ 1/n, it follows that

∀δ > 0 lim
h→0+

P
[
M(0, h) ≥ δ

]

h
= 0. (N1)

. . . Compare to a Poisson process; consider δ ≤ 1 or δ > 1. Using this and the1"

CLT, one can show (see Breiman’s Probability, Proposition 12.4) that

∃µ ∈ R ∃σ ≥ 0 ∀t ≥ 0 X(t)−X(0) ∼ N(µt, σ2t). (N2)

Demos of B.M.
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We call such a process a Brownian motion (B.M.) if X(0) is independent of 〈X(t)−
X(0) ; t > 0〉. If X(0) ≡ 0, µ = 0, and σ = 1, it is a standard Brownian motion or,

simply, Brownian motion. In general, µ is called the drift and σ2 is the variance

parameter. We always assume that σ 6= 0. Note that

X(t)−X(0)− µt

σ

is a standard Brownian motion and, if B(t) is a standard Brownian motion, then X(t) :=

a+µt+σB(t) is a Brownian motion starting at a with drift µ and variance parameter σ2.

. . . Also, if X is a Brownian motion, then −X is a Brownian motion. By the independent1"

increments property, a Brownian motion is aMarkov process, i.e., the future and the past

are independent given the present: for all t > 0, the two collections of random variables

〈X(s) ; s > t〉 and 〈X(s) ; s < t〉 are independent given X(t).

A stochastic process with independent, stationary increments satisfying (N2) need

not be continuous, even a.s., despite the book’s claim (p. 358). . . . Adding (N1) to (N2)1"

does imply a.s. continuity. However, given a process X(·) with independent, stationary

increments satisfying (N2), there is a Brownian motion X̃(·) such that ∀t P
[
X(t) =

X̃(t)
]
= 1. This is not easy to show. A strengthening follows from its proof:

Theorem. Let X(·) be a stochastic process on an interval I ⊆ [0,∞) that is a.s. contin-

uous and has the same finite-dimensional marginals as Brownian motion does on I. Then

X(·) is the restriction to I of a Brownian motion.

Why should we believe that a Brownian motion exists? We can get it as a limit of

random walks that take small steps very quickly: let Yn be i.i.d. ±1 steps with E[Yn] = 0,

∆x > 0, and ∆t > 0. If we want a step of size ∆x to take place in time ∆t, we can let

D(t) :=

⌊t/∆t⌋∑

k=1

∆x · Yk.

How should ∆x and ∆t be related? We have

VarD(t) = ⌊t/∆t⌋ · (∆x)2 · 1,

so if D(t) converges to standard Brownian motion X(t), we should have (∆x)2/∆t con-

verging to 1. So take ∆t := 1/n, ∆x = 1/
√
n, and let Dn(t) be the corresponding process.

By the CLT, Dn(t) ⇒ N(0, t) for each t. In fact, the finite dimensional marginals of Dn(t)

converge to those of standard Brownian motion. . . . This makes quite plausible the ex-2"

istence of Brownian motion and shows how its study extends the study of sums of i.i.d.

random variables. Note that there was little special about Yn being ±1.

Demo of random walk.
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§8.3.3. Geometric Brownian Motion.

To model stock prices, say, one needs a stochastic process that is ≥ 0. Furthermore, it

might be reasonable that % changes over time intervals of the same length are i.i.d., that

is, that the distribution of [X(t+∆t)−X(t)]/X(t) should depend on ∆t but not on t, and

that these quotients should be independent when disjoint intervals [t, t+∆t] are considered.

This is the same as having X(t+∆t)/X(t) be i.i.d., or of having logX(t+∆t)− logX(t)

be i.i.d. In other words, if prices are continuous, then this is the same as Y (t) := logX(t)

being a Brownian motion, i.e.,

X(t) = eY (t), Y a Brownian motion.

Such an X is called a geometric Brownian motion. Actually, for such modeling, X

should have units of currency, whereas Y cannot have units since it is exponentiated.

In the quotient X(t + ∆t)/X(t), such units cancel. Thus, it makes more sense to use

X(t) = X(0)eY (t) with Y (0) ≡ 0 and X(0) having currency units.

Four samples of a geometric Brownian motion.

Recall that the m.g.f. of a normal random variable W is

E[eaW ] = eaE[W ]+a2 Var(W )/2.

Thus, for X as above with Y having drift µ and variance parameter σ2, and for s < t,

E
[
X(t)/X(s)

]
= E

[
eY (t)−Y (s)

]
= eµ(t−s)+σ2(t−s)/2.
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Note that

E
[
X(t)

∣∣ 〈X(u) ; 0 ≤ u ≤ s〉
]
= X(s)E

[X(t)

X(s)

∣∣∣ 〈X(u) ; 0 ≤ u ≤ s〉
]

= X(s)E
[X(t)

X(s)

]
= X(s)eµ(t−s)+σ2(t−s)/2.

Therefore,

E
[
e−αtX(t)

∣∣ 〈X(u) ; 0 ≤ u ≤ s〉
]
= e−αsX(s) (N3)

when

α = µ+ σ2/2. (N4)

Later, we will see that this means that 〈e−αtX(t)〉 is a continuous-time martingale. We

call α the drift parameter of X and σ2 the variance parameter of X. Note that µt

and σ2t are unitless, whence so is αt.

Note that if α is the (continuously compounded, risk-free, constant) interest rate,

then the “theoretical” future price of the stock discounted to present value should be a

martingale: if the = in (N3) didn’t hold, either no one would buy, so the price would fall,

or there would be an infinite demand, so the price would rise. Thus, if geometric Brownian

motion is to be a good model for stock prices and these other ideal assumptions hold, then

we would certainly need (N3) and (N4), where α is the interest rate.

Now various kinds of options are also available on the stock. For example, for cost c,

you can purchase a “call” option that gives you the right (not obligation) to buy a share

of the stock at a fixed time T for a fixed price K. What should c be as a function of T

and K? At time T , this option is worth
(
X(T ) − K

)+
, so now, at time 0, it is worth

e−αT
(
X(T )−K

)+
. This means that we should have the theoretical price

c = E
[
e−αT

(
X(T )−K

)+]
.

When computed, this gives the Black–Scholes formula. Briefly, this goes as follows:

Denote κ := K/X(0), which is unitless. Since Y (T )− Y (0) ∼ N(µT, σ2T ), we have

c

X(0)
= E

[
e−αT

(
eY (T )−Y (0) − κ

)+]

= e−αT

∫ ∞

−∞

(
ey − κ

)+ 1√
2πσ2T

e−(y−µT )2/(2σ2T ) dy

=
e−αT

√
2πσ2T

∫ ∞

log κ

(
ey − κ

)
e−(y−µT )2/(2σ2T ) dy

= Φ(σ
√
T + b)− κe−αTΦ(b),
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where

b :=
αT − σ2T/2− log κ

σ
√
T

and Φ := c.d.f. of N(0, 1).

This uses (N4) to eliminate µ in favor of α and σ2. Note that if we look at the currency

unit, then we see that c/X(0) is a function of the unitless κ, as it ought to be.

§8.2. Hitting Times, Maximum Value, and Arc Sine Laws.

How long does it take (standard) Brownian motion to hit a 6= 0? By symmetry, we

may consider only a > 0. Let Ta := inf{t ≥ 0 ; X(t) = a} be the hitting time of a. Note

that

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

Illustration of reflection of Brownian motion at level 1/3.

P
[
X(t) > a

∣∣ Ta < t
]
=

1

2

. . . by symmetry and the strong Markov property.2"

This property was stated in Chap. 2: Suppose τ is a random variable with values in [0,∞) such
that for all s, the event that τ ≤ s depends only on X(t) for t ≤ s. Then if an event A is defined
in terms of X(t) for t ≤ τ and another event B is defined in terms of X(τ + t)−X(τ) for t ≥ 0,
then A and B are independent. Furthermore, the law of 〈X(τ + t)−X(τ) ; t ≥ 0〉 is the same
as the law of 〈X(t) ; t ≥ 0〉.

This is called the reflection principle. Note that P
[
X(t) = a

]
= 0 and [Ta = t] ⊆

[X(t) = a], so also P [Ta = t] = 0. Therefore, whether we have strict inequalities or not

in the reflection principle makes no difference. Since X(t) ≥ a ⇒ Ta ≤ t, the reflection

principle is the same as

P [Ta ≤ t] = 2P
[
X(t) ≥ a

]
= 2P

[
X(t)/

√
t ≥ a/

√
t
]
=

√
2

π

∫ ∞

a/
√
t

e−y2/2 dy. (N5)
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. . . In particular, P [Ta < ∞] = 1, . . . so Brownian motion is recurrent: a.s., it visits1"1"

every real number. (In the random walk demo, if we regard the scaling for the

random walk to time n not as ∆t = 1/n but ∆t = 1/
√
n (and so ∆x = 1/n1/4),

then we see an approximation to B.M. up to time
√
n.) Is it positive recur-

rent, by which we mean: is E[Ta] <∞? Note that

P [Ta > t] =

√
2

π

∫ a/
√
t

0

e−y2/2 dy ∼
√

2

π

a√
t

as t→ ∞,

whence E[Ta] =
∫∞
0
P [Ta > t] dt = ∞. Thus, Brownian motion is null recurrent.

This could also have been derived from the null recurrence of simple random walk on Z: Let
τ0 := 0, τ1 := T1 ∧ T−1, and, in general, let τn+1 be the first time t after τn that X(t) equals
X(τn)±1. Then 〈X(τn)〉n is simple random walk with E[τn+1 − τn] = E[τ1] = 1 (to be proved
later). Let N := min{n ; X(τn) = 1}. Then

T1 =
N∑

n=1

(τn − τn−1),

so Wald’s equation gives E[T1] = E[N ] = ∞. . . .1"

Note that we easily get the distribution of another random variable: for a > 0,

P
[
max
0≤s≤t

X(s) < a
]
= P

[
Ta > t

]
=

√
2

π

∫ a/
√
t

0

e−y2/2 dy.

§8.3.1. Brownian Motion Absorbed at a Value.

Define Brownian motion absorbed at a by

Z(t) :=

{
X(t), if t < Ta,
a, if t ≥ Ta.

If a > 0, then

P
[
Z(t) = a

]
= P [Ta ≤ t] =

√
2

π

∫ ∞

a/
√
t

e−y2/2 dy.

What is more interesting is the rest of the distribution of Z(t): for x < a,

P
[
Z(t) ≤ x

]
=

1√
2πt

∫ x

x−2a

e−y2/(2t) dy.

This is shown by clever use of the reflection principle: read §8.3.1.
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§8.3.2. Brownian Motion Reflected at the Origin.

How do we reflect Brownian motion at, say, 0? We simply define

Z(t) := |X(t)|.

The c.d.f. of Z(t) is easily computed: for y ≥ 0, we have

P
[
Z(t) ≤ y

]
= P

[
X(t) ≤ y

]
− P

[
X(t) < −y

]
= Φ(y/

√
t )− Φ(−y/

√
t ) = 2Φ(y/

√
t )− 1,

. . . where Φ is the c.d.f. of N(0, 1).1"

If we wished to reflect at a > 0, we would define

Z(t) :=

{
X(t) if X(t) ≤ a,
2a−X(t) if X(t) ≥ a.

§8.4. Brownian Motion with Drift.

If 〈X(t) ; t ≥ 0〉 is a Markov process, we write Px for probability and Ex for expec-

tation when the process starts at x, i.e., X(0) = x. If f is a real-valued function on the

state space for which

(Lf)(x) := lim
t→0+

Ex

[f
(
X(t)

)
− f(x)

t

]

exists for every initial state x, then we write f ∈ DL. More generally, DL(x) denotes the

set of functions f for which (Lf)(x) exists. Thus, DL =
⋂

x DL(x). The functional L

defined on DL is called the infinitesimal generator of the process.

For Brownian motion, the above notation is interpreted as X(t) = B(t) + x, where

B(·) is a Brownian motion with the same drift and variance parameter as X, but B(0) ≡ 0.

Theorem. If 〈X(t)〉 is a Brownian motion, then DL ⊇ C2
b(R) (the space of bounded

functions on R with a continuous second derivative) and

Lf = µf ′ +
σ2

2
f ′′ for f ∈ C2

b(R).

More generally, if f is bounded on R and has a continuous second derivative in a neigh-

borhood of x, then f ∈ DL(x) and

(Lf)(x) = µf ′(x) +
σ2

2
f ′′(x).
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Proof. Fix x ∈ R. If f has a continuous second derivative near x, then

f(y) = f(x) + f ′(x)[y − x] +
1

2
f ′′(x)[y − x]2 + o

(
[y − x]2

)
. (N6)

Therefore

Ex

[
f
(
X(t)

)
− f(x)

]
= f ′(x)µt+ f ′′(x)

σ2t+ (µt)2

2
+ o(t). (N7)

Interchanging Ex and o(·) to derive (N7) from (N6) requires justification. We will merely
describe how to do this: Let f0 be a function in C2

b(R) that has a bounded second derivative
and equals f near x. The chance that X(t) is not near x is o(t) by (N1), so we may replace f
by f0. Now use f0(y) = f(x)+ f ′(x)[y−x] + (1/2)f ′′(x)[y−x]2 + g(y)[y−x]2 in place of (N6),
where |g(y)| ≤ max

{
|f ′′

0 (z)− f ′′(x)|/2 ; |z − x| ≤ |y − x|
}
. Then use the LDCT to get (N7).

Thus,

Ex

[f
(
X(t)

)
− f(x)

t

]
= f ′(x)µ+ f ′′(x)

σ2 + µ2t

2
+ o(1).

To apply this result, let a, b > 0 and let

f(x) := Px[Ta < T−b].

We claim that Lf = 0 on (−b, a), i.e., that Ex

[
f
(
X(t)

)]
= f(x) + o(t) as t → 0 for

−b < x < a. . . . Note first that the Markov property implies that.5"

∣∣f
(
X(t)

)
− Px

[
Ta < T−b | X(s) (s ≤ t)

]∣∣ ≤ 1[Ta∧T−b<t].

. . . Therefore,1"

∣∣∣Ex

[
f
(
X(t)

)]
− f(x)

∣∣∣ =
∣∣∣Ex

[
f
(
X(t)

)]
− Ex

[
Px[Ta < T−b | X(s) (s ≤ t)]

]∣∣∣

≤ Ex

[∣∣∣f
(
X(t)

)
− Px

[
Ta < T−b | X(s) (s ≤ t)

]∣∣∣
]

≤ Ex

[
1[Ta∧T−b<t]

]
= Px[Ta ∧ T−b < t].

Now

Px[Ta ∧ T−b < t] ≤ Px

[
max
0≤s≤t

|X(s)− x| ≥ |x− a| ∧ |x+ b|
]
= o(t)

by (N1). Therefore f ∈ DL and Lf = 0, as claimed. We will not prove that f ∈
C2(−b, a) ∩ C[−b, a], which is true, but assume it. Consider first the case where µ = 0.

Then f ′′ = 0, so f is linear. Since f(a) = 1 and f(−b) = 0, we get

f(x) =
x+ b

a+ b
(−b ≤ x ≤ a) ;
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in particular,

f(0) = b/(a+ b).

Recall resistances, simple random walk.

Now let µ 6= 0. The equation Lf = 0 is

µf ′(x) +
σ2

2
f ′′(x) = 0.

Integration gives

µf(x) +
σ2

2
f ′(x) = C,

whence
d

dx

{σ2

2
e2µx/σ

2

f(x)
}
= Ce2µx/σ

2

,

. . . so that1"

f(x) = C1 + C2e
−2µx/σ2

.

. . . [We could also have used separation of variables to solve the differential equation.]1"

Since f(a) = 1 and f(−b) = 0, we get

f(x) =
e2µb/σ

2 − e−2µx/σ2

e2µb/σ2 − e−2µa/σ2 .

In particular,

f(0) =
e2µb/σ

2 − 1

e2µb/σ2 − e−2µa/σ2 .

This corresponds to a conductivity at x of e2µx/σ
2

, since for a variable conductivity

C(x), we have

f(x) =
C(x↔ a)

C(x↔ a) + C(x↔ −b) =
R(x↔ −b)
R(−b↔ a)

=

∫ x

−b

C(s)−1ds
/∫ a

−b

C(s)−1 ds

=
−e2µs/σ2 ∣∣x

−b

−e−2µs/σ2
∣∣a
−b

.
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Note that T−b1 ≤ T−b2 when X(0) = 0 and 0 < b1 < b2, (we have equality when

T−b1 = ∞) so that [Ta < T−b1 ] ⊆ [Ta < T−b2 ]. Also,
⋃

b>0[Ta < T−b] = [Ta < ∞] (we

allow T−b = ∞). . . . Thus, letting b→ +∞ gives1"

P0[Ta <∞] = P0

[
max
t≥0

X(t) ≥ a
]
=

{
1 if µ ≥ 0,
e2µa/σ

2

if µ < 0.

. . . Thus, if µ < 0, we find that maxt≥0X(t) ∼ Exp(−2µ/σ2). That maxt≥0X(t) has an1"

exponential distribution follows also from the strong Markov property. . . .2"

By symmetry, it also follows that P0[T−b < ∞] = 1. Hence a Brownian motion with

negative drift visits every negative real number with probability 1. We claim that, in

fact, limt→∞X(t) = −∞ a.s. To see this, let A be the event that the set of times t

where X(t) = 0 is unbounded. Then A ⊆ [∃t > T−n X(t) = 0] ∪ [T−n = ∞] for each

n ∈ N+. That last set has P0-probability 0 by what we just proved. On the other hand,

P−n[T0 < ∞] = e2µn/σ
2

. . . . Thus, P0(A) = 0, so 0 is a.s. not visited after some random,.5"

finite time. Similarly, let Ak be the event that the set of times t where X(t) = −k is

unbounded. Then Ak ⊆ [∃t > T−k−n X(t) = −k]∪ [T−k−n = ∞] for each n ∈ N+. Again,

this gives us that

P0(Ak) ≤ P0[∃t > T−k−n X(t) = −k] = E0

[
P0[∃t > T−k−n X(t) = −k | T−k−n]

]

= E0

[
P−k−n[∃t > 0 X(t) = −k]

]
= e2µn/σ

2

by the strong Markov property, whence P0(Ak) = 0. Therefore, P0

(⋂
k A

c
k

)
= 1, which

combines with P0

[
lim inftX(t) = −∞

]
= 1 to yield P0

[
limtX(t) = −∞

]
= 1.

Here’s an interesting game: Brownian motion X(t) with parameter (µ, σ2), µ < 0,

X(0) ≡ 0, is run for all t ≥ 0 “quickly”; e.g., we may observe X
(
s/(1− s)

)
for 0 ≤ s < 1.

You may stop it at any time depending on only the values of X before that time (e.g., you

are not allowed to know maxt≥0X(t)); if you stop it at time t, then you collect X(t). You

are not required to stop it. How much should you pay to play?

Suppose that your rule is to fix x and stop if and when X(t) = x. Then your expected

gain would be x · P
[
maxt≥0X(t) ≥ x

]
= xe2µx/σ

2

, which is maximal at x = −σ2
/
(2µ), so

the value is −σ2
/
(2µe). The clairvoyant value of this game is −σ2/(2µ), so we

lose only a factor of e. Best possible strategy, as we’ll see later using mar-

tingales.
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§8.1. Introduction and Preliminaries (again).

For some additional topics, we need to study the multivariate normal distribution,

Example 1.4(b), since 〈X(t1), . . . , X(tn)〉 has this distribution. Recall again that the m.g.f.

of N(µ, σ2) is t 7→ eµt+σ2t2/2. If Xi ∼ N(µi, σ
2
i ) (i = 1, 2) are independent, then the m.g.f.

of X1 +X2 is

t 7→ E
[
et(X1+X2)

]
= E

[
etX1

]
E
[
etX2

]
= exp

{
(µ1 + µ2)t+ (σ2

1 + σ2
2)t

2/2
}
,

whence, by uniqueness of the m.g.f. (which requires some assumptions—it suffices that the

m.g.f. exists on the entire real line—and which we did not prove), X1 + X2 ∼ N(µ1 +

µ2, σ
2
1 + σ2

2).

Define the joint m.g.f. of random variables X1, . . . , Xn by

(t1, . . . , tn) 7→ E
[
e
∑n

i=1tiXi
]
.

This uniquely determines the joint distribution of 〈X1, . . . , Xn〉 when it is finite for all

(t1, . . . , tn). The notation is simpler if we use vectors: t := (t1, . . . , tn), X := (X1, . . . , Xn),

t 7→ E[et·X].

Now let Z1, . . . , Zn be independent normal random variables, µi, aij ∈ R (1 ≤ i ≤ m,

1 ≤ j ≤ n), and

Xi =
n∑

j=1

aijZj + µi (1 ≤ i ≤ m).

Then we say that 〈X1, . . . , Xm〉 has a multivariate normal distribution, or that they

are jointly normal random variables. Note that by the preceding result, each Xi is

normal. In addition, it follows from the definition that random variables that are lin-

ear combinations of the coordinates of a multivariate normal random vector also have a

multivariate normal distribution.

What is the joint m.g.f. t 7→ E[et·X] of a multivariate normal random variable, X?

Since t · X is normal for a given t, we need merely find E[t · X] and Var(t · X) in or-

der to determine E[et·X]. These functions of t, in turn, are easily specified via E[Xi]

and Cov(Xi, Xj). We conclude that the joint distribution of 〈X1, . . . , Xm〉 is uniquely

determined by their individual expectations and their pairwise covariances.

Let’s be more explicit. We have

E[et·X] = exp
{
E[t ·X] + Var(t ·X)/2

}
= exp

{∑

i

tiE[Xi] +
∑

i,j

titjCov(Xi, Xj)/2
}
.
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Now consider the case that for some index subset I, we have Cov(Xk, Xℓ) = 0 whenever

k ∈ I and ℓ /∈ I. Then the above can be factored as

E[et·X] = exp
{∑

i∈I

tiE[Xi] +
∑

i,j∈I

titjCov(Xi, Xj)/2
}
×

exp
{∑

i/∈I

tiE[Xi] +
∑

i,j /∈I

titjCov(Xi, Xj)/2
}
.

. . . Since the m.g.f. determines the joint distribution, it follows that 〈Xk ; k ∈ I〉 is1"

independent of 〈Xℓ ; ℓ /∈ I〉. . . . In other words, for jointly normal random variables,1"

pairwise vanishing covariances is the same as pairwise independence and is the same as

mutual independence.

Definition. A Gaussian process 〈X(t) ; t ≥ 0〉 is a stochastic process such that

∀t1, . . . , tn 〈X(t1), . . . , X(tn)〉 has a multivariate normal distribution.

By the preceding, we see that a Gaussian process has all its finite-dimensional marginals

uniquely determined by the means E
[
X(t)

]
and the covariances Cov

(
X(s), X(t)

)
. This

determines the process as a whole in the usual sense of distribution; continuous sample

paths are a different matter.

For example, every Brownian motion X with X(0) being constant is a Gaussian

process. . . . The means are E
[
X(t)

]
= X(0) + µt. If s ≤ t, then1"

Cov
(
X(s), X(t)

)
= Cov

(
X(s), X(t)−X(s) +X(s)

)

= Var
(
X(s)

)
= σ2s .

Thus, for general s and t, we have Cov
(
X(s), X(t)

)
= σ2(s ∧ t).

Suppose that a Gaussian process X with X(0) ≡ 0 is at A at time t. How did it

get there? I.e., what is the distribution of the process 〈X(s)〉0≤s≤t given X(t) = A? Let

0 < s < t. Forget the conditioning for the moment. Write Q(s, t) := Cov
(
X(s), X(t)

)
and

Y (s) := X(s)− Q(s, t)

Q(t, t)
X(t).

Write this as

X(s) = Y (s) +
Q(s, t)

Q(t, t)
X(t) ;

the first part, Y (s), has covariance 0 with the second part, . . . whence the two parts1"

are independent. That is, the distribution of X(s) given X(t) = A is the same as the

unconditional distribution of Y (s) + Q(s,t)
Q(t,t)A. . . . Because pairwise independence implies1"
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mutual independence for jointly normal random variables, it follows that given 0 ≤ s1 <

s2 < · · · < sn < t, the random variables 〈Y (sk) ; 1 ≤ k ≤ n〉 are independent of X(t),

and so the conditional distribution of 〈X(sk) ; 1 ≤ k ≤ n〉 given X(t) = A equals the

unconditional distribution of 〈Y (sk) +
Q(sk,t)
Q(t,t) A ; 1 ≤ k ≤ n〉. These random variables are

linear combinations of those in X (plus constants), whence have a multivariate normal

distribution. That is, 〈Y (s) + Q(s,t)
Q(t,t)A ; 0 ≤ s ≤ t〉 is a Gaussian process. In other words,

the process 〈X(s) ; 0 ≤ s ≤ t〉 given X(t) = A is a Gaussian process. (In fact, the

argument above works for all s > 0.)

Consider the special case of a Brownian motion with X(0) ≡ 0 and parameter (µ, σ2).

Conditional that X(t) = A, this is called Brownian bridge Z(·) (from 0 to A on [0, t]).

Using our formula for general Gaussian processes, we get that the distribution of Z(s)

equals the (unconditional) distribution of X(s) − (s/t)
(
X(t) − A

)
. . . . Since this is a1.5"

Gaussian process, we can characterize it by its means and covariances. These are, for

0 ≤ s ≤ s′ ≤ t,

E
[
Z(s)

]
= E

[
X(s)− (s/t)

(
X(t)−A

)]
= µs− (s/t)(µt−A) = As/t

and
Cov

(
Z(s), Z(s′)

)
= Cov

(
X(s)− (s/t)X(t), X(s′)− (s′/t)X(t)

)

= σ2
(
s− ss′/t− ss′/t+ ss′/t

)
= σ2s(t− s′)/t.

For example, the conditional distribution of X(s) given X(t) = A is

(
X(s)

∣∣ X(t) = A
)
∼ N(As/t, σ2s(t− s)/t).

Also note that E[X(s) | X(t) = A] is linear in s and the conditional variance → 0 as s→ 0

and as s→ t.

We also notice that the distribution of the Brownian bridge process is independent of

µ, which is quite surprising at first. Now the unconditional law of 〈X(s)〉0≤s≤t is a mixture

of these conditional laws, where A = X(t) ∼ N(µt, σ2t) does depend on µ. In other words,

first sample X(t) ∼ N(µt, σ2t), and then sample the Brownian bridge from 0 to this value

of X(t). Thus, the drift µ cannot be estimated more precisely by knowing 〈X(s) ; s ≤ t〉
than by knowing X(t) alone. We can also note that the law of 〈X(s)− As/t ; 0 ≤ s ≤ t〉
given X(t) = A is the same as the law of 〈X(s) ; 0 ≤ s ≤ t〉 given X(t) = 0. Thus, when

we sample the Brownian bridge from 0 to A, we could just sample a Brownian bridge from

0 to 0 and add to it the linear function s 7→ As to get a bridge from 0 to A.

The standard Brownian bridge has A = 0, t = 1, and σ = 1. In fact, for simplicity,

we now take t = 1 for the following summary:
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Proposition 8.1.1. If 〈X(t) ; t ≥ 0〉 is a Brownian motion with X(0) ≡ 0 and Z(t) :=

X(t)−X(1)t+At, then 〈Z(t) ; 0 ≤ t ≤ 1〉 is a Brownian bridge from 0 to A.

These considerations also tell us one way to simulate (or even construct) Brown-

ian motion: For instance, suppose we want to simulate Brownian motion X(·) on [0, 1].

First, choose X(1) ∼ N(0, 1). Then choose X(1/2) with the appropriate distribution for

a bridge from 0 to X(1), namely, X(1/2) ∼ N
(
X(1)/2, 1/4

)
. Similarly, choose X(1/4) ∼

N
(
X(1/2)/2, 1/8

)
and X(3/4) ∼ N

(
(X(1/2) + X(1))/2, 1/8

)
: see Exercise 93. Continue

to the desired precision and finally linearly interpolate between successive values. This

method is due to Paul Lévy.

⊲ Read pp. 361--363 in the book.

§8.4.1. Using Martingales to Analyze Brownian Motion.

Generalizing from the case of discrete time, we call 〈Z(t) ; t ≥ 0〉 a martingale if

(i) ∀t E|Z(t)| <∞ and

(ii) ∀s < t E
[
Z(t) | 〈Z(u) ; 0 ≤ u ≤ s〉

]
= Z(s).

We call a [0,∞]-valued random variable τ a stopping time (for Z(·)) if ∀t 1[τ≤t] is a

function of 〈Z(s) ; 0 ≤ s ≤ t〉. If τ is a stopping time, then so is τ ∧ r for every r ≥ 0.

More generally, if τ1 and τ2 are both stopping times, then so is τ1 ∧ τ2. Indeed, τ1 ∧ τ2 ≤ t

iff τ1 ≤ t or τ2 ≤ t. Hence, 1[τ1∧τ2≤t] = 1[τ1≤t] ∨ 1[τ2≤t].

The Optional Stopping Theorem. Let 〈Z(t) ; t ≥ 0〉 be a martingale with right-

continuous sample paths a.s. and let τ be an a.s. finite stopping time. If

(i) E|Z(τ)| <∞ and

(ii) limt→∞E
[
Z(t)1[τ>t]

]
= 0,

then

E
[
Z(τ)

]
= E

[
Z(0)

]
.
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The hypotheses (i) and (ii) hold if τ is bounded.

To see the last sentence, approximate τ by finite-valued stopping times

and use that |Z(t)| is a submartingale, so E|Z(τ)| ≤ E|Z(t)| for any fixed t >

‖τ‖∞. To prove this theorem, apply Durrett, Theorem 7.5.1, to τ∧t and let

t→ ∞.

In fact, the same holds for τ that is an a.s. finite stopping time with respect to a

stochastic process of the form 〈(Zt,Wt) ; t ≥ 0〉. Typically, this is used when Zt is a

function of Wt.

To see that some hypothesis is needed, note that standard Brownian motion X(·) is

a martingale, but if τ = T1 is the hitting time of 1, then E
[
X(T1)

]
= 1 6= 0 = E

[
X(0)

]
.

Here, T1 clearly satisfies (i), so it must be that T1 does not satisfies (ii). The conclusion,

then, is that X(t) might be very negative when t < T1.

A sufficient condition for (i) and (ii) is that there is some nonnegative random variable

W with E[W ] < ∞ such that for all t ≥ 0, we have |Z(τ ∧ t)| ≤ W (e.g., W could be

bounded). Use the LDCT and note that Z(t)1[τ>t] = Z(τ ∧ t)1[τ>t].

Example: If 〈X(t)〉 is standard Brownian motion, then 〈X(t)2 − t〉 is a martingale.

Indeed, for s < t we have

E
[
X(t)2 − t

∣∣ 〈X(u)2 − u ; 0 ≤ u ≤ s〉
]

= E
[
E
[
X(t)2 − t

∣∣ 〈X(u) ; 0 ≤ u ≤ s〉
] ∣∣∣ 〈X(u)2 − u ; 0 ≤ u ≤ s〉

]

= E
[
E
[
(X(t)−X(s)︸ ︷︷ ︸

N(0,t−s)

+X(s)

︸ ︷︷ ︸
N(X(s),t−s)

)2 − t
∣∣ 〈X(u) ; 0 ≤ u ≤ s〉

] ∣∣∣ 〈X(u)2 − u ; 0 ≤ u ≤ s〉
]

= E
[
(t− s) +X(s)2 − t

∣∣∣ 〈X(u)2 ; 0 ≤ u ≤ s〉
]

. . ..5"

= X(s)2 − s.

Corollary. For standard Brownian motion, E[T1 ∧ T−1] = 1.

Proof. Let τ := T1 ∧ T−1, which is the hitting time of the set {1,−1}. Then ∀t, we may

apply the optional stopping theorem to the bounded stopping time τ ∧ t to obtain

E
[
X(τ ∧ t)2 − τ ∧ t

]
= E

[
X(0)2 − 0

]
= 0,
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i.e.,

E[τ ∧ t] = E
[
X(τ ∧ t)2

]
.

By the MCT, the left-hand side tends to E[τ ] as t → ∞. Because the right-hand side is

at most 1, it follows that E[τ ] < ∞ and so τ < ∞ a.s. Therefore, we can apply the BCT

to the right-hand side and obtain the limit E
[
X(τ)2

]
= E[1] = 1. This is then the value

of E[τ ].

We can get easily a new proof that for standard Brownian motion, P [Ta < T−b] =

b/(a + b) (a, b > 0). First note that a proof similar to the above corollary shows that

E[Ta ∧ T−b] < ∞, so, in particular, Ta ∧ T−b < ∞ a.s. Therefore, if p := P [Ta < T−b], we

have

0 = E
[
X(Ta ∧ T−b)

]
= ap− b(1− p).

There are special extensions of the optional stopping theorem for Brownian martingales:

Wald’s First Identity. Let X(·) be standard Brownian motion. If τ is a stopping time
with E[τ ] < ∞, then E

[
X(τ)

]
= 0.

Proof. We will show that the hypotheses of the optional stopping theorem as we stated it above
hold. First, consider t < ∞ and the stopping time τ ∧ n. We have

E
[
|X(τ ∧ n)|

]2 ≤ E
[
X(τ ∧ n)2

]
= E[τ ∧ n] ≤ E[τ ], (N8)

because the square of the first moment of a random variable is at most its second moment.
Hence, Fatou’s lemma gives

E
[
|X(τ)|

]
≤ lim inf

n→∞
E
[
|X(τ ∧ n)|

]
≤ E[τ ]1/2 < ∞.

This establishes condition (i) of the optional stopping theorem. Next, use the Cauchy–Schwarz
inequality (Exercise 8.28) to see that

E
[
X(t)1[τ>t]

]2
= E

[
X(τ ∧ t)1[τ>t]

]2 ≤ E
[
X(τ ∧ t)2

]
E[12

[τ>t]] ≤ E[τ ]P [τ > t].

Since τ < ∞ a.s., this tends to 0 as t → ∞, yielding condition (ii).

Wald’s Second Identity. Let X(·) be standard Brownian motion. If τ is a stopping time
with E[τ ] < ∞, then E

[
X(τ)2

]
= E[τ ].

Proof. As above, Fatou’s lemma and (N8) yield E
[
X(τ)2

]
≤ E[τ ], so it remains to establish

the reverse inequality. Write X(τ) = X(τ ∧ n) +
[
X(τ) − X(τ ∧ n)

]
, square, and take the

expectation:

E
[
X(τ)2

]
= E

[
X(τ ∧ n)2

]
+ E

[[
X(τ)−X(τ ∧ n)

]2]
+ 2E

[
X(τ ∧ n)

[
X(τ)−X(τ ∧ n)

]]
.

By the strong Markov property and independent increments, we have that the last term equals
2E

[
X(τ ∧ n)

]
E
[
X(τ)−X(τ ∧ n)

]
, which is 0 by Wald’s first identity. Therefore, E

[
X(τ)2

]
≥

E
[
X(τ ∧ n)2

]
= E[τ ∧ n] by (N8). Taking n → ∞ and using the MCT gives the desired result.
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Other techniques show that both identities hold assuming only that E
[√

τ
]
< ∞. The

choice τ = T1 gives counterexamples when E
[
τc

]
< ∞ for each c < 1/2.

Example: If 〈X(t)〉 is a Brownian motion with drift µ 6= 0 andX(0) ≡ 0, then 〈X(t)−µt〉
is a martingale. . . . Thus, if τ satisfies the conditions of the optional stopping theorem,1"

then

E
[
X(τ)− µτ

]
= 0. (N9)

In particular, for every bounded stopping time, τ , we have

E
[
X(τ)

]
= µE[τ ]. (N10)

For example, if µ < 0 and we are forced to choose such a stopping time and collect X(τ),

then to maximize our expected gain, we should take τ = 0.

It turns out that the same equation (N10) holds without any assumptions on τ other

than that τ is finite a.s., in contrast to the case where µ = 0 and also in contrast to the game

we analyzed earlier, which did not force us to stop at a finite time. This may be a sur-

prise since a.s. there exists an open interval of time where X > 0. What makes

it impossible to stop a.s. at such a time, however, is that there is no time

t > 0 such that a.s. there is some s ≥ t with X(s) > 0, nor is there any x >

0 such that a.s. there is some time t with X(t) ≥ x.

Indeed, let τ be any a.s. finite stopping time and µ > 0. Write B(t) := X(t) − µt, which
is Brownian motion with drift 0 and variance parameter σ2. By dividing by σ and changing
µ to µ/σ, we may assume that σ = 1 without loss of generality. By Wald’s first identity, if
E[τ ] < ∞, then (N9) holds, which implies that (N10) holds. Consequently, it remains to show
that E

[
X(τ)

]
= ∞ when E[τ ] = ∞. Thus, assume that

∫∞
0 P [τ > t] dt = ∞. We have that

∫ ∞

0
P
[
∃s ≥ t B(s) ≥ µs/2

]
dt < ∞.

(Use time inversion: with Y (u) := uB(1/u), we have

P [∃s ≥ t B(s) ≥ µs/2] = P [∃u ≤ 1/t Y (u) ≥ µ/2] = 2Φ(
√
tµ/2)− 2 ≤ 2e−tµ2/8

by (N5) for the second equality and Proposition 1.7.2 for the inequality.) Now

P
[
X(τ) > µt

]
≥ P

[
X(τ) > µτ/2, τ > 2t

]
= P [τ > 2t]− P

[
τ > 2t, B(τ) ≤ −µτ/2

]

≥ P [τ > 2t]− P
[
∃s ≥ 2t B(s) ≥ µs/2

]
.

Therefore,
∫∞
0 P

[
X(τ)/µ > t

]
dt = ∞. Combining this with the fact that −mins≥0 X(s) has

an exponential distribution, we obtain that E
[
X(τ)

]
= ∞ as desired. The upshot is that the

longer you wait to stop, the more you will lose in expectation.
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Now we prove that the strategy we used to stop a Brownian motion X(·) with negative
drift µ at a time T in order to maximize R := E0

[
X(T ) ; T < ∞

]
is indeed the best one.

Recall that we used T := Tλ, where λ := −σ2/(2µ), for which we had R = λ/e. Recall also
that maxX(t) ∼ Exp(1/λ). Let T be any stopping time (with X(T ) ≥ 0 on the event T < ∞).
Given a > 0, define τ := T ∧ Ta, pa := P0[τ < ∞], and Ra := E0

[
X(τ) ; τ < ∞

]
. A proof

similar to the solution of Exercise 95 tells us that

E0

[
exp

{
X(τ ∧ T−b)/λ

}]
= 1

for every b > 0. The BCT allows us to take b → ∞ . . . and obtain1"

E0

[
exp

{
X(τ)/λ

}
; τ < ∞

]
= 1,

i.e.,
E0

[
exp

{
X(τ)/λ

} ∣∣ τ < ∞
]
pa = 1.

Now convexity of the exponential (Jensen’s inequality, Proposition 1.7.3) . . . yields2"

E0

[
exp

{
X(τ)/λ

} ∣∣ τ < ∞
]
≥ exp

{
E0

[
X(τ)/λ

∣∣ τ < ∞
]}

= eRa/(paλ).

Putting these together, we arrive at

1 ≥ pae
Ra/(paλ),

whence
Ra

pa
e−Ra/(paλ) ≥ Ra.

Since maxx≥0 xe
−x = 1/e, we arrive at the inequality Ra ≤ λ/e. Since 0 ≤ X(T ) ≤ maxt X(t)

on the event T < ∞, and maxt X(t) has finite expectation, the LDCT shows that lima→∞ Ra =
R, . . . whence also R ≤ λ/e, as desired.2"

Furthermore, examination of the equality condition in Jensen’s inequality shows that the
only stopping time that achieves R = λ/e is the one we used, Tλ. We sketch the proof. We
first show that if R = λ/e, then there is a constant c such that X(T ) = c a.s. given T < ∞.
Suppose T does not have this form. Then

P
[
|X(T )− E[X(T )]| > 2λǫ′

∣∣ T < ∞
]
> 2ǫ

for some ǫ, ǫ′ > 0, whence P
[
|X(τ) − E[X(τ)]| > λǫ′

∣∣ τ < ∞
]
> ǫ for all large a (as before,

τ := T ∧Ta). We now look at a more refined version of Jensen’s inequality. There is some δ > 0
such that et ≥ 1 + t+ δ1{|t|>ǫ′}, whence for every random variable Y with mean 0, we have

E
[
eY

]
≥ 1 + δ P

[
|Y | > ǫ′

]
.

Use Y :=
(
X(τ)− E0

[
X(τ)

∣∣ τ < ∞
])
/λ conditional on τ < ∞ to get

E0

[
exp

{
X(τ)/λ

} ∣∣ τ < ∞
]
≥ exp

{
E0

[
X(τ)/λ

∣∣ τ < ∞
]}

(1 + δǫ) = eRa/(paλ)(1 + δǫ).

Then proceeding as before yields Ra ≤ λ/
(
e(1 + δǫ)

)
, whence the same holds for R, a contra-

diction.
Second, we claim that this means T = Tc a.s., which implies that c = λ by our earlier

calculation. Indeed, if not, then T > Tc with positive probability. Since X(T ) = c a.s. given
that T < ∞, it follows that to obtain the same reward as Tc, it must be that T < ∞ a.s. given
that T > Tc. However, this contradicts (N10) applied to T and X starting from time Tc given
that Tc < ∞.
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Chapter 9

Stochastic Order Relations

§9.1. Stochastically Larger.

Given two random variables X and Y , we say that X is stochastically larger than

or stochastically dominates Y , written X < Y , if FX ≥ FY . We have seen this

in connection with renewal processes (Exercise 38). Also, X < Y iff ∀a P [X ≥ a] ≥
P [Y ≥ a] (Exercise 97). If we decompose X and Y into their positive and negative parts,

X = X+ −X−, Y = Y + − Y −, then

X < Y ⇐⇒ X+ < Y + and X− 4 Y −

(Exercise 97).

Lemma 9.1.1. If X < Y , then E[X] ≥ E[Y ] when both E[X] and E[Y ] are defined in

[−∞,∞].

Proof. If X,Y ≥ 0, then E[X] =
∫∞
0
FX(a) da ≥

∫∞
0
FY (a) da = E[Y ]. Thus, E[X+] ≥

E[Y +] and E[X−] ≤ E[Y −], so E[X] = E[X+]− E[X−] ≥ E[Y +] = E[Y −] = E[Y ].

Proposition 9.1.2. X < Y iff for all increasing f :R → R, we have E
[
f(X)

]
≥ E

[
f(Y )

]

when both expectations are defined in [−∞,∞].

Proof. ⇐=: Let f := 1(a,∞), a ∈ R.

=⇒: (The proof in the book is incorrect unless f is continuous.) By the lemma, it

suffices to show that f(X) < f(Y ). Set

If (a) := {x ; f(x) > a}.

Then If (a) is an interval of the form (s,∞) or [s,∞) and f(X) > a ⇐⇒ X ∈ If (a),

whence

P
[
f(X) > a

]
= P

[
X ∈ If (a)

]
≥ P

[
Y ∈ If (a)

]
= P [f(Y ) > a].
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§9.2. Coupling.

Coupling refers generally to creating a new pair of random variables (X∗, Y ∗) out of

given random variables X and Y such that X∗ and Y ∗ are defined on the same probability

space as each other, yet still X∗ D
= X and Y ∗ D

= Y . Usually one wants to get the new pair

to have some special properties. Often, this is used to convert distributional properties to

more direct comparisons of random variables. We will use the following kind of inverse to

a c.d.f., F :

F−1(s) := inf{x ; F (x) ≥ s} = min{x ; F (x) ≥ s}.

. . . Note that F−1(s) ≤ y iff F (y) ≥ s. . . .2"1"

Proposition. Let F be a c.d.f. If U ∼ Unif[0, 1], then F−1(U) ∼ F .

Proof. For every y ∈ R, we have

P
[
F−1(U) ≤ y

]
= P

[
F (y) ≥ U

]
= F (y).

Proposition 9.2.2. X < Y iff there exist random variables X∗ and Y ∗ with X∗ D
= X,

Y ∗ D
= Y , and X∗ ≥ Y ∗.

This makes Proposition 9.1.2 obvious.

Proof. ⇐=: We have for all a,

P [X > a] = P [X∗ > a] ≥ P [Y ∗ > a] = P [Y > a].

=⇒: Let U ∼ Unif[0, 1]. Define X∗ := F−1
X (U) and Y ∗ := F−1

Y (U). By the preceding

proposition, X∗ D
= X and Y ∗ D

= Y . Since FX ≤ FY , we have F−1
X ≥ F−1

Y , . . . which gives1"

the result.

Example: If n1 ≥ n2 and p1 ≥ p2, then Bin(n1, p1) < Bin(n2, p2). . . .2"

Example 9.2(b). Pois(λ) is stochastically increasing in λ: This is not hard to show

by analytic calculation, but here is a coupling proof: Let λ < µ, X ∼ Pois(µ), and

Y ∼ Bin(X,λ/µ). Then Y ≤ X and Y ∼ Pois(µ · λ
µ ).
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§9.2.2. Exponential Convergence in Markov Chains.

Recall that if 〈Xn ; n ≥ 0〉 is a finite-state irreducible aperiodic Markov chain, then for

all i and j, we have p
(n)
ij → πj , the stationary probabilities. How fast is the convergence?

We show that it is exponential; an active area of research involves estimating the precise

rate for various Markov chains on large state spaces.

Theorem. Let 〈Xn ; n ≥ 0〉 be a finite-state irreducible aperiodic Markov chain and πj

be the stationary probabilities. Then ∃c > 0, β < 1 such that ∀n, i, j |p(n)ij − πj | ≤ cβn.

Proof. By Exercise 4.14, πj > 0 for all j. Thus, by our recollection above, ∃N ∀i, j p(N)
ij >

0. Let ε := mini,jp
(N)
ij . Let 〈X ′

n ; n ≥ 0〉 be an independent Markov chain with the same

transition probabilities, but with the stationary distribution used as the initial distribution.

Let’s take X0 ≡ i. Define

T := inf{n ; Xn = X ′
n}

and set

Xn :=

{
Xn if n ≤ T ,
X ′

n if n ≥ T .

Then 〈Xn〉 is a Markov chain with the same distribution as 〈Xn〉, as we’ll verify. Since

[Xn 6= X ′
n] ⊆ [T > n], we have

|p(n)ij − πj | = |P [Xn = j]− P [X ′
n = j]| ≤ P [Xn 6= X ′

n] ≤ P [T > n].

. . . Thus, it remains to bound P [T > n].1"

Now by choice of N , we have P [XN = X ′
N ] ≥ P [XN = j = X ′

N ] ≥ ε2 (for any j) and,

in fact,

P [XkN = X ′
kN | X0, X

′
0, XN , X

′
N , . . . , X(k−1)N , X

′
(k−1)N ] ≥ ε2,

whence P [T > kN ] ≤ (1− ε2)k. . . . This proves the result. . . .1"1"

It remains to verify that 〈Xn〉 is a Markov chain with the same distribution as 〈Xn〉.
Consider Zn := (Xn, X

′
n). This is clearly a Markov chain. Furthermore, T is a stopping

time for it. If we define Z ′
n := (X ′

n, Xn), then the Markov property implies that given

T = t and ZT = (j, j), the distribution of 〈ZT+k ; k ≥ 0〉 equals the distribution of

〈Z ′
T+k ; k ≥ 0〉. Hence the same is true given T = t, which means that if we define

Zn :=

{
Zn if n ≤ T ,
Z ′
n if n ≥ T ,

then 〈Zn〉 has the same distribution as 〈Zn〉. Looking at the first coordinates of these

processes gives what we wanted.
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Homework Problems

Note that while problems from the book are reproduced here, there is often information

in the back of the book that is not reproduced here.

Exercise not to Hand In: Based on experience from similar oil fields, an oil executive

has determined that the probability that a certain oil field contains a significant quantity

of oil is 0.6. Before drilling, she orders a seismological test for further information. This

test is not 100% accurate; if there is a significant quantity of oil, then the test confirms this

with probability 0.9, but if there is not a significant quantity, then it confirms that with

probability 0.8. Suppose that the seismological test does say that there is a significant

quantity of oil. What should the executive now estimate as the probability of a significant

quantity of oil?

Exercise not to Hand In: Five communication towers are erected in a straight line,

each exactly 8 miles from its neighbors. The signal from each tower travels 16.6 miles.

Assume that on a given day, the communication equipment in each tower is broken with

probability 0.002, independently of each other. If it is not broken, then it transmits each

signal that it receives. What is the probability that a signal from the first tower reaches

the fifth tower?

Exercise not to Hand In: What is the median of an Exp(λ) distribution? Why is this

called “half-life” in radioactive decay?

Exercise not to Hand In: Suppose that the joint density of X,Y is

f(x, y) =

{
cx2y2 if x ≥ 0, y ≥ 0, x+ y ≤ 1,
0 otherwise.

What is the value of c? What is E[X]? What is E[XY ]?
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1. p. 48, 1.11: If X is a nonnegative integer-valued random variable, then the function

P (z), defined for |z| ≤ 1 by

P (z) = E
[
zX

]
=

∞∑

j=0

zjP [X = j],

is called the probability generating function of X.

(a) Show that
dk

dzk
P (z)

∣∣∣
z=0

= k!P [X = k].

(b) Show that

P [X is even] =
P (−1) + P (1)

2
.

(c) If X is binomial with parameters n and p, show that

P [X is even] =
1 + (1− 2p)n

2
.

(d) If X is Poisson with mean λ, show that

P [X is even] =
1 + e−2λ

2
.

(e) If X is geometric with parameter p, show that

P [X is even] =
1− p

2− p
.

(f) If X is a negative binomial random variable with parameters r and p, show that

P [X is even] =
1

2

[
1 + (−1)r

(
p

2− p

)r]
.

2. Show that if X,Y have a joint density fX,Y , then X has the density

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy.

3. Give an example of independent random variables X and Y and a constant a ∈ R such

that if we denote Za := X+aY , then Z1 and Za are not independent yet Cov(Z1, Za) = 0.

4. Let A1, . . . , An be independent events with respective probabilities p1, . . . , pn. Let N

be the number of these events that occur. Show that the moment generating function of

N is t 7→ ∏n
k=1

(
1− pk + pke

t
)
.
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5. p. 47, 1.8: Let X1 and X2 be independent Poisson random variables with means λ1 and

λ2.

(a) Find the distribution of X1 +X2.

(b) Compute the conditional distribution of X1 given that X1 +X2 = n.

(Note that both answers involve named distributions.)

6. Verify the conditional change-of-variable formula (N2) when X and Y are both discrete.

7. Find the mean and standard deviation of the time until the miner reaches safety in

Example 1.5(b) (p. 23 of the book).

8. Verify the values given in Table 1.4.1 (p. 16) for the moment generating functions,

means, and variances. Your verification should use the conceptual definitions of the dis-

tributions as much as possible, rather than the formulas for the distributions.

9. Show using the tower property, (1.5.1), and the moment generating function of an

exponential random variable that if Xi ∼ Exp(λi) for i = 1, 2 are independent, then

P [X1 < X2] = λ1/(λ1 + λ2).

10. Let X be a random variable and A be an event. Show directly from our definition that

E[X | A] = E[X+ | A]−E[X− | A]. (You may not use linearity of conditional expectation

nor (N3), because we used this exercise to prove those. Of course, you may use linearity

of ordinary expectation.)

11. p. 46, 1.1: Let N denote a nonnegative, integer-valued, random variable. Show that

E[N ] =

∞∑

k=1

P [N ≥ k] =

∞∑

k=0

P [N > k].

In general, show that if X is nonnegative with distribution F , then

E[X] =

∫ ∞

0

F (x) dx

and

E[Xn] =

∫ ∞

0

nxn−1F (x) dx.
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12. Suppose that U is a Unif[0, 1] random variable. Given the value of U , say, U =

u, another random experiment is made to get the value of X so that X has a Exp(u)

distribution (i.e., an exponential random variable with parameter u; note that it is not

true that X = eU ). Prove that X has a density and compute it.

13. Let X be a nonnegative random variable with c.d.f. F and c a positive constant. Show

that

E
[
min{X, c}

]
=

∫ c

0

F (x) dx

and, if F (c) > 0,

E[X | X ≤ c] =

∫ c

0

[
1− F (x)

F (c)

]
dx.

14. p. 46, 1.3: Let Xn denote a binomial random variable with parameters (n, pn), n ≥ 1.

If npn → λ as n→ ∞, show that

P [Xn = i] → e−λλi/i! as n→ ∞.

Here, λ <∞. Show that if λ = ∞, then P [Xn = i] → 0 as n→ ∞, perhaps by comparing

to the case of finite λ.

(The last part was added. Show all this directly, not by using the Poisson convergence

theorem.)

15. p. 50, 1.18: A coin, which lands on heads with probability p, is continually flipped.

Compute the expected number of flips that are made until a string of r heads in a row is

obtained. Hint: Condition on the number of flips until the first tail appears.

Exercise not to Hand In: p. 51, 1.22

16. p. 53, 1.30: In Example 1.6(A) if server i serves at an exponential rate λi, i = 1, 2,

compute the probability that Mr. A is the last one out.

17. p. 53, 1.31: If X and Y are independent exponential random variables with respective

means 1/λ1 and 1/λ2, compute the distribution of Z = min(X,Y ). What is the conditional

distribution of Z given Z = X? (For a fun challenge, see whether you can solve both parts

of this problem with virtually no calculation. Note that there are 3 natural ways to express

that two events, A and B, are independent: P (A | B) = P (A), P (B | A) = P (B), and

P (AB) = P (A)P (B). In fact, there are 12 ways because each of A and B could be replaced

by their complements.)
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Exercise not to Hand In: p. 53, 1.34

18. Let X and Y be independent Exp(λ) random variables. Find the distribution of

|X − Y |. (Hint: there is a short solution that needs hardly any calculation.)

19. Consider again the two teams of gladiators. At each round, each team sends one of

its gladiators to battle. When two fight, the probability of winning is proportional to the

strength of a gladiator. The loser never plays again. In this variant, however, the winning

gladiator inherits the strength of the loser. Show that each team wins with probability

proportional to its total strength, regardless of order. (Hint: induct on the total number

of gladiators.)

20. Suppose that the lifetime of a machine is an Exp(λ) random variable. The machine

is checked to see whether it is operating at regular intervals, namely, at times s, 2s, 3s,

etc., for some fixed s > 0. Eventually, of course, the machine is discovered to be down. In

terms of λ and s, what is the expected duration of the time that the machine is actually

down before it is discovered to be down?

21. A component of a machine has an exponentially distributed lifetime with mean 750

hours. When it fails, it is replaced in the machine by a new component with an indepen-

dent lifetime of the same distribution. What is the smallest number of spare components

that should be provided in order that the machine last for 2000 hours (using the original

component and these spares only) with probability at least 95%?

22. p. 89, 2.5: Suppose that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent Poisson

processes with rates λ1 and λ2. Show that the combined process {N1(t) +N2(t), t ≥ 0} is

a Poisson process with rate λ1 + λ2. Also, show that the probability that the first event

of the combined process comes from {N1(t), t ≥ 0} is λ1/(λ1 + λ2), independently of the

time of the event. (Note that this last statement means that the probability that the first

event comes from N1(·) given that the time of the first event is t is equal to λ1/(λ1 + λ2)

for every t > 0.)

State and prove the analogue for any finite number of independent Poisson processes,

not just for two processes.
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23. You want to cross a road at a spot where cars pass according to a Poisson process

with rate λ. You begin to cross as soon as you see there will not be any cars passing for

the next c time units. Let N := number of cars that pass before you cross, T := time you

begin to cross.

(a) What is E[N ]?

(b) Find E[T ], for example, by conditioning on N .

Exercise not to Hand In: p. 90, 2.8

24. p. 91, 2.14: Consider an elevator that starts in the basement and travels upward.

Let Ni denote the number of people that get in the elevator at floor i. Assume the Ni

are independent and that Ni is Poisson with mean λi. Each person entering at i will,

independently of everything else, get off at j with probability Pij , where
∑

j>i Pij = 1.

Let Oj = number of people getting off the elevator at floor j.

(a) Compute E[Oj ].

(b) What is the distribution of Oj?

(c) What is the joint distribution of Oj and Ok for j 6= k?

(The solution needs more explanation than what appears in the back of the book!)

25. Let T ∼ Exp(λ) and M ∼ Pois(µT ) given T . Use classified Poisson processes to

calculate the unconditional distribution of M .

26. There are n radioactive particles in a substance at time 0. Their lifetimes are i.i.d.

Exp(λ). Let X(t) be the number of particles that have decayed by time t.

(a) What is P
[
X(t) = k

]
?

(b) Let T be the first time t that X(t) = k. What is E[T ]?

27. Customers arrive at a store according to a Poisson process of rate λ/hr. Each cus-

tomer spends a time in the store that is a random variable with Exp(α/hr) distribution,

independent of other customer times, and then departs. Given that exactly five customers

arrive in the first hour, what is the probability that the store is empty of customers at the

end of this first hour?
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28. A machine needs 2 types of parts to work, type A and type B. It has one part of each

type to begin, and there are also 2 spare A parts and 1 spare B part. When a part fails,

it is replaced by a spare part of the same type, if available, instantaneously. Suppose that

the lifetimes (time in service) of all parts are independent; parts of type A are Exp(λ)-

distributed, while parts of type B are Exp(µ)-distributed. What is the expected time until

the machine fails for lack of a needed part?

29. LetNi(·) (i = 1, 2) be independent Poisson processes with rates λi. LetX be the result

of a fair coin flip that is independent of both processes Ni(·). Suppose that N(t) = N1(t)

for all t if X = H, while N(t) = N2(t) for all t if X = T. (There is only one coin flip.)

(a) Does N(·) have stationary increments?

(b) Does N(·) have independent increments?

(c) Is N(·) a simple counting process?

(d) Is N(·) a Poisson process?

30. p. 94, 2.30: Let T1, T2, . . . denote the interarrival times of events of a nonhomogeneous

Poisson process having intensity function λ(t). Assume that
∫∞
0
λ(t) dt = ∞.

(a) Are the Ti independent?

(b) Are the Ti identically distributed?

(c) Find the distribution of T1.

(d) Find the distribution of T2.

(e) What are the failure rates of T1 and T2?

Note: part (e) was added.

31. p. 95, 2.33: Consider a two-dimensional Poisson point process with intensity λ. Given

a fixed point, let X denote the distance from that point to its nearest event, where distance

is measured in the usual Euclidean manner. Let Ri, i ≥ 1, denote the distance from that

point to the ith closest event to it. Put R0 := 0. Show that:

(a) P [X > t] = e−λπt2 .

(b) E[X] = 1/(2
√
λ).

(c) πR2
i − πR2

i−1, i ≥ 1, are independent exponential random variables, each with rate λ.

(d) Let N(r) be the number of points of the Poisson point process in R2 that are within

distance r of the origin. Describe the law of the counting process N(·) on [0,∞).

Note: part (d) was added. Also, X = R1.
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32. p. 153, 3.1: Is it true that:

(a) N(t) < n if and only if Sn > t?

(b) N(t) ≤ n if and only if Sn ≥ t?

(c) N(t) > n if and only if Sn < t?

Note: N(·) is a renewal process with arrival times Sn.

33. Suppose that the interarrival distribution for a renewal process is Pois(µ) (so the

interarrival times are discrete, but the renewal process is defined for continuous time).

(a) Find the distribution of Sn for each n.

(b) Find the distribution of N(t) for all t.

34. Let N(·) be a renewal process with finite-mean interarrival time. Show that

lim
t→∞

SN(t)/t = 1 a.s.

35. Betsy is a consultant. Each time she gets a job to do, it lasts 3 months on average.

The time between jobs is exponentially distributed with mean 2 weeks. At what rate does

Betsy start new jobs in the long run?

36. A fair, 6-sided die is rolled repeatedly until the first of the following occurs:

(A) 3 consecutive rolls lie in {1, 2, 3};
(B) 2 consecutive rolls lie in {4, 5};
(C) a 6 appears.

What is the expected number of die rolls? Which of these three possible endings is least

likely, A, B, or C? For example, if the rolls are 143254, then it ends on roll 6 with the

outcome B.

37. Let Uk ∼ Unif[0, 1] be independent random variables. DefineN := min
{
n ;

∑n
k=1 Uk >

1
}
. What is E[N ]?

38. Let N(·) be a renewal process. Show that ∀x, t ≥ 0 P
[
XN(t)+1 > x

]
≥ FX(x).

Compute both sides exactly when N(·) is a Poisson process of rate λ. (Hint: Condition

on N(t) and SN(t).)

39. Consider a renewal process N(·) with nonconstant interrarival times having finite

mean µ. Show that E
[
SN(t)

]
< µ · E

[
N(t)

]
for some t > 0.
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40. Let N1(·) and N2(·) be independent renewal processes, both with interarrival times

Unif[0, 1]. Define N(t) := N1(t) +N2(t) for all t.

(a) Are the interarrival times of N(·) independent?
(b) Are the interarrival times of N(·) identically distributed?

(c) Is N(·) a renewal process?

41. p. 154, 3.6: Let N(·) be a renewal process and suppose that for all n and t, conditional

on the event thatN(t) = n, the event times S1, . . . , Sn are distributed as the order statistics

of a set of independent uniform (0, t) random variables. Show thatN(·) is a Poisson process.

Note: do not use the hint given in the book because that requires solving the preceding

problem in the book. Besides, it will be more interesting if you do it directly. Think about

where Poisson distributions arise.

42. A battery has a lifetime that is Unif[30, 60] in hours. If a battery is replaced as soon as

it fails, what is the approximate distribution of the number of batteries that are replaced

in 4500 hours after the installation of a new battery?

43. Events occur according to a Poisson process with rate λ. Any event that occurs within

a time d of the event that immediately preceded it is called a d-event. For instance, if d = 1

and events occur at times 2, 2.8, 4, 6, 6.6, . . . , then the events at times 2.8 and 6.6 would

be d-events.

(a) At what (long-run) rate do d-events occur?

(b) What (long-run) proportion of all events are d-events?

44. Show that for a renewal process with X ∼ Exp(λ), we have for every t > 0 that

A(t)
D
= X ∧ t by considering the event times in [0, t] to be uniform i.i.d. given how many

there are.

45. p. 156, 3.14: Let A(t) and Y (t) denote the age and excess at t of a renewal process.

Fill in the missing terms:

(a) For x ≤ t, A(t) ≥ x↔ 0 events in the interval .

(b) Y (t) > x↔ 0 events in the interval .

(c) P [Y (t) > x] = P [A( ) ≥ ] .

(d) Compute the joint distribution of A(t) and Y (t) for a Poisson process.

Note: ↔ means “if and only if”. In (a) and (c), I changed each > associated to A(·) to ≥.

Of course, you must explain your answers. All blanks should be filled in with deterministic

numbers, not anything random.
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46. For a random variable X, write X̂ for a size-biased random variable corresponding to

X. Show that if X ∼ Bin(n, p), then X̂ − 1 ∼ Bin(n − 1, p), while if X ∼ Pois(λ), then

X̂ − 1 ∼ Pois(λ).

47. Consider a nonlattice renewal process N(·) with interarrival times Xk ∼ F having

finite mean, µ. We argued heuristically that limt→∞ P [XN(t)+1 ≤ x] = P [X̂ ≤ x] for all

x ≥ 0, among other things, to explain the key renewal theorem, where X̂ has the size-

biased distribution corresponding to F . Use the key renewal theorem to prove this limit

statement. (Hint: revisit Exercise 38.)

48. Consider a nonlattice renewal process N(·) with interarrival times Xk ∼ F having

finite mean, µ, and finite variance, σ2. Show that limt→∞
(
m(t)− t/µ

)
= σ2/(2µ2)− 1/2.

(Hint: Use (3.3.3).)

49.

(a) Suppose that X and Y are i.i.d. (real) random variables and g is a nondecreasing

function. Assume that E
[
|X|+|g(X)|

]
<∞. Show that E

[
(X−Y )

(
g(X)−g(Y )

)]
≥ 0.

Deduce that E
[
Xg(X)

]
≥ E[X]E

[
g(X)

]
.

(b) Let X ∼ F be a nonnegative random variable with finite, positive mean. It follows

from Exercise 38 and Exercise 47 that the c.d.f. of X̂ is at most F . Prove this directly

from part (a).

50. p. 157, 3.20: Consider successive flips of a fair coin.

(a) Compute the mean number of flips until the pattern HHTHHTT appears.

(b) Which pattern requires a larger expected time to occur: HHTT or HTHT?

(c) Let A and B be two patterns of H and T of the same length, where A has no overlaps

and B has at least one overlap. Give an intuitive explanation explanation why the

expected time to the first occurrence of A is not the same as of B and which one is

larger. (Hint: Count only occurrences of B that do not overlap in an infinite sequence

of tosses.)

Note: part (c) was added.

51. A coin has probability p of H. What is E[time to THTHTHTHT]?
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52. p. 154, 3.9(c): Consider a single-server bank in which potential customers arrive at a

Poisson rate λ. However, an arrival enters the bank only if the server is free when he or

she arrives. Let G denote the service distribution. Note: the system capacity is 1, so any

customer who arrives while the server is busy is lost. What fraction of time is the server

busy?

53. A particular ski slope has n skiers continually and independently climbing up and

skiing down. (These skiers are inexhaustible.) The times it takes skiers to climb up or ski

down are independent of each other and nonlattice but not identically distributed. In fact,

the time it takes the ith skier to climb up has distribution Fi each time and the time it

takes her to ski down has distribution Gi each time. All Fi and Gi have finite means.

(a) If N(t) denotes the total number of times that the members of this ski group have

skied down the slope by time t, summed over all n members, what are limt→∞N(t)/t

a.s. and limt→∞E
[
N(t)

]
/t?

(b) If U(t) denotes the number of skiers that are climbing up the hill at time t, what is

limt→∞E
[
U(t)

]
?

54. p. 160, 3.31: A system consisting of four components is said to work whenever both

at least one of components 1 and 2 works and at least one of components 3 and 4 works.

Suppose that component i alternates between working and being failed in accordance with

a nonlattice alternating renewal process with distributions Fi and Gi, i = 1, 2, 3, 4. If these

alternating renewal processes are independent, find limt→∞ P [system is working at time t].

55. Consider an alternating renewal process where Z+Y has finite mean. Let I(t) denote

the indicator that the system is on at time t. Show that

lim
t→∞

1

t

∫ t

0

I(s) ds =
E[Z]

E[Z] + E[Y ]
a.s.

56. Consider an alternating renewal process where Z + Y has finite mean. Suppose that

Z + Y has a lattice distribution with period d.

(a) For 0 ≤ u < d, show that

lim
n→∞

P [system is on at time u+ nd] =
d
∑∞

n=0 P [Z > u+ nd]

E[Z] + E[Y ]
.

Hint: Follow the proof of Theorem 3.4.4 and use g(s) := FZ(u+ s)/FZ+Y (u+ s).
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(b) With I(t) denoting the indicator that the system is on at time t, show that

lim
t→∞

E

[
1

t

∫ t

0

I(s) ds

]
=

E[Z]

E[Z] + E[Y ]
.

57. Show that the long-run expected proportion of time that XN(t)+1 ≤ c is
∫ c

0
[F (c) −

F (x)] dx/E[X] for a renewal process with Xn ∼ F , where F has finite mean. Be sure to

treat both the nonlattice and lattice cases.

58. In Example 3.4(a), find the long-run rate of restocking.

59. Suppose that G is uniform on [0, S] in Example 3.4(a). Find explicitly the limiting

distribution of the inventory level.

60. Suppose that X1, X2, . . . are the inter-renewal times of an equilibrium renewal process,

whereX2, X3, . . . each are equal to 1 or
√
2 with equal probability. DoesX1 have a density?

If so, what is it? If not, why not?

61. Let Xn be the lifetimes of items assumed i.i.d. with c.d.f. F . Items are replaced when

they reach age T if they have not yet failed. Find an F and T such that the actual

failure rate when planned replacements are made is greater than that without planned

replacement.

62. A warehouse stores and sells items. Customers arrive according to a Poisson process

of rate 2 per day. Each customer demands exactly one item. The warehouse gives an item

to a customer when it has one, but turns away the customer otherwise. The warehouse

orders A more items from the supplier when the warehouse becomes empty, but it takes a

random amount of time for the order to arrive; the order time has a mean of 3 days. Each

such order costs the warehouse $50 (regardless of the size of the order). Each item costs

the warehouse $1 per day to store. The supplier charges $70 per item, but the warehouse

sells each item for $80.

(a) What is the long-run profit per day made by the warehouse?

(b) What value of A maximizes the long-run profit per day?

(A more realistic scenario would involve ordering more items before the warehouse becomes

empty, but this is much harder to analyze.)
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63. Let Q(t) denote the number of customers in the system of an M/G/1/2 queue. Assume

that G has finite mean and the arrival rate is λ. Show that in the long run, the proportion

of time that Q(t) = 1 is ∫∞
0
e−λxG(x) dx∫∞

0

(
e−λxG(x) +G(x)

)
dx.

64. Consider an M/G/1/2 queue. Let Xn := the number of customers in the system when

the nth customer leaves the system, X0 := 0. What are the transition probabilities of this

Markov chain?

65. p. 219, 4.4: Show that

p
(n)
ij =

n∑

k=0

fkijp
(n−k)
jj .

66. p. 221, 4.12: A transition probability matrix P is said to be doubly stochastic if

∑

i

Pij = 1 for all j.

That is, the column sums all equal 1. If a doubly stochastic chain has n states and

is ergodic, calculate its limiting probabilities. (Note: “ergodic” means that the Markov

chain with this transition matrix is irreducible, aperiodic, and positive recurrent.)

Exercise not to Hand In: p. 221, 4.16, 4.17

67. Suppose you have a deck of n cards. You shuffle them in the following simple manner:

A card is chosen at random and put on the top. This is repeated many times, where the

card chosen each time is independent of the preceding choices. Show that in the long run,

the deck is perfectly shuffled in the sense that all n! orderings are equally likely.

68. You have 3 coins, each with different probability of H. Namely, coin k has chance

(k + 1)/(k + 2) of coming up H (k = 0, 1, 2). The coins are tossed repeatedly in the

following fashion. Coin 0 is tossed the first two times, but thereafter, coin k is tossed at

time n when the number of H in tosses n− 1 and n− 2 is equal to k. What is the limiting

probability that the nth coin comes up H as n→ ∞? Hint: Use a 4-state Markov chain.
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69. We want to decide whether Brand A special high-intensity lightbulbs last longer than

Brand B special high-intensity lightbulbs by making the following test. We turn on one

bulb of each brand simultaneously and wait until one of the two fails. The brand whose

bulb lasts longer gets a point. Then we repeat with new lightbulbs from each brand. We

continue this test until one brand has accumulated 5 points more than the other brand.

What is the chance that the test picks the better brand given that in fact the lifetimes

of bulbs of Brand A are exponential with mean 25 hours while those of Brand B are

exponential with mean 30 hours? Hint: Consider the difference between the numbers of

points that each brand has accumulated.

70. p. 224, 4.27: Consider a particle that moves along a set of m+ 1 nodes, labeled 0, 1,

. . . ,m. At each move it either goes one step in the clockwise direction with probability p

or one step in the counterclockwise direction with probability 1 − p. It continues moving

until all the nodes 1, 2, . . . ,m have been visited at least once. Starting at node 0, find the

probability that node i is the last node visited, i = 1, . . . ,m.

71. p. 223, 4.23: In the gambler’s ruin problem show that

P [she wins the next gamble | present fortune is i, she eventually reaches N ]

=

{
p[1− (q/p)i+1]/[1− (q/p)i] if p 6= 1

2 ,

(i+ 1)/2i if p = 1
2 .

72. p. 226, 4.33: Given that {Xn, n ≥ 0} is a branching process:

(a) Argue that either Xn converges to 0 or to infinity.

(b) Show that

Var(Xn | X0 = 1) =

{
σ2µn−1 µn−1

µ−1 if µ 6= 1,

nσ2 if µ = 1.

Note: assume that p1 6= 1. Also, part (a) is asking about the a.s. behavior of Xn.

73. Suppose that in a branching process, the number of offspring per individual has a

binomial distribution with parameters (2, p), where 0 < p < 1. If the process starts with

a single individual (generation 0), calculate:

(a) the probability of eventual extinction;

(b) the probability that the population becomes extinct for the first time in the second

generation (i.e., the second generation is the earliest generation that has no individu-

als).
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74. Consider a random walk on a network G that is either transient or is stopped on the

first visit to a set of vertices Z. Let G(x, y) be the corresponding Green function, i.e., the

expected number of visits to y for a random walk started at x; if the walk is stopped at Z,

we count only those visits that occur strictly before visiting Z. Show that for every pair

of vertices x and y,

CxG(x, y) = CyG(y, x).

75. Consider an electrical network G with a vertex a and a set of vertices Z that does not

include a. When a voltage is imposed so that a unit current flows from a to Z, show that

the expected total number of times an edge (x, y) is crossed by a random walk starting at

a and absorbed at Z equals Cxy(Vx + Vy).

76. Consider an electrical network G with a vertex a and a set of vertices Z that does not

include a. Show that Ea[TZ ] =
∑

x∈V C(x)Vx when a voltage is imposed so that a unit

current flows from a to Z.

77. Let G be a network such that γ :=
∑

e∈G Ce < ∞ (for example, G could be finite).

For every vertex a ∈ G, show that the expected time for a random walk started at a to

return to a is 2γ/Ca.

78. Consider an electrical network G with a vertex a. Show that limn C(a ↔ Zn) is the

same for every sequence 〈Gn〉 that exhausts G.

79. Let G be a network such that γ :=
∑

e∈G Ce < ∞ and let a and z be two vertices

of G. Let x ∼ y in G. Show that the expected number of transitions from x to y for a

random walk started at a and stopped at the first return to a that occurs after visiting z is

CxyR(a ↔ z). This is, of course, invariant under multiplication of the edge conductances

by a constant.

80. Let G be a network such that γ :=
∑

e∈G Ce < ∞ and let a and z be two vertices of

G. Show that the expected time for a random walk started at a to visit z and then return

to a, the so-called “commute time” between a and z, is 2γR(a↔ z).
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81. In the following networks, each edge has unit conductance.

What are P x[Ta < Tz], P a[Tx < Tz], and P z[Tx < Ta]?

What is C(a ↔ z)? (Or: show a sequence of transfor-

mations that could be used to calculate C(a↔ z).)

What is C(a ↔ z)? (Or: show a sequence of transfor-

mations that could be used to calculate C(a↔ z).)

82. Find a (finite) graph that can’t be reduced to a single edge by the four network

transformations.

83. Let G be a connected graph with N edges and two vertices a and z of degree one with

the same neighbor. Show that for simple random walk on G, Ea[Tz] = 2N .

84. p. 287, 5.3(b): Show that a continuous-time Markov chain is regular, given (a) that

νi < M <∞ for all i or (b) that the discrete-time Markov chain with transition probabil-

ities Pij is irreducible and recurrent.

Note: do (a), but hand in only (b).
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85. p. 287, 5.6: Verify the formula

A(t) = a0 +

∫ t

0

X(s)ds,

given in Example 5.3(B).

86. p. 286, 5.1: A population of organisms consists of both male and female members. In

a small colony each particular male is likely to mate with each particular female in each

time interval of length h, with probability λh+ o(h). Each mating immediately produces

one offspring, equally likely to be male or female. Let N1(t) and N2(t) denote the number

of males and females in the population at t. Derive the parameters of the continuous-time

Markov chain {N1(t), N2(t)}.

87. Consider a Poisson process of rate 1 such that each event is classified as type i with

probability αi (i = 0, 1 and α0 + α1 = 1). Suppose that we put an event at time 0 that is

classified as type i with probability pi. Show that the two-state Markov chain with state i

equal to type i and that changes state when the events of the Poisson process change type

has transition rates q01 = α1 and q10 = α0. Use this connection to show that

P [the chain is in state 0 at time t] = p0e
−t + (1− e−t)α0.

(This last equation could also be proved by using Example 5.4(a), but that is not what

you are being asked to do here.)

88. p. 322, 6.3: Verify that Xn/m
n, n ≥ 1, is a martingale when Xn is the size of the nth

generation of a branching process whose mean number of offspring per individual is m.

Exercise not to Hand In: p. 323, 6.7: Let X1, . . . be a sequence of independent and

identically distributed random variables with mean 0 and variance σ2. Let Sn =
∑n

i=1Xi

and show that {Zn, n ≥ 1} is a martingale when

Zn = S2
n − nσ2.

89. p. 323, 6.10: Consider successive flips of a coin having probability p of landing heads.

Use a martingale argument to compute the expected number of flips until the following

sequences appear:

(a) HHTTHHT

(b) HTHTHTH

139
c©1998–2025 by Russell Lyons. Commercial reproduction prohibited.



90. Consider four players, A, B, C, and D, who play the following game: They begin with

fortunes a, b, c, d ∈ N+, respectively. At each time, a pair of the players whose fortunes are

strictly positive is chosen at random and a random one of that pair gives one unit to the

other. Let Xn, Yn, Zn,Wn be their respective fortunes after n plays. What is the expected

time until only one player’s fortune is nonzero?

91. Let 〈Zn〉 be asymmetric random walk on Z starting from Z0 = 0; this means that

Zn =
∑n

k=1Xk, where Xk are i.i.d. for k ≥ 1 and equal ±1 with probabilities p and

q := 1− p, respectively. Calculate the expected time until Zn ∈ {a,−b} for a, b ∈ N+ and

p > q.

92. Let 〈Zn〉 be asymmetric random walk on Z starting from Z0 = 0. Calculate the

variance of the time until Zn ∈ {a,−b} for a, b ∈ N+ and p > q. Hint: Use Problem 6.7.

93. Suppose P [H] = p. Calculate the chance that HTHT appears before THTT.

94. Let X be 2 with probability p and −1 with probability 1 − p, where p > 1/3. Let

〈Sn〉 be the corresponding random walk, Sn :=
∑n

i=1Xi, and N be the first time that the

random walk is positive. Find the distribution of SN , E[SN ], and E[N ].

95. Let σ > 0 and µ ∈ R. In the following, we consider convergence only in the sense of

finite-dimensional distributions.

(a) Show that if the steps of a random walk are of size σ/
√
n taken each 1/n unit of

time and are ±σ/√n with probability 1
2 ± µ

2σ
√
n
(for large n), then the random walk

converges to Brownian motion with drift µ and variance parameter σ2.

(b) Show that if the steps of a random walk are ±σ/√n + µ/n taken each 1/n unit of

time with probability 1
2 each, then the random walk converges to Brownian motion

with drift µ and variance parameter σ2.

96. p. 399, 8.2: Let W (t) = X(a2t)/a for a > 0. Verify that W (t) is also Brownian

motion. (Note: X(t) is standard Brownian motion.)

97. Let 〈X(t) ; t ≥ 0〉 be standard Brownian motion. Fix r > 0 and define W (u) :=

X(r − u) −X(r) for u ∈ [0, r]. Argue that 〈W (u) ; 0 ≤ u ≤ r〉 has the same distribution

as 〈X(t) ; 0 ≤ t ≤ r〉.

98. Verify the last step of the derivation of the Black–Scholes equation.
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99. Suppose that X(·) is a geometric Brownian motion with drift parameter α > 0.

Show that limt→∞E
[
X(t)

]
= ∞. Show that if the variance parameter σ2 > 2α, then

limN∋t→∞X(t) = 0 a.s. (Later, we will show this latter limit holds without the restriction

that t ∈ Z.)

100. Let X(·) be Brownian motion and Ta be the hitting time of a. Prove that E[
√
Ta ] =

∞ for a 6= 0.

101. p. 400, 8.7: Let {X(t), t ≥ 0} denote Brownian motion. Find the density of:

(a) |X(t)|.
(b)

∣∣∣ min
0≤s≤t

X(s)
∣∣∣.

(c) max
0≤s≤t

X(s)−X(t).

(Note: I changed “distribution” to “density”.)

102. p. 401, 8.14: Let Tx denote the time until Brownian motion hits x. Compute P [T1 <

T−1 < T2].

103. Let 〈X(t) ; t ≥ 0〉 be standard Brownian motion, a, b > 0, µ ∈ R. Let Ly be the line

through (0, y) with slope µ. Let τy be the first time
〈(
t,X(t)

)
; t ≥ 0

〉
hits Ly, i.e.,

τy := inf
{
t ;

(
t,X(t)

)
∈ Ly

}
.

Prove that τa ∧ τ−b <∞ a.s. and calculate P0[τa < τ−b].

104. LetX(·) be a Brownian motion with parameters (0, σ2) andX(0) ≡ 0. Let s, t, u, w >

0. Compute E
[
X(s)X(s+ t)X(s+ t+ u)X(s+ t+ u+ w)

]
.

105. Suppose that X1, . . . , Xn are random variables. Show that the following conditions

are equivalent:

(a) ∀a1, . . . , an ∈ R
∑n

k=1 akXk is a normal random variable;

(b) 〈Xk ; 1 ≤ k ≤ n〉 has a multivariate normal distribution.
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106. p. 399, 8.1: Let Y (t) = tX(1/t).

(a) What is the distribution of Y (t)?

(b) Compute Cov(Y (s), Y (t)).

(c) Argue that {Y (t), t ≥ 0} is also Brownian motion.

(d) Let

T = inf{t > 0 ; X(t) = 0}.

Using (c) present an argument that

P [T = 0] = 1.

107. Prove that for Brownian motion X(·) with drift µ, we have limt→∞X(t)/t = µ a.s.

Exercise not to Hand In: p. 399, 8.3: Compute the conditional distribution of X(s)

given that X(t1) = A and X(t2) = B, where t1 < s < t2.

108. Let X(·) be standard Brownian motion. Define Z(s) := (1 − s)X
(
s/(1 − s)

)
for

0 ≤ s < 1 and Z(1) := 0. Show that Z(·) is a standard Brownian bridge.

109. Let 〈X(t) ; t ∈ I〉 be a Gaussian process on an interval, I. Write

Q(s, t) := Cov
(
X(s), X(t)

)
.

Show that X(·) has the Markov property iff for all s1 < t < s2 in I, we have

Q(s1, s2)Q(t, t) = Q(s1, t)Q(s2, t).

110. Let 〈X(s) ; 0 ≤ s ≤ t〉 be a Brownian bridge from X(0) = A to X(t) = B. Fix

t′ ∈ (0, t). Given that X(t′) = C, show that 〈X(s) ; 0 ≤ s ≤ t′〉 is a Brownian bridge from

A to C, that 〈X(s) ; t′ ≤ s ≤ t〉 is a Brownian bridge from C to B, and that these two

bridges are independent.

111. p. 402, 8.21: Verify that if {B(t), t ≥ 0} is standard Brownian motion, then {Y (t), t ≥
0} is a martingale with mean 1, when Y (t) = exp{cB(t)− c2t/2}. (Here, c ∈ R.)

112. Let 〈X(t)〉 be a Brownian motion with parameter (µ, σ2), where µ 6= 0, X(0) ≡ 0,

and let a, b > 0. Use Exercise 111 with c := −2µ/σ to show that

(a) E
[
exp

{
−2µX(Ta ∧ T−b)/σ

2
}]

= 1 and

(b) maxt≥0X(t) ∼ Exp(−2µ/σ) if µ < 0.

(c) Use c := −µ/σ to show that P [T−b ≥ t] ≤ e−µb−µ2t/2 if µ < 0.

(d) Use (a) to give a new calculation of P [Ta < T−b].
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113. Use the martingale 〈X(t) − µt〉 to calculate E[Ta ∧ T−b] for a Brownian motion

starting at 0 with drift µ 6= 0 and a, b > 0. Use a martingale to show that for standard

Brownian motion, E[Ta ∧ T−b] = ab.

114. Show that X < Y ⇐⇒ ∀a P [X ≥ a] ≥ P [Y ≥ a] ⇐⇒ X+ < Y + and X− 4 Y −.
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