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Preface

I gave these lectures at Indiana University during the academic year 2017–18. Initially, one
of the students, ChunHsien Lu, typed the notes during class. Later, another student who was not
in the course, Zhifeng Wei, used my handwritten notes to correct and complete the typed notes. I
am very grateful to both of them for all their work. Zhifeng deserves special thanks for figuring
out how to add reasons beautifully to displayed equations, as well as for being attentive in general
to all my typesetting requests. I then did some further editing and added some illustrations and a
bit more material. I would be grateful to learn of any errors or improvements; please email me at
rdlyons@iu.edu.

The course was based on the book, Brownian Motion, Martingales, and Stochastic Calculus, by
Jean-François Le Gall. The same theorem and exercise numbers are used here, although I have not
reproduced the exercises. I also added a large number of exercises, especially in order to have some
that were useful for learning new concepts and definitions. I assigned homework once per week,
and have included the dates those assignments were due in order that others may gauge the pace. A
few new problems were added after the course ended; these do not have due dates. Furthermore,
the last homework exercises also do not have dates due because they were given at the end of the
term. I spent a substantial amount of time in class going over solutions to the homework, but no
solutions are presented here. I am grateful to Jean-François for his advice on teaching this course.
This turned out to be one of my most enjoyable teaching experiences ever. I had never taught this
material before, and always promptly forgot it whenever I had learned some of it in the past. This
time, however, teaching it and working hard on the exercises led to actually learning it.

Other differences from Le Gall’s book arise from using somewhat different proofs and
sometimes giving more general results. A couple of proofs are substantially different. In addition, I
covered Chapter 8 on SDEs before Chapter 7 on PDEs. I did not have time to cover Chapter 9 on
local times, nor Sections 5.4–5.6. I later made up for this in part by including appendices on the
Cameron–Martin theorem and Girsanov’s theorem. A couple of appendices provide material I gave
to the students from other sources. Occasionally I refer to Le Gall’s book for details not given in
lecture.

The format of the typed notes tries to reproduce the format of my handwritten notes and most
of what went on the board.

mailto:rdlyons@iu.edu
https://link.springer.com/book/10.1007/978-3-319-31089-3


iv

The First Day

We begin with some

Motivation (A special case of Itô’s formula). If (�C)C>0 is a standard Brownian motion and
5 ∈ �2(R), then

d 5 (�C) = 5 ′(�C) d�C +
1
2
5 ′′(�C) dC.

This is like calculus, but there is a second term on the right-hand side: |d�C | ≈
√

dC. So
(d�C)2 ≈ dC. This shows partly why !2(P) is a key.

SDEs (semester 2) are defined via stochastic integration (semester 1). Other relations to PDEs
and harmonic functions are in semester 2, including conformal invariance of complex Brownian
motion.

We will start with preparatory material: Gaussian processes, construction of Brownian motion
and its basic properties, and a quick review of discrete-time martingales. Then we will study new
material on continuous-time martingales and continuous semimartingales.

Before that, recall that a classU of random variables on (Ω,ℱ,P) is uniformly integrable if

lim
C→∞

sup
-∈U

E
[
|- |1[|- |>C]

]
= 0.

This holds if (and, it turns out, only if) sup-∈U E
[
i( |- |)

]
< ∞ for some function i : [0,∞) →

[0,∞) with limC→∞
i(C)
C
= ∞. If -= and - are integrable and -=

P−→ - , then the following are
equivalent:

1. {-=} is uniformly integrable;
2. E

[
|- − -= |

]
→ 0;

3. E
[
|-= |

]
→ E

[
|- |

]
.
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Chapter 1

Gaussian Variables and Gaussian Processes

1.1. Gaussian Random Variables

The standard Gaussian (or normal) density is

?- : G ↦→ 1
√

2c
exp

{
−G

2

2

}
(G ∈ R).

The complex Laplace transform of such a random variable, - , is

I ↦→ E
[
eI-

]
=

∫ ∞

−∞
eIG ?- (G) dG = eI

2/2 (I ∈ C).

One sees this by first calculating the integral for I ∈ R and then using analytic continuation (see
page 2 of Le Gall’s book). In particular, the characteristic function (Fourier transform) is

b ↦→ E
[
eib- ] = e−b

2/2 (b ∈ R).

Recall that the Fourier transform determines the law of - uniquely. By expanding in a Taylor
series, one gets the moments of - , such as E[-] = 0 and E

[
-2] = 1.

We say . ∼ 
(<, f2) for < ∈ R and f > 0 if (. − <)/f is standard normal. This is
equivalent to:

. has density H ↦→ 1
f
√

2c
exp

{
− (H − <)

2

2f2

}
and to

. has Fourier transform b ↦→ ei<b−f2b2/2.

Note that then E [. ] = < and Var(. ) = f2. If . = < a.s., we will also say . ∼
(<, 0).
Using the Fourier transform, one sees that a sum of two independent normal random variables

is also normal.
One proves properties of stochastic processes with a continuous parameter by taking limits in

various senses from finite or countable subsets of parameters. This is how we will use the following:
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Proposition 1.1. Suppose -= ∼ 
(<=, f2
= ) converges to - in !2 (i.e., E

[
|-= − - |2

]
→ 0 as

=→∞). Then
(i) - ∼
(<, f2) with < B lim<= and f B limf=;
(ii) -= → - in !? for every ? ∈ (0,∞).

Proof. (i) That lim<= = E[-] and limf2
= = Var(-) does not use that (-=)=>1 are Gaussian. The

fact that - is Gaussian then follows from using the Fourier transform.
(ii) Because -=

�

= f=# + <= with # ∼
(0, 1), we see that

∀@ > 0 sup
=

E
[
|-= |@

]
< ∞,

whence
sup
=

E
[
|-= − - |@

]
< ∞.

(Recall that ‖·‖@ satisfies the triangle inequality for @ > 1 and ‖·‖@@ does for @ < 1.) Given
? ∈ (0,∞), we get that

{
|-= − - |?, = > 1

}
is bounded in !2 (use @ B 2?) and tends to 0 in

probability because -=
P−→ - , whence is uniformly integrable. Therefore, E

[
|-= − - |?

]
→ 0. J

1.2. Gaussian Vectors

Let � be a Euclidean space, i.e., a finite-dimensional inner-product space. Let - be an �-valued
random variable with E

[
‖- ‖2

]
< ∞. We claim that there exist some <- ∈ � and a non-negative

quadratic form @- on � such that

∀D ∈ � E
[
〈D, -〉

]
= 〈D, <-〉 and Var

(
〈D, -〉

)
= @- (D).

We will then write E[-] B <- . To see our claim, take an orthonormal basis (41, . . . , 43) of � ,
write - =

∑
- 94 9 , and define

<- B
∑

E[- 9 ] 4 9 ,

@- (D) B
∑

D 9D: Cov(- 9 , -: ) = Var
(∑

D 9- 9

)
> 0.

Calculation shows this works.
We also write W- : � → � for the symmetric linear mapping such that

∀D ∈ � @- (D) =
〈
D, W- (D)

〉
;

its matrix is
(
Cov(- 9 , -: )

)
9 ,:63 . The eigenvalues of W- are non-negative.

We call - Gaussian if ∀D ∈ � 〈D, -〉 is Gaussian; we also call the components of - jointly
Gaussian.
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Example. If -1, -2, . . . , -3 are independent Gaussian, then
∑
- 94 9 is a Gaussian vector.

If - is Gaussian, then 〈D, -〉 ∼

(
〈D, <-〉, @- (D)

)
, so

E ei〈D,-〉 = ei〈D,<- 〉−@- (D)/2. (1.1)

We write - ∼
(<- , @-).
Proposition 1.2. If - is Gaussian, (41, . . . , 43) is an orthonormal basis of � , and - =

∑
- 94 9 ,

then
(
Cov(- 9 , -: )

)
9 ,:63 is diagonal if and only if -1, -2, . . . , -3 are (mutually) independent.

Proof. ⇐: Independence implies pairwise independence. Thus, Cov(- 9 , -: ) = 0 for distinct 9 and
: .
⇒: Conversely, when the covariance matrix is diagonal, the right-hand side of Eq. (1.1) factors

as a product over 9 , and independence follows. J

In particular, for jointly Gaussian random variables, pairwise independence implies mutual
independence.

For simplicity, we now consider centered Gaussian vectors, i.e., ones with mean 0. We will
not use the following:

Theorem 1.3. (i) If W is a positive semi-definite linear map on � , then there exists a Gaussian
vector - on � such that W- = W.

(ii) Let - ∼ 
(0, W-). Let (Y1, . . . , Y3) be an orthonormal basis of eigenvectors of W- with
eigenvalues �1 > · · · > �A > 0 = �A+1 = · · · = �3 . Then there exist independent. 9 ∼
(0, � 9 )
such that

- =

A∑
9=1
. 9 Y 9 .

The support of the law %- of - is the linear span of {Y1, . . . , YA}. Also, %- is absolutely
continuous with respect to Lebesgue measure if and only if A = 3, in which case the density of
- is

?- : G ↦→ 1
(2c)3/2

√
det W-

e−〈G,W
−1
-
(G)〉/2.

1.3. Gaussian Processes and Gaussian Spaces

We will often omit the word “centered”.
Another way to say that (-1, -2, . . . , -3) ∈ R3 is a Gaussian vector is to say that the linear

span of {-1, -2, . . . , -3} in !2(Ω,P) consists only of Gaussian random variables.

Definition 1.4. A (centered) Gaussian space is a closed linear subspace of !2(Ω,P) that contains
only centered Gaussian variables.

Definition 1.5. Let ) be a set and (�,ℰ) be a measurable space. A stochastic process (or random
process) indexed by T with values in � is a collection (-C)C∈) of �-valued random variables. If
(�,ℰ) is not specified, then we assume that � = R andℰ = ℬ(R) is its Borel f-field. Usually,
) = R+ B [0,∞).
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Definition 1.6. A stochastic process (-C)C∈) ∈ R) is a Gaussian process if for every finite subset ) ′
of ) , (-C)C∈) ′ ∈ R)

′ is a Gaussian vector.

By Proposition 1.1, we get

Proposition 1.7. If (-C)C∈) is a Gaussian process, then the closed linear span of (-C)C∈) in !2(Ω,P)
is a Gaussian space, called the Gaussian space generated by (-C)C∈) . J

Exercise (due 8/31). Exercise 1.15 (4 parts).

The undergrad notion that jointly normal, centered random variables (-,. ) are independent
if and only if they are orthogonal in !2 (i.e., E(-. ) = 0), which we proved and extended in
Proposition 1.2, has the following further extension:

Theorem 1.9. Let � be a centered Gaussian space and K be a collection of linear subspaces of �.
Then the subspaces ofK are (pairwise) orthogonal (⊥) in !2 if and only the f-fields f( ) ( ∈ K)
are independent (⫫).

Proof. Independence implies orthogonality trivially.
For the converse, it suffices to show that if  1,  2, . . . ,  ? ∈ K are distinct, then f( 1), f( 2),

. . . , f( ?) are independent, because this is the definition of independence for infinitely many
f-fields. In turn, this follows if we show that (b1

1 , b
1
2 , . . . , b

1
=1), . . . , (b

?

1 , b
?

2 , . . . , b
?
=? ) are independent

for b 9
8
∈  9 . (This is a standard fact and follows from Dynkin’s c-� theorem, which is called in the

book “the monotone class lemma”; see Appendix 1 for that and this application. Halmos’ monotone
class lemma is given on page 89 of the book.) Now let ([ 91, [

9

2, . . . , [
9
< 9
) be an orthonormal basis of

the span of (b 91 , b
9

2 , . . . , b
9
= 9 ). Orthogonality gives that the vector

([1
1, [

1
2, . . . , [

1
<1 , [

2
1, [

2
2, . . . , [

2
<2 , . . . , [

?

1 , [
?

2 , . . . , [
?
<? )

has covariance matrix the identity. This is a Gaussian vector since its components are in �.
Proposition 1.2 then yields that all [ 9

8
are independent, whence

([1
1, [

1
2, . . . , [

1
<1), . . . , ([

?

1 , [
?

2 , . . . , [
?
<? )

are independent. This gives the result. J

If - : (Ω,ℱ,P) → (�,ℰ) and� is a sub-f-field ofℱ, then a regular conditional distribution
for - given� is a function ` : Ω ×ℰ → [0, 1] such that
(1) ∀l ∈ Ω `(l, ·) is a probability measure

and
(2) ∀� ∈ ℰ `(·, �) is a version of P[- ∈ � | �].

This exists if (�,ℰ) is a standard Borel space (Borel isomorphic to a Borel subset of R), such
as a Borel subset of a Polish space (complete, separable, metrizable space); see Durrett’s book,
Probability: Theory and Examples.
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Corollary 1.10. Let � be a (centered) Gaussian space and  be a closed linear subspace of �.
Let ? : � →  be the orthogonal projection. If -1, -2, . . . , -3 ∈ �, then the f( )-conditional
distribution of (-1, -2, . . . , -3) is




( (
? (-8)

)3
8=1, @ (?⊥ (-8))

3
8=1

)
.

Proof. We have
-8 = ?

⊥
 (-8)︸  ︷︷  ︸
⫫ f( )

+ ? (-8)︸  ︷︷  ︸
∈ f( )

, 1 6 8 6 3. J

See the book for more details when 3 = 1. Note that here E[- | f( )] = ? (-), whereas in
general (outside the context of Gaussian random variables), it is ?!2 (Ω,f( ),P) (-).
Exercise (due 9/7). Exercise 1.17.

1.4. Gaussian White Noise

White noise is an engineering term that refers to a signal with constant Fourier transform. In
the case of a stationary stochastic process, we look at the spectral measure (page 11 in the book),
whose Fourier transform is the covariance function; it should be 2 · X0. That is, the process should
have no correlations; in the Gaussian case, this is equivalent to independence. This makes most
sense if the index set is Z. But we are interested in R. However, the index set for us will not be R,
but ℬ(R). Motivations include increments of Brownian motion and the Poisson process in R or R2

. . . . Thus, each Borel set � ∈ ℬ(R) gives a Gaussian random variable, � (�). If �1 ∩ �2 = ∅,
then we want � (�1) ⫫ � (�2).
Definition 1.12. Let (�,ℰ) be a measurable space and ` be a measure on (�,ℰ). A Gaussian
white noise with intensity ` is an isometry � from !2(�,ℰ, `) into a (centered) Gaussian space.

Thus, for 5 , 6 ∈ !2(�), we have

Cov
(
� ( 5 ), � (6)

)
= 〈 5 , 6〉!2 ,

Var
(
� ( 5 )

)
= ‖ 5 ‖2

!2 .

If � ∈ ℰ with `(�) < ∞, we set � (�) B � (1�) ∼

(
0, `(�)

)
. If �1, �2, . . . , �= ∈ ℰ with

`(� 9 ) < ∞, then
(
� (�1), � (�2), . . . , � (�=)

)
is a Gaussian vector with covariance

Cov
(
� (�8), � (� 9 )

)
= `(�8 ∩ � 9 ).

In particular, if �1, �2, . . . , �= are disjoint, then the covariance matrix is diagonal, so by Proposi-
tion 1.2, the variables � (�1), � (�2), . . . , � (�=) are independent.

If � ∈ ℰ, `(�) < ∞, is partitioned into �1, �2, . . . ∈ ℰ, then 1� =
∑

9 1� 9 in !2, so by
isometry,

� (�) =
∑
9

� (�8) in !2.

Kolmogorov’s theorem shows that we also have almost sure convergence. However, in general, it is
not possible to make � ↦→ � (�) a signed measure almost surely, even when (�,ℰ) =

(
R,ℬ(R)

)
,

as Corollary 2.17 will show.
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Proposition 1.13. Let (�,ℰ) be a measurable space and ` be a measure on (�,ℰ). There exists a
probability space (Ω,ℱ,P) and a Gaussian white noise on !2(Ω,ℱ,P) with intensity `.

Proof. Let ( 58)8∈� be an orthonormal basis for !2(�,ℰ, `). Choose a probability space on which
there exist i.i.d. random variables -8 ∼
(0, 1) (8 ∈ �). Define � : !2(`) → !2(P) by � ( 58) B -8.
That is, for 5 ∈ !2(`), we define

� ( 5 ) B
∑
8∈�
〈 5 , 58〉-8 .

The fact that � is an isometry uses only that the variables (-8)8∈� are orthonormal. The fact that �
takes values in a Gaussian space uses that (-8)8∈� is standard normal and Proposition 1.1(i). J

Exercise. Let (�,ℰ) be a measurable space and ` be a measure on (�,ℰ). Let 51, 52 ∈ !2(`). Let
� be a Gaussian white noise on !2(Ω,ℱ,P) with intensity `. Calculate the joint distribution of
� ( 51) and � ( 52) and the conditional distribution of � ( 52) given � ( 51).

Exercise (due 9/7). Exercise 1.18.

Proposition 1.14. Let � be a Gaussian white noise on (�,ℰ) with intensity ` and � ∈ ℰ have
`(�) < ∞. If for each = ∈ N, � is partitioned as � =

⋃:=
9=1 �

=
9
with

lim
=→∞

max
16 96:=

`(�=9 ) = 0,

then

lim
=→∞

:=∑
9=1

� (�=9 )2 = `(�) in !2(P).

Proof. We have � (�=
9
) ∼ 


(
0, `(�=

9
)
)
are independent. From page 2 of the book, we know

� (�=
9
)2 have variance 2 `(�=

9
)2. Therefore,

Var
( :=∑
9=1

� (�=9 )2
)
= 2

:=∑
9=1

`(�=9 )2 6 2
(

max
16 96:=

`(�=9 )︸          ︷︷          ︸
→0

)
·
:=∑
9=1

`(�=9 )︸      ︷︷      ︸
`(�)

→ 0.

But this is precisely


∑:=

9=1� (�
=
9
)2 − `(�)



2
2. J

If the partitions are successive refinements, then we have almost sure convergence by Doob’s
martingale convergence theorem.
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Chapter 2

Brownian Motion

Although Exercise 1.18 constructed Brownian motion (on [0, 1]), we will give another
construction that yields more information, via a lemma of Kolmogorov that will also be used in later
chapters.

2.1. Pre-Brownian Motion

The following is a natural extension of Exercise 1.18(3).

Definition 2.1. A pre-Brownian motion (�C)C>0 is a stochastic process such that

�C = �
(
1[0,C]

)
“c.d.f. of �”

for some Gaussian white noise � on R+ whose intensity is Lebesgue measure.

Proposition 2.2. Every pre-Brownian motion is a centered Gaussian process with covariance
 (B, C) = min{B, C} C B ∧ C.

Proof. Cov(�B, �C) = Leb
(
[0, B] ∩ [0, C]

)
= B ∧ C. J

Proposition 2.3. Let (-C)C>0 be a (real-valued) stochastic process. The following are equivalent:
(i) (-C)C>0 is a pre-Brownian motion;
(ii) (-C)C>0 is a centered Gaussian process with covariance  (B, C) = B ∧ C;
(iii) -0 = 0 a.s. and ∀0 6 B < C -C − -B ∼
(0, C − B) is independent of f(-A , A 6 B);
(iv) -0 = 0 a.s. and ∀0 = C0 < C1 < · · · < C? -C8 − -C8−1 ∼ 
(0, C8 − C8−1) are independent for

1 6 8 6 ?.

Proof. (i) ⇒ (ii): Proposition 2.2.
(ii) ⇒ (iii): -0 ∼
(0, 0); -C − -B = �

(
[B, C]

)
∼
(0, C − B); if �B is the closed linear span

of (-A)06A6B and �̃B the closed linear span of (-C − -B)C>B, then �B ⊥ �̃B since -A ⊥ (-C − -B)
(E

[
-A (-C − -B)

]
= A ∧ C − A ∧ B = A − A = 0) for A 6 B 6 C, whence by Theorem 1.9, f(�B) ⫫ f(�̃B).

(iii) ⇒ (iv): By (iii), -C8 − -C8−1 ⫫ f(-C 9 − -C 9−1 ; 0 6 9 < 8) for each 8 ∈ [1, ?].
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(iv) ⇒ (i): We need to define � ( 5 ) for 5 ∈ !2(R+). We start with step functions
5 =

∑=
8=1 �81(C8−1,C8] , where 0 = C0 < C1 < · · · < C=. For such 5 , we define

� ( 5 ) B
=∑
8=1

�8 (-C8 − -C8−1).

This does not depend on the representation of 5 : to see this, use a common refinement. Similarly, to
see that E

[
� ( 5 )� (6)

]
=

∫
R+
5 6 for each 5 and 6, use a common refinement. Thus,� is an isometry

from step functions on R+ into the Gaussian space generated by - . Since step functions are dense in
!2(R+), we may extend� to an isometry on !2(R+). By construction,�

(
(0, C]

)
= -C−-0 = -C . J

Exercise. Show that (-C)C>0 is a pre-Brownian motion iff -0 = 0 a.s. and (-C)C>0 is a centered
Gaussian process with ∀0 6 B < C Var(-C − -B) = C − B.

The finite-dimensional distributions of pre-Brownian motion—the laws of (�C1 , �C2 , . . . , �C=)
for 0 < C1 < · · · < C=—are unique by the equivalence of (i) and (iv) in Proposition 2.3. To be
explicit:
Corollary 2.4. Let (�C)C>0 be a pre-Brownian motion and 0 = C0 < C1 < · · · < C=. Then
(�C1 , �C2 , · · · , �C=) has density on R=

(G1, . . . , G=) ↦→
=∏
8=1

1√
2c(C8 − C8−1)

exp
{
−

=∑
8=1

(G8 − G8−1)2
2(C8 − C8−1)

}
,

where G0 B 0.

Proof. Independence of increments gives the joint density of the increments. Then we change
variables (H1, . . . , H=) ↦→ (G1, . . . , G=) via G8 B

∑8
9=1 H 9 , which has Jacobian determinant 1. J

Some simple properties of pre-Brownian motion:
Proposition 2.5. Let (�C)C>0 be a pre-Brownian motion.

(i) (−�C)C>0 is a pre-Brownian motion.
(ii) ∀� > 0

(
��C

)
C>0 defined by �

�
C B

1
���2C is a pre-Brownian motion.

(iii) ∀B > 0
(
�
(B)
C

)
C>0 defined by �

(B)
C B �B+C − �B is a pre-Brownian motion and is independent

of f(�A , A 6 B).

Proof. (i) and (ii) follow from (say) Proposition 2.3(ii).
In the notation of the proof of Proposition 2.3, we have f

(
�
(B)
C , C > 0

)
= f(�̃B), which we

saw is independent of f(�B) = f(�A , A 6 B). The finite-dimensional distributions are correct as a
special case of those for � itself. J

We defined � in terms of �, but � is also determined by �: we did this in Proposi-
tion 2.3 (iv)⇒(i), using step functions and limits. One sometimes writes

� ( 5 ) =
∫ ∞

0
5 (B) d�B

(
5 ∈ !2(R+)

)
.

This is called theWiener integral. However, � (·) is not an almost sure measure and this integral
makes no sense pointwise. We will extend integration to random 5 in Chapter 5.
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Exercise. Nevertheless, one can integrate by parts in the Wiener integral: Suppose that ` is a finite,
signed measure on (0, C] for some C > 0 and that 5 (B) = `(0, B] for B 6 C. Set 5 (B) := 0 for B > C.
Assume that � is continuous a.s. Show that

� ( 5 ) = 5 (C)�C −
∫
(0,C]

�B `(dB) a.s.

2.2. The Continuity of Sample Paths

In Exercise 1.18, we defined Brownian motion �′ by taking a limit of continuous functions
based on �, thus getting almost surely a continuous function C ↦→ �′C (l). In our redevelopment, we
haven’t done that yet. Finite-dimensional distributions cannot guarantee that, since we could always
change the process at an independent * [0, 1] random time to be 0, say, which would not change
the f.d.d.s, yet would make the process discontinuous. We now discuss such modifications more
generally.

Definition 2.6. Let (-C)C∈) be a stochastic process with values in � . The sample paths of - are the
maps C ↦→ -C (l) for each l ∈ Ω.

Definition 2.7. Let (-C)C∈) and ( -̃C)C∈) be stochastic processes indexed by the same ) and taking
values in the same � . We say -̃ is a modification of - if

∀C ∈ ) P[-̃C = -C] = 1.

This gives the same finite-dimensional distributions, but that is not enough for us.

Definition 2.8. With the same notation, we say -̃ is indistinguishable from - if

P[∀C ∈ ) -̃C = -C] = 1.

To be more precise, we use the completion of P here, or, alternatively, the condition is that there
exists a subset # ⊆ Ω with P(#) = 0 such that

∀l ∈ #c ∀C ∈ ) -̃C (l) = -C (l).

Notice that if ) is a separable metric space and -, -̃ both have continuous sample paths almost
surely, then -̃ is a modification of - if and only if -̃ is indistinguishable from - . In case ) ⊆ R,
the same assertion holds with “continuous” replaced with “right-continuous” or “left-continuous”.

We are going to prove more than continuity, namely, Hölder continuity. In the context of metric
spaces, a function 5 : (�1, 31) → (�2, 32) is Hölder continuous of order U if

∃� < ∞ ∀B, C ∈ �1 32
(
5 (B), 5 (C)

)
6 � · 31(B, C)U .

Kolmogorov showed that when 5 is replaced by a stochastic process on a domain in R: that satisfies
the above inequality when the left-hand side is replaced by the expectation of a power of the distance
and U > : on the right-hand side, then the process has almost sure Hölder continuity of order higher
than 0:



10 Chapter 2. Brownian Motion

Theorem 2.9 (Kolmogorov’s lemma, or Kolmogorov’s continuity theorem). Consider a stochastic
process - = (-C)C∈� on a bounded rectangle � ⊆ R: that takes values in a complete metric space
(�, 3). If there exist positive @, Y, � such that

∀B, C ∈ � E
[
3 (-B, -C)@

]
6 � |B − C |:+Y,

then there exists a modification -̃ of - whose sample paths are Hölder continuous of order U for all
U ∈ (0, Y

@
). Indeed, -̃ can be chosen to satisfy

∀U < Y

@
E

[
sup
B,C∈�
B≠C

(
3 ( -̃B, -̃C)
|B − C |U

)@]
< ∞. (∗)

Note that for unbounded �, this gives locally Hölder sample paths. Recall that continuous
sample path modifications are unique up to indistinguishability.

Proof. We do only : = 1. We also take � = [0, 1] for simplicity; the presence of endpoints would
not matter. Note that Eq. (∗) implies that for each U ∈ (0, Y

@
), there is a Hölder-U modification.

Using a sequence U 9 ↑ Y
@
, we get that there is a modification that is Hölder-U 9 for all 9 (by uniqueness

up to indistinguishability). This gives Hölder-U for all U ∈ (0, Y
@
).

Now for B ≠ C, the hypothesis yields

E

[
3 (-B, -C)@
|B − C |U@

]
6
� |B − C |1+Y
|B − C |U@ = � |B − C |1+Y−U@ .

Hence,

E

[  (l)B︷                                 ︸︸                                 ︷
sup
=>1

sup
16862=

(
3 (-(8−1)2−= , -82−=)

(2−=)U

)@]
6
∑
=>1

∑
16862=

E

[(
3 (-(8−1)2−= , -82−=)

2−=U

)@]
6
∑
=>1

∑
16862=

�2−=(1+Y−U@) =
∑
=

�2−=(Y−U@) < ∞.

We now use:

Lemma 2.10. Let � B {82−= ; = > 1, 0 6 8 6 2=}, 5 : � → (�, 3), U > 0.
Then

sup
B,C∈�
B≠C

3
(
5 (B), 5 (C)

)
|B − C |U 6

2
1 − 2−U

sup
=>1

sup
16862=

3

(
5
(
(8 − 1)2−=

)
, 5 (82−=)

)
(2−=)U .

Proof. Take a “chain” from B to C that uses at most two hops of order ℓ for every
ℓ > ?, where 2−? 6 |B − C | < 2−?+1. See page 26 of the book for details. J
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This gives Eq. (∗) restricted to B, C ∈ � for -̃A B -A (A ∈ �). In particular, - is almost surely
Hölder-U continuous on �, hence continuous on �. Define

-̃C (l) B lim
�3B→C

-B (l) when  (l) < ∞

and -̃C (l) B G0 for some fixed G0 ∈ � when  (l) = ∞. Then

∀l ∈ Ω sup
B,C∈�
B≠C

3
(
-̃B, -̃C

)
|B − C |U 6

2
1 − 2−U

 (l). J

Corollary 2.11. Pre-Brownian motion has a modification with continuous sample paths. Every
such modification is indistinguishable from one (all of) whose sample paths are locally Hölder
continuous of order U for all U < 1

2 .

Proof. Recall that a standard normal random variable has a finite @th moment for each @ < ∞.
Thus, for B < C, there exists a standard normal* such that

�C − �B =
√
C − B ·* ∈ !@

with
E
[
|�C − �B |@

]
= (C − B)@/2 · E

[
|* |@

]
.

If @ > 2, we can apply Theorem 2.9 with Y B @

2 − 1 to get Hölder continuity with U < Y
@
= 1

2 −
1
@
.

We may take @ arbitrarily large. J

Remark. The optimal result is known as “Lévy’s modulus of continuity”:

lim
Y↓0

sup
C>0

|�C+Y − �C |√
2Y log 1

Y

= 1 a.s.

Definition 2.12. A Brownian motion is a pre-Brownian motion with continuous sample paths.

We have proved Brownian motion exists. Since −�, ��, �(B) have continuous sample paths
when � does, the statements of Proposition 2.5 holds when “pre” is removed everywhere.

In order to discuss the law of the sample paths, we use the space � (R+,R) of continuous
functions from R+ to R equipped with the topology g of uniform convergence on every compact set.
This topology is locally compact. The corresponding Borel f-field is generated by the coordinate
maps | ↦→ |(C) (C ∈ R+).
Exercise. Check that g is locally compact and its Borel f-field is generated as claimed.

Thenl ↦→
(
C ↦→ �C (l)

)
is measurable since composing it with each coordinate map | ↦→ |(B)

gives the measurable �B. The pushforward of P is the Wiener measure , , the law of sample
paths: , (�) = P[�· ∈ �] for measurable � ⊆ � (R+,R). Corollary 2.4, the finite-dimensional
distributions of pre-Brownian motion, gives the finite-dimensional distributions of , , i.e., the
collection of laws of

(
|(C0), |(C1), . . . , |(C=)

)
for = > 0, 0 = C0 < C1 < · · · < C=. The cylinder sets

are the sets {
| ∈ � (R+,R) ; |(C0) ∈ �0, . . . , |(C=) ∈ �=

}
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Figure 2.1: Simulation of Brownian motion

for �0, . . . , �= ∈ ℬ(R). The class of cylinder sets is obviously closed under finite intersections; by
definition, this class generates the f-field, whence by the c-� theorem (number 1 on page 262 of
the book), the finite-dimensional distributions of, determine, . Thus, there is only one Wiener
measure.

Exercise (due 9/14). Exercise 2.25 (time inversion).

Exercise. Suppose that 5 ∈ !2
loc(R+), i.e., 5 ∈ !

2 ([0, C]) for all C > 0. Define the stochastic
process - : C ↦→ �

(
5 1[0,C]

)
for a Gaussian white noise � on R+ with intensity Lebesgue measure.

Define �C :=
∫ C

0 | 5 (B) |
2 dB and gC := inf{B ≥ 0 ; �B > C}. Let VC := -gC . Show that (VC)06C<�∞ is a

pre-Brownian motion restricted to [0, �∞). Let � be a modification of V that is continuous. Write
3 (B, C) :=

(∫ C

B
| 5 (D) |2 dD

)1/2. Show that . : C ↦→ ��C is a modification of - that is locally Hölder
continuous of order U for all U < 1 with respect to the pseudometric 3 on R+. We call such a process
. a Wiener integral process.

2.3. Properties of Brownian Sample Paths

Lemma. Let -1, -2, . . . , -= be random variables and � be an event. Then � is independent of
f(-1, -2, . . . , -=) if and only if

∀6 ∈ �c(R=,R) E
[
1�6(-1, -2, . . . , -=)

]
= P(�) E

[
6(-1, -2, . . . , -=)

]
.

Proof. The law of (-1, -2, . . . , -=), as a Borel probability measure on R=, is determined by its
integral of 6 ∈ �c(R=), as is the law conditional on �. J

Let (�C)C>0 be a Brownian motion. Write ℱC B f(�B, B 6 C) and ℱ0+ B
⋂
B>0 ℱB. This

latter describes how Brownian motion “starts”. Are there ways it can start that have non-trivial
probability? No:

Theorem 2.13 (Blumenthal’s 0-1 Law). ℱ0+ is trivial in the sense that all its sets have probability 0
or 1.



2.3. Properties of Brownian Sample Paths 13

Proof. We want to show that ℱ0+ is independent of ℱ0+ , for which it suffices to show that ℱ0+ is
independent of ℱB for some B > 0, since ℱ0+ ⊆ ℱB. Take any B > 0; since ℱB = f(�C , 0 < C 6 B)
(as �0 = 0 a.s.), it suffices to show that ℱ0+ is independent of f(�C1 , �C2 , . . . , �C=) for any
0 < C1 < C2 < · · · < C= 6 B. In light of the above lemma, we calculate, for 6 ∈ �c(R=,R) and
� ∈ ℱ0+ ,

E
[
1�6(�C1 , �C2 , . . . , �C=)

]
= lim

Y↓0
E
[
1�6(�C1 − �Y, �C2 − �Y, . . . , �C= − �Y)

]
= lim

Y↓0
P(�) E

[
6(�C1 − �Y, �C2 − �Y, . . . , �C= − �Y)

]

= P(�) E
[
6(�C1 , �C2 , . . . , �C=)

]
.

[bounded convergence theorem]

[ℱ0+ ⊆ ℱY ⫫ f(�C1 − �Y, �C2 − �Y, . . . , �C= − �Y)
for Y < C1 by Proposition 2.5]

J

As a corollary, we deduce the following:

Proposition 2.14. (i) Almost surely,

∀Y > 0 sup
06B6Y

�B > 0 and inf
06B6Y

�B < 0.

(ii) Almost surely, limC→∞ �C = ∞ and lim
C→∞ �C = −∞.

Note that these are random variables since we may restrict to rational times.

Proof. (i) We have

P
[
∀Y > 0 sup

06B6Y
�B > 0

]
= P

[⋂
Y>0

[
sup

06B6Y
�B > 0

] ]
= lim

Y↓0
P
[

sup
06B6Y

�B > 0
]
> lim

Y↓0
P[�Y > 0] = 1

2
,

whence the above probability equals one by Theorem 2.13. Symmetry gives the other result.
(ii) Let / := supC �C . Recall that ��C B 1

���2C gives a Brownian motion by Proposition 2.5(ii).
Thus, the law of / is the same as the law of //� for all � > 0, which means it is concentrated
on {0,∞}. By part (i), / > 0 a.s., whence / = ∞ a.s. Therefore, limC→∞ �C = ∞ a.s. as well.
Symmetry gives the other assertion. J

Exercise (due 9/21). Exercise 2.29. In fact, show that for any sequence (C: ):>1 ⊂ (0,∞) with
C: → 0, we have lim:→∞ �C:/

√
C: = ∞ and lim

:→∞ �C:/
√
C: = −∞ almost surely.

Exercise. Show that for any sequence (C: ):>1 ⊂ (0,∞) with C: →∞, we have lim:→∞ �C:/
√
C: = ∞

and lim
:→∞ �C:/

√
C: = −∞ almost surely.

Exercise. Show that the tail f-field
⋂
C>0 f(�B, B > C) is trivial.

Another corollary:



14 Chapter 2. Brownian Motion

Corollary 2.15. Almost surely, Brownian motion is not monotone on any nontrivial interval.

Proof. By Proposition 2.5(iii),

∀C > 0 P
[
∀Y > 0 sup

C6B6C+Y
�B > �C and inf

C6B6C+Y
�B < �C

]
= 1.

Apply this to C ∈ Q+. J

Of course, Brownian motion does have local maxima and minima.
We give two last properties that do not depend on Theorem 2.13:

Proposition 2.16. Fix C > 0. If 0 = C=0 < C
=
1 < · · · < C

=
C?=
= C satisfies

lim
=→∞

max
1686?=

(C=8 − C=8−1) = 0,

then

lim
=→∞

?=∑
8=1
(�C=

8
− �C=

8−1
)2 = C in !2(P).

Proof. Immediate from Proposition 1.14. J

Corollary 2.17. Almost surely, Brownian motion has infinite variation on every nontrivial interval.

Proof. As in the proof of Corollary 2.15, it suffices to prove this for each interval [0, C], C > 0. By
taking a subsequence, we may assume almost sure convergence in Proposition 2.16. Since

?=∑
8=1
(�C=

8
− �C=

8−1
)2 6 max

1686?=

���C=
8
− �C=

8−1

�� · ?=∑
8=1

���C=
8
− �C=

8−1

��,
the left-hand side tends to C almost surely, and lim=→∞max1686?= |�C=8 − �C=8−1

| = 0 by continuity, the
result follows. J

Thus, the Wiener integral cannot be defined as an ordinary integral.

2.4. The Strong Markov Property of Brownian Motion

We want to extend the Markov property, that what happens at times before C is independent of
the increments after time C, by replacing C with a suitable class of random times, ) . Clearly, such )
should not “depend on the future”.

Remark. This ) is not the index set of C.

Define ℱ∞ B f(�B, B > 0).
Definition 2.18. A [0,∞]-valued random variable ) is a stopping time if

∀C > 0 [) 6 C] ∈ ℱC .
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Examples. Two examples of stopping times:
(1) ) ≡ B;
(2) ) = )0 B inf{B > 0 ; �B = 0} is a stopping time, since )0 6 C if and only if

inf
B∈Q∩[0,C]

|�B − 0 | = 0.

If ) is a stopping time, then

∀C > 0 [) < C] =
⋃

B∈Q∩[0,C)
[) 6 B] ∈ ℱC .

What is the f-field of events “determined up to time )”? We might guess � is such an event
if for each C > 0, � ∩ [) = C] ∈ ℱC . But we know it might be problematic to make such a fine
disintegration of �. Perhaps it would be better to require � ∩ [) 6 C] ∈ ℱC . Moreover, this is
enough at the intuitive level since then � ∩ [) < C] ∈ ℱC and so � ∩ [) = C] ∈ ℱC .

Definition 2.19. If ) is a stopping time, the f-field of the past before ) is

ℱ) B
{
� ∈ ℱ∞ ; ∀C > 0 � ∩ [) 6 C] ∈ ℱC

}
.

It is easy to check that
(1) ℱ) is a f-field, and
(2) ) is ℱ) -measurable.

What is Brownian motion at time )? When ) = ∞, this makes no sense, so define

�̃) (l) B

�) (l) (l) if ) (l) < ∞,

0 if ) (l) = ∞.

We claim that �̃) is ℱ) -measurable. We use the left-continuity of � to write

�̃) = lim
=→∞

∑
8>0

1[ 8
=
6)< 8+1

=
]� 8

=
= lim
=→∞

∑
8>0

1[)< 8+1
=
]1[ 8=6)]� 8

=
.

Thus, we see it suffices to show that

∀B > 0 1[B6)]�B ∈ ℱ) .

Indeed, if � ∈ ℬ(R) and 0 ∉ �, then for each C > 0,

[
1[B6)]�B ∈ �

]
∩ [) 6 C] =

{
∅ if C < B,
[�B ∈ �] ∩ [) < B]c ∩ [) 6 C] if C > B

∈ ℱC .

In case 0 ∈ �, just use �c in what we just established. This gives our claim.
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Theorem 2.20 (Strong Markov Property). Let ) be a stopping time with P[) < ∞] > 0. Define

�̃
())
C B �̃)+C − �̃) (C > 0).

Then under P[ · | ) < ∞], the process
(
�̃
())
C

)
C>0 is a Brownian motion independent ofℱ) .

Proof. Suppose first ) < ∞ a.s. The assertions will follow from

∀� ∈ ℱ) ∀0 6 C1 < · · · < C? ∀� ∈ �c(R?,R)

E
[
1��

(
�̃
())
C1
, �̃
())
C2
, . . . , �̃

())
C?

) ]
= P(�) · E

[
� (�C1 , �C2 , . . . , �C? )

]
.

(2.1)

For then � B Ω shows that
(
�̃
())
C

)
C>0 has the same finite-dimensional distributions as Brownian

motion, so by Proposition 2.3 is a pre-Brownian motion. Sample paths are continuous, so it is a
Brownian motion. Also, Eq. (2.1) shows that (�̃())C1 , �̃

())
C2
, . . . , �̃

())
C?
) is independent of ℱ) . So by

the c-� theorem, �̃()) is independent ofℱ) .
To show Eq. (2.1), we use the following notation: dCe= B d=Ce

=
> C. Now the bounded

convergence theorem yields

E
[
1��

(
�̃
())
C1
, �̃
())
C2
, . . . , �̃

())
C?

) ]
= lim
=→∞

E
[
1��

(
�̃
(d)e=)
C1

, �̃
(d)e=)
C2

, . . . , �̃
(d)e=)
C?

) ]
= lim
=→∞

∞∑
:=0

E
[
1�1[

:−1
=
<)6 :

=

]� (
� :
=
+C1 − � :

=
, � :

=
+C2 − � :

=
, . . . , � :

=
+C? − � :

=

) ]
.

Note that
� ∩

[
:−1
=
< ) 6 :

=

]
= � ∩

[
) 6 :

=

]
︸          ︷︷          ︸
∈ℱ:/= since � ∈ ℱ)

∩
[
) 6 :−1

=

]c︸        ︷︷        ︸
∈ℱ:−1

=
⊆ℱ:

=

∈ ℱ:
=

.

Thus, the :th term in the sum equals

P
[
� ∩

[
:−1
=
< ) 6 :

=

] ]
E
[
�
(
�C1 , �C2 , . . . , �C?

) ]
.

Summing over : gives Eq. (2.1).
In case P[) = ∞] > 0, the same arguments work with � ∩ [) < ∞] in place of �,

yielding Eq. (2.1) for such sets in ℱ) , and this gives the result similarly. J

When ) < ∞ a.s., we will omit the tildes in �̃) and �̃()) .
A very nice application of the strong Markov property is the reflection principle.

Theorem 2.21. For C > 0, write (C B max06B6C �B > 0. Then

∀0 > 0 ∀1 ∈ (−∞, 0] P[(C > 0, �C 6 1] = P[�C > 20 − 1] .

Moreover, (C
�

= |�C |.
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Figure 2.2: Illustration of the reflection principle

Proof. We use the stopping time )0 B inf{C > 0 ; �C = 0}. By Proposition 2.14, )0 < ∞ almost
surely. We have by Theorem 2.20,

P[(C > 0, �C 6 1] = P[)0 6 C, �C 6 1] = P
[
)0 6 C, �

()0)
C−)0 6 1 − 0

]
= P[)0 6 C] · P

[
�
()0)
C−)0 6 1 − 0

�� )0 6 C]
= P[)0 6 C] · P

[
−�()0)

C−)0 6 1 − 0
�� )0 6 C]

= P[)0 6 C] · P
[
�
()0)
C−)0 > 0 − 1

�� )0 6 C] = P
[
)0 6 C, �

()0)
C−)0 > 0 − 1

]
= P[)0 6 C, �C > 20 − 1] = P[�C > 20 − 1]

since 20− 1 > 0. The crucial fourth equality uses the independence of �()0) andℱ)0 . It follows that

P[(C > 0] = P[(C > 0, �C > 0] + P[(C > 0, �C 6 0] = 2 P[�C > 0] = P
[
|�C | > 0

]
. J

Exercise (due 9/28). (1) Exercise 2.28.
(2) Prove (2.2) in the book.

Corollary 2.22. ∀0 ≠ 0 )0
�

=
02

�2
1
and E

[√
)0

]
= ∞.

Proof. We may assume by symmetry that 0 > 0. For each C > 0,

P[)0 6 C] = P[(C > 0] = P
[
|�C | > 0

]
= P

[
(�C)2 > 02] = P[C (�1)2 > 02] = P

[ 02

(�1)2
6 C

]
.

[Theorem 2.21]

Therefore,
E
[√
)0

]
= E

[
0/|�1 |

]
= 0

∫ ∞

−∞

?- (G)
|G | dG = ∞,

where ?- is the standard normal density. J

Exercise (due 9/28). Verify the density in Corollary 2.22 in the book.

An amusing and immediate consequence of Corollary 2.22 is that E[)−1
0 ] = 0−2.
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Exercise. Show that for 0 ≠ 0, if (0 := sup{B ; �B = 0B}, then (0
�

= �2
1/0

2. Hint: use the result of
Exercise 2.25.

Exercise. Let -C :=
∫ C

0 �B dB be integrated Brownianmotion. Show that almost surely, limC→∞ -C =
∞ and lim

C→∞ -C = −∞. Hint: For a finite stopping time ) , write -C = -C∧) + (C − ))+�) + .(C−))+
with . a copy of - that is independent of ℱ) . Use )= := inf{C ≥ = ; �C = 0} to show that
P[supC -C = ∞] ∈ {0, 1}. Use ) := inf{C ≥ 1 ; �C = −1} to show that P[supC -C = ∞] = 1.

We now extend Brownian motion to initial values other than 0 and to finite dimensions.

Definition 2.23. If / is an R-valued random variable and � is a Brownian motion independent of
/ , then we call (/ + �C)C>0 a real Brownian motion started from / .

Definition 2.24. If �1, . . . , �3 are independent real Brownian motions started from 0, then we call(
(�1

C , . . . , �
3
C )

)
C>0 a 3-dimensional Brownian motion started from 0. If we add an independent

starting vector, / , then we get 3-dimensional Brownian motion started from / .

Note that by Corollary 2.4, if � is a 3-dimensional Brownian motion (from 0), then for
0 = C0 < C1 < · · · < C= and G1 = (G1

1, . . . , G
1
3
), . . . , G= = (G=1, . . . , G

=
3
), the density of (�C1 , . . . , �C=) at

(G1, . . . , G=) is
3∏
:=1

=∏
8=1

1√
2c(C8 − C8−1)

· exp
{
−

=∑
8=1

(G8
:
− G8−1

:
)2

2(C8 − C8−1)

}
=

=∏
8=1

1√
2c(C8 − C8−1)

3
· exp

{
−

=∑
8=1

|G8 − G8−1 |2
2(C8 − C8−1)

}
.

This is invariant under isometries of R3 . Therefore, the law of 3-dimensional Brownian motion
(started at 0) is invariant under isometries of R3 that fix 0. Thus, we really have �-valued Brownian
motion for finite-dimensional inner-product spaces, � .

It is easy to check that Blumenthal’s 0-1 law and the strong Markov property hold for 3-
dimensional Brownian motion, where now a stopping time is defined with respect to the collection
of f-fields

ℱC B f
(
(�1

B , . . . , �
3
B ), B 6 C

)
.

The proofs are the same but with more notation.

Appendix: The Cameron–Martin Theorem

Let � be a Brownian motion. How does adding drift to � change its law? Let � be the
corresponding Gaussian white noise. Let 5 ∈ !2(R+), and denote �C :=

∫ C

0 5 (B) dB. We will
consider the process - := � + �. We claim that the law of - is absolutely continuous with respect to
the law of �; in fact, the law of - is equal to the law of � with respect to e� ( 5 )−‖ 5 ‖

2
!2/2 P; this result

is due to Cameron and Martin. To be even more explicit, let , be Wiener measure. Recall that∫
5 (B) d|(B) is defined for,-a.e. | as in Proposition 2.3 (iv)⇒(i), using step functions and limits.

Proposition 5.24. For 5 ∈ !2(R+) and �C :=
∫ C

0 5 (B) dB, we have for all measurable � ⊆ � (R+,R),∫
d, (|) 1[|+�∈�] =

∫
d, (|) 1[|∈�] e

∫
5 d|−‖ 5 ‖2/2.
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That is, the P-law of - is absolutely continuous with respect to, , having Radon–Nikodym derivative
| ↦→ e

∫
5 d|−‖ 5 ‖2/2.

This allows us to conclude, for example, that every P-a.s. property of � also holds for - .
The class of � that are absolutely continuous with derivative in !2(R+) and with �0 = 0 is

known as the Cameron–Martin space,ℋ. It is easy to see thatℋ is dense in �∗(R+,R) := {� ∈
� (R+,R) ; �0 = 0}. It follows that the support of , is all of �∗(R+,R): Indeed, Proposition
5.24 tells us that the support of , is unchanged by addition of any function in ℋ, because the
Radon–Nikodym derivative is nonzero,-a.s. Thus, if |0 is one point of the support of, , then
|0 +ℋ also lies in the support. Since the closure of |0 +ℋ is �∗(R+,R), our claim follows.

Proposition 5.24 is actually a very simple consequence of basic manipulations with Gaussian
random variables. Consider any (centered) Gaussian space, � ⊂ !2(P), and any nonzero . ∈ �.
Define q : � → !2(P) by q(/) := / + 〈/,.〉!2 (P) . Obviously q(/) = / whenever / ⊥ . , which
is the same as / ⫫ . , whereas q(. ) = . + ‖. ‖2

!2 (P) . The law of q(. ), i.e., 

(
‖. ‖2, ‖. ‖2

)
, is

absolutely continuous with respect to that of . with Radon–Nikodym derivative H ↦→ eH−‖. ‖2/2.
Therefore, if (/1, . . . , /=) ∈ .⊥, then the law of

(
q(/1), . . . , q(/=), q(. )

)
also has Radon–Nikodym

derivative (I1, . . . , I=, H) ↦→ eH−‖. ‖2/2 with respect to that of (/1, . . . , /=, . ). In other words, the
P-law of

(
q(/1), . . . , q(/=), q(. )

)
is equal to the e.−‖. ‖2/2 P-law of (/1, . . . , /=, . ). Since this

determines the finite-dimensional distributions of all of �, we conclude that the P-law of
(
q(/)

)
/∈�

is equal to the e.−‖. ‖2/2 P-law of (/)/∈� .
Coming back to Brownian motion, let us apply this general result to � being the image of the

Gaussian white noise, �. Note that �C = 〈1[0,C] , 5 〉!2 = 〈�C , � ( 5 )〉!2 (P) . Thus, we are exactly in the
situation just analyzed: -C = q(�C). Therefore, the P-law of - is the e� ( 5 )−‖ 5 ‖2/2 P-law of �, as
claimed.

Exercise. Deduce that - is a Brownian motion with respect to Q := e−� ( 5 )−‖ 5 ‖
2
!2/2 P. Alternatively,

give a direct proof of this property by showing that - is a pre-Brownian motion for the Gaussian
white noise �̃ : !2(R+) → !2(Q) defined by �̃ (ℎ) := � (ℎ) + 〈ℎ, 5 〉!2 .

If � is not in the Cameron–Martin space, then the laws of - = � + � and � are mutually
singular, a result of Segal. This is obvious if �0 ≠ 0. When �0 = 0, note that �C ↦→ �C extends
uniquely to a linear functional, W, on the linear span + of {�C ; C > 0}, because the random variables
�C are linearly independent. This map W is bounded, i.e., ∃� < ∞ such that |W(/) | 6 �‖/ ‖ for
all / ∈ + , iff W extends continuously to the closure of + , which is equivalent to W(/) = 〈/,.〉
for some . ∈ �, i.e., � ∈ ℋ. Thus, if � ∉ℋ, then there exist / ∈ + of norm 1 with arbitrarily
large W(/). Let Φ be the c.d.f. of the standard normal distribution. For ‖/ ‖ = 1, we have
P
[
/ > W(/)/2

]
= 1 −Φ

(
W(/)/2

)
= P

[
/ + W(/) 6 W(/)/2

]
. This leads us to choose /= such that

‖/=‖ = 1 and U= := W(/=) satisfies
∑

=

[
1−Φ(U=/2)

]
< ∞. Let b= := /= +W(/=). Then /= > U=/2

for only finitely many = a.s., whereas b= 6 U=/2 for only finitely many = a.s. The explicit forms
of /= and b= are /= =

∑:=
8=1 0=,8�C=,8 and b= =

∑:=
8=1 0=,8-C=,8 for some constants 0=,8 and times C=,8.

Thus the laws of - and � are mutually singular.
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Exercise. Let � ∈ℋ with �′ having bounded variation on [0, C] for some C > 0. Show that

lim
Y↓0

P
[
‖� − �‖!∞ [0,C] 6 Y

]
P
[
‖�‖!∞ [0,C] 6 Y

] = exp{−1
2 ‖�

′‖2
!2 [0,C]}.

Note that the denominator here is positive, because, has full support. See the discussion of the
exercise on page 79 for the value of the denominator; it is asymptotic to 4

c
exp

{
− c2C

8Y2

}
as Y ↓ 0.

Exercise. For a function � : R+ → R, define

" (�) := sup
∑
8

[
� (C8+1) − � (C8)

]2

C8+1 − C8
,

where the supremum is over all sequences (C8)8 with 0 6 C1 < C2 < · · · .
(1) Show that if � ∈ℋ with derivative �′, then " (�) 6 ‖�′‖2.
(2) Show that if " (�) < ∞ and (B8, C8] are disjoint intervals in R+, then∑

8

|� (C8) − � (B8) | ≤
(
" (�)

∑
8

(C8 − B8)
)1/2

,

and deduce that � is absolutely continuous.
(3) Show that if " (�) < ∞, then � ∈ℋ with ‖�′‖2 6 " (�).

We conclude that " (�) < ∞ iff � ∈ℋ, in which case " (�) = ‖�′‖2.

Exercise. For � : R+ → R, let T� be the function C ↦→ C� (1/C) for C > 0 and 0 ↦→ 0. Note that if
� (0) = 0, then TT� = �. Let 〈�,  〉ℋ :=

∫ ∞
0 �′(C) ′(C) dC be the natural inner product on ℋ,

makingℋ a Hilbert space.
(1) Show that if �,  ∈ℋ are continuously differentiable with compact support in (0,∞), then
〈�,T 〉ℋ = 〈T�,  〉ℋ .

(2) Show that if � ∈ ℋ is continuously differentiable with compact support in (0,∞), then
‖T�‖ℋ = ‖�‖ℋ .

(3) Show that if � ∈ℋ, then T� ∈ℋ with ‖T�‖ℋ = ‖�‖ℋ .
(4) Give another proof of (3) by using the fact that T � is a Brownian motion, together with

Proposition 5.24.
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Chapter 3

Filtrations and Martingales

Please review martingales in discrete time, Appendix A2 of the book.
Here, we select just a few things to review. Time is usually N = {0, 1, . . . }. We are given an

increasing sequence (�=)=∈N of sub-f-fields. For a sequence (.=)=∈N of integrable random variables
with .= ∈ �=, e.g.,�= B f(.0, .1, . . . , .=), we call (.=)=∈N
(1) a martingale if E[.= | �<] = .< when 0 6 < 6 =;
(2) a submartingale if E[.= | �<] > .< when 0 6 < 6 =;
(3) a supermartingale if E[.= | �<] 6 .< when 0 6 < 6 =.

If ".
01
(=) denotes the number of upcrossings by (.0, .1, . . . , .=) of an interval [0, 1] (0 < 1), then

one version of Doob’s upcrossing inequality is that for a supermartingale, (.=)=∈N,

∀= ∈ N ∀0 < 1 E
[
".
01 (=)

]
6

E
[
(.= − 0)−

]
1 − 0 .

There is a corresponding version for submartingales.
The maximal inequality given in Appendix A2 can be hard to find, so here is a proof. The

inequality states that for a submartingale or supermartingale (.=)=∈N,

∀: ∈ N ∀� > 0 � P
[

max
06=6:

|.= | > �
]
6 E

[
|.0 |

]
+ 2 E

[
|.: |

]
.

We may assume that . is a supermartingale, because if not, then −. is a supermartingale and
|−. | = |. |. The desired inequality will follow from adding the following two inequalities:

∀: ∈ N ∀� > 0 � P
[

max
06=6:

.= > �
]
6 E[.0] + E

[
|.: |

]
and

∀: ∈ N ∀� > 0 � P
[

min
06=6:

.= 6 −�
]
6 E

[
|.: |

]
.

Fix : ∈ N and � > 0. Let ) := inf{= ; .= > �} ∧ : . By the optional stopping theorem, we have

E[.0] > E[.) ] = E
[
.)1[max06=6: .=>�]

]
+ E

[
.)1[max06=6: .=<�]

]
> � P

[
max

06=6:
.= > �

]
− E

[
|.: |

]
,

which gives the first inequality. For the second, define ) := inf{= ; .= 6 −�} ∧ : . By the optional
stopping theorem, we have

E[.: ] 6 E[.) ] = E
[
.)1[min06=6: .=6−�]

]
+E

[
.)1[min06=6: .=>−�]

]
6 −� P

[
min

06=6:
.= 6 −�

]
+E

[
|.: |

]
,

which gives the second inequality.



22 Chapter 3. Filtrations and Martingales

3.1. Filtrations and Processes

Let (Ω,ℱ,P) be a probability space.
Definition 3.1. A filtration on (Ω,ℱ,P) is a collection (ℱC)06C6∞ of sub-f-fields of ℱ such that
ℱB ⊆ ℱC for 0 6 B 6 C 6 ∞.

We also call
(
Ω,ℱ, (ℱC)06C6∞,P

)
a filtered probability space.

Example. In Chapter 2, we used the filtration associated to Brownian motion

ℱC = f(�B, 0 6 B 6 C), ℱ∞ = f(�B, B > 0).

Example. More generally, if (-C)C>0 is any stochastic process, then its canonical filtration is

ℱ
-
C B f(-B, 0 6 B 6 C), ℱ

-
∞ B f(-B, B > 0).

These are not the only filtrations of interest, since there may be other stochastic processes we
want to include, or other randomness.

Similar to ℱ0+ that we considered in Chapter 2, define

ℱC+ B
⋂
B>C

ℱB, ℱ∞+ B ℱ∞.

Clearly, (ℱC+)06C6∞ is a filtration and ℱC ⊆ ℱC+ . If ℱC = ℱC+ for each C > 0, then we say that
(ℱC)06C6∞ is right-continuous.

Example. Let (ℱC)C>0 be the canonical filtration of a Poisson process, where the process is modified
so as to be left-continuous. ThenℱC ≠ ℱC+ for every C > 0.

A filtration (ℱC)06C6∞ is complete if ℱ0 contains every subset of each P-negligible set ofℱ∞.
Every filtration can be completed to a filtration (ℱ′C )06C6∞, where ℱ′C B f(ℱC ,N) and N is the
collection of (ℱ∞,P)-negligible sets (those � ⊆ � ∈ ℱ∞ with P(�) = 0).

In discrete time, there are no pesky issues of measurability, other than -= ∈ �=. Now, however,
there are additional issues. We say (-C)C>0 is adapted to (ℱC)06C6∞ if ∀C > 0 -C ∈ ℱC . We will
want, e.g., to integrate a stochastic process and get a random variable. This requires some joint
measurability. We will also want the result to be an adapted process. These properties will hold
automatically when (-C) has continuous sample paths.

Definition 3.2. A process (-C)C>0 with values in a measurable space (�,ℰ) is (jointly) measurable
if

(l, C) ↦→ -C (l)(
Ω × R+,ℱ ⊗ℬ(R+)

)
→ (�,ℰ)

is measurable.

Fix a filtered probability space.
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Definition 3.3. A set � ⊆ Ω × R+ is called progressively measurable, written � ∈ �, if

∀C > 0 � ∩
(
Ω × [0, C]

)
∈ ℱC ⊗ℬ

(
[0, C]

)
.

The set � is a f-field, called the progressive f-field. We call (-C)C>0 progressive if

(l, C) ↦→ -C (l)
(Ω × R+,�) → (�,ℰ)

is measurable. Equivalently, (-C)C>0 is progressive if for all C > 0,

(l, B) ↦→ -B (l)(
Ω × [0, C],ℱC ⊗ℬ

(
[0, C]

) )
→ (�,ℰ)

is measurable. Note: every progressive process is measurable and adapted.

Exercise (due 10/5). Let (Ω,ℱ,P) B
(
[0, 1],ℒ, `

)
, where ℒ is the collection of Lebesgue-

measurable sets and ` is Lebesgue measure. Let ℒ0 B
{
� ∈ ℒ ; `(�) ∈ {0, 1}

}
. Let ℱC B ℒ0

for each C ∈ [0,∞]. Define

� B
{
(G, G) ; 0 6 G 6 1

2
}
⊆ Ω × R+.

Write -C (l) B 1� (l, C) for C > 0. Show that (-C)C>0 is a measurable and adapted process, but is
not progressive. Hint: show that for each � ∈ �,∫

[0,1]
1� (G, G) `(dG) =

∫
[0,1]2

1� (G, H) `(2) (dG, dH).

Proposition 3.4. Let � a metric space. Suppose that (-C)C>0 is a stochastic process with values
in

(
�,ℬ(�)

)
that is adapted and has right-continuous sample paths. Then - is progressive. The

same holds if “right-continuous” is replaced by “left-continuous”.

Proof. The case of right-continuous is in the book, so we do left-continuous. We approximate
(-C)C>0 by processes that are easily seen to be progressive and use that the class of progressive
processes is closed under limits (this uses that � is a metric space).

For = > 1, define -=C B - b=C c
=

; then lim=→∞ -=C (l) = -C (l) for all (l, C). Also, given C > 0
and � ∈ ℬ(�),{

(l,B) ∈ Ω × [0, C] ; -=B (l) ∈ �
}

=
⋃

06:6=C

({
l ; - :

=
(l) ∈ �

}
×

(
[ :
=
, :+1
=
) ∩ [0, C]

) )
∈ ℱC ⊗ℬ

(
[0, C]

)
,

whence (-=C )C>0 is progressive. Since -= → - , so is - . J
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3.2. Stopping Times and Associated f-Fields

Definition 3.5. A random variable ) : Ω → [0,∞] is a stopping time of (ℱC)06C6∞ if ∀C > 0
[) 6 C] ∈ ℱC . We write

ℱ) B
{
� ∈ ℱ∞ ; ∀C > 0 � ∩ [) 6 C] ∈ ℱC

}
for the f-field of the past before ) .

As we saw for Brownian motion, a stopping time ) for (ℱC) also satisfies

∀C > 0 [) < C] ∈ ℱC ,

but this is not sufficient for ) to be a stopping time (example: use the canonical filtration for a
left-continuous Poisson process and let ) be the time of the first jump).

Since ℱC ⊆ ℱC+ , an (ℱC)-stopping time is also an (ℱC+)-stopping time, but not conversely
(same example).

Proposition 3.6. Write�C B ℱC+ for C ∈ [0,∞].
(i) The following are equivalent:

(a) ∀C > 0 [) < C] ∈ ℱC;
(b) ) is a (�C)-stopping time;
(c) ∀C > 0 ) ∧ C ∈ ℱC .

(ii) If ) is a (�C)-stopping time, then

�) =
{
� ∈ ℱ∞ ; ∀C > 0 � ∩ [) < C] ∈ ℱC

}
.

We writeℱ)+ B �) .

Proof. (i) (a)⇒ (b): ∀0 6 C < B,

[) 6 C] =
⋂

@∈(C,B)∩Q

∈ℱ@⊆ℱB︷   ︸︸   ︷
[) < @] ∈ ℱB,

so [) 6 C] ∈ �C .
(b)⇒ (c): ∀0 < B < C [) ∧ C 6 B] = [) 6 B] ∈ �B ⊆ ℱC , so ) ∧ C ∈ ℱC .
(c)⇒ (a): ∀C > 0

[) < C] =
⋃

@∈(0,C)∩Q

=[)∧C6@]∈ℱC︷   ︸︸   ︷
[) 6 @] ∈ ℱC .

(ii) Similar; see the book. J
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Here are some easy properties (see the book for proofs):
(a) If ) is a stopping time, thenℱ) ⊆ ℱ)+ , with equality when (ℱC) is right-continuous.
(b) If ) = C is constant, thenℱ) = ℱC andℱ)+ = ℱC+ .
(c) If ) is a stopping time, then ) ∈ ℱ) .
(d) Let ) be a stopping time, � ∈ ℱ∞ and

) � (l) B

) (l) if l ∈ �,

∞ if l ∉ �.

Then � ∈ ℱ) if and only if ) � is a stopping time.
(e) If ( 6 ) are stopping times, thenℱ( ⊆ ℱ) andℱ(+ ⊆ ℱ)+ .
(f) If ( and ) are stopping times, then ( ∨ ) and ( ∧ ) are stopping times, ℱ(∧) = ℱ( ∩ℱ) ,

ℱ(∨) = f(ℱ(,ℱ) ), [( 6 )] ∈ ℱ(∧) , and [( = )] ∈ ℱ(∧) .
(g) If ((=)= is a monotone increasing sequence of stopping times, then lim=→∞ (= is a stopping

time.
(h) If ((=) is a monotone decreasing sequence of stopping times, then ( B lim=→∞ (= is an
(ℱC+)-stopping time and

ℱ(+ =
⋂
=

ℱ(+= .

(i) If ((=) is a monotone decreasing of stopping times that is eventually constant (stabilizes), then
( B lim=→∞ (= is a stopping time and

ℱ( =
⋂
=

ℱ(= .

(j) Let ) be a stopping time and . : [) < ∞] → � . Then . ∈ ℱ) if and only if ∀C > 0(
.�[) 6 C]

)
∈ ℱC . (Here, we use implicitly the fact that for any measurable space (Ω,ℱ)

and any � ⊆ Ω, there is an induced f-field {� ∩ � ; � ∈ ℱ} on �.)
Exercise (due 10/5). Show that ℱ(∨) = f(ℱ(,ℱ) ). Hint: one may use the fact that

� =
(
� ∩ [( 6 )]

)
∪

(
� ∩ [) 6 (]

)
.

Note that the graph of a measurable function is measurable: if . : (Ω,ℱ) → (�,ℰ) is
measurable, then id ⊗ . : (Ω,ℱ) → (Ω × �,ℱ ⊗ℰ), defined by l ↦→

(
l,. (l)

)
, is measurable.

Here is our first use of progressive measurability:

Theorem 3.7. Let (-C)C>0 be a progressive (�,ℰ)-valued process and ) be a stopping time. Then
l ↦→ -) (l) (l) C -) (l), defined on [) < ∞], is ℱ) -measurable.

Proof. By (j) above, it suffices to verify that ∀C > 0
(
-)�[) 6 C]

)
∈ ℱC . Now -)�[) 6 C] is a

composition:

l ↦→ (l,) (l) ∧ C)(
[) 6 C],ℱC

)
→

(
[) 6 C] × [0, C],ℱC ⊗ℬ

(
[0, C]

) )
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with

(l, B) ↦→ -B (l)(
Ω × [0, C],ℱC ⊗ℬ

(
[0, C]

) )
→ (�,ℰ).

Both of these are measurable: the first by our observation about graphs and the measurability of
) ∧ C from Proposition 3.6(i); the second by definition of progressive measurability. J

Note howℱ) -measurability dovetails well with progressive measurability. (Actually, it suffices
that ) be an (ℱC+)-stopping time.)

We will need to approximate a stopping time by a stopping time that takes discrete values.
If ) is a stopping time, ( 6 ) , ( ∈ ℱ) , then ( need not be a stopping time. However, ( > )

works:

Proposition 3.8. If ) is a stopping time, ( > ) , and ( ∈ ℱ) , then ( is a stopping time. If ) is a
stopping time and

)= B
d2=)e

2=
,

then )= are stopping times with )= ↓ ) .

Proof. ∀C > 0 [( 6 C] = [( 6 C] ∩ [) 6 C] ∈ ℱC since [( 6 C] ∈ ℱ) ; that is, ( is a stopping time.
The remainder follows since ) ∈ ℱ) , so f()) ⊆ ℱ) . J

Our stopping times will be of the following types:

Proposition 3.9. Let (-C)C>0 be an adapted process with values in a metric space (�, 3). For � ⊆ � ,
write

)� B inf {C > 0 ; -C ∈ �}.

(i) If the sample paths of - are, at each time, either left-continuous or right-continuous and � is
open, then )� is an (ℱC+)-stopping time.

(ii) If the sample paths of - are continuous and � is closed, then )� is a stopping time.

Proof. (i) ∀C > 0 [)� < C] = ⋃
B∈[0,C)∩Q [-B ∈ �] ∈ ℱC , so the result follows immediately

from Proposition 3.6(i).
(ii) ∀C > 0 [)� 6 C] =

[
infB∈[0,C]∩Q 3 (-B, �) = 0

]
∈ ℱC . J

Exercise (due 10/12). Give an example of an adapted process for each of the following:
(a) - is left-continuous and � is open, but )� is not a stopping time;
(b) - is right-continuous and � is open, but )� is not a stopping time;
(c) - is left-continuous and � is closed, but )� is not a stopping time.

Much more general sets and processes give stopping times under some common restrictions
on the filtration. Namely, suppose that (ℱC)C is right-continuous and complete and that � is a
topological space. Let - be �-valued and progressive and � ⊂ � be Borel. Then both the following
are stopping times: inf {C > 0 ; -C ∈ �} and inf {C > 0 ; -C ∈ �}. This is a consequence of the
debut theorem that if � ⊆ Ω × R+ is progressive, then l ↦→ inf {C > 0 ; (C, l) ∈ �} is a stopping
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time. The usual proofs of this use analytic sets and capacities; for a more elementary proof, see
Richard F. Bass, “The measurability of hitting times,” Electron. Commun. Probab. 15 (2010),
99–105, with a correction at Electron. Commun. Probab. 16 (2011), 189–191. We will not use
these extensions.

3.3. Continuous-Time Martingales and Supermartingales

Fix a filtered probability space
(
Ω,ℱ, (ℱC)C>0,P

)
. Unless otherwise stated, processes in the

remainder of the chapter will be R-valued.

Definition 3.10. Let (-C)C>0 be an adapted process with -C ∈ !1 for all C. We say - is amartingale
if

0 6 B 6 C =⇒ E[-C | ℱB] = -B a.s.

If “= -B” is replaced by “ 6 -B” [“ > -B”], we say - is a supermartingale [submartingale].

Many examples are from processes, like Brownian motion, that have independent increments,
where anR3-valued process (/C)C>0 has independent increments with respect to (ℱC) if / is adapted
and 0 6 B 6 C ⇒ /C − /B ⫫ ℱB. If / is R-valued and has this property, then the following hold:

(i) if ∀C > 0 /C ∈ !1, then /̃C B /C − E[/C] is a martingale;
(ii) if ∀C > 0 /C ∈ !2, then .C B /̃C

2 − E[/̃C
2] is a martingale;

(iii) if \ ∈ R and ∀C > 0 E[exp(\/C)] < ∞, then -C B e\/C/E[e\/C ] is a martingale.

Proof. These are easy to prove. For example, for (ii), when 0 6 B 6 C,

E
[
/̃C

2 �� ℱB

]
= E

[
(/̃C − /̃B + /̃B)2

�� ℱB

]
= /̃B

2 + 2/̃B E
[
/̃C − /̃B

�� ℱB

]
+ E

[
(/̃C − /̃B)2

�� ℱB

]
= /̃B

2 + E
[
(/̃C − /̃B)2

]
= /̃B

2 + E
[
/̃C

2] − 2 E
[
/̃C /̃B

]
+ E

[
/̃B

2]
= /̃B

2 + E
[
/̃C

2] − E
[
/̃B

2]
.

= E
[
E[/̃C /̃B | ℱB]

]
= E

[
/̃B

2]
For (iii), see the book—it is even shorter. J

Exercise. On the probability space of [0, 1] with Lebesgue measure, define -C := (C + 1)1[0,1/(C+1)] .
Show that (-C)C>0 is a martingale (with respect to some filtration).

We will now derive even more martingales from Brownian motion.

Definition 3.11. A (3-dimensional) Brownian motion that has independent increments with respect
to (ℱC) is called a (3-dimensional) (ℱC)-Brownian motion.

From the above, if � is an (ℱC)-Brownian motion, started from a fixed real number, then

�C ; �2
C − C; e\�C−

\2
2 C (\ ∈ R)
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are martingales with continuous sample paths. These last are called exponential martingales of
Brownian motion.

Here are some more: Suppose 5 ∈ !2(R+,Leb). Let � be a Gaussian white noise on !2(R+)
and define, as we did earlier,

/C B

∫ C

0
5 (B) d�B B �

(
5 1[0,C]

)
,

where �B = �
(
1[0,B]

)
. Then / has independent increments with respect to the canonical filtration

of Brownian motion. In fact, first, /C ∈ ℱC because one may approximate 5 1[0,C] in !2 by step
functions, and second, when 0 6 B 6 C,

/C − /B = � ( 5 1[B,C]) ⊥ � (ℎ1[0,B])

for all ℎ ∈ !2(R+), whence /C − /B ⫫ ℱB by Theorem 1.9. This yields the martingales∫ C

0
5 (B) d�B;

(∫ C

0
5 (B) d�B

)2
−

∫ C

0
5 (B)2 dB︸         ︷︷         ︸

‖ 5 1[0,C] ‖2!2 (R+)

;

exp
{
\

∫ C

0
5 (B) d�B −

\2

2

∫ C

0
5 (B)2 dB

}
(\ ∈ R).

since /C ∼

(
0,

∫ C

0 5 (B)2 dB
)

The first of these is a Wiener integral process, so it has a modification with continuous sample
paths by the exercise on page 12. Therefore, so do all the rest. This also follows from Theorem 5.6.

If # is a Poisson process with parameter � and (ℱC) is its canonical filtration, then we get the
martingales

#C − �C; (#C − �C)2 − �C; exp
{
\#C − �C (e\ − 1)

}
(\ ∈ R).

Of course, these cannot be modified to have continuous sample paths.

Exercise (due 10/12). Let � be an (ℱC)-Brownian motion. Write "C (\) B e\�C− \
2

2 C . Show that for
each \ ∈ R and = ∈ N,

(
( d

d\ )
="C (\)

)
C>0 is an (ℱC)-martingale. By using = = 3 and \ = 0, deduce

that
(
�3
C − 3C�C

)
C>0 is an (ℱC)-martingale.

We now give some properties of (sub)(super)martingales. The first is proved exactly as in the
discrete case:

Proposition 3.12. Let (-C)C>0 be adapted and 5 : R → R+ be convex. Suppose that ∀C > 0
E[ 5 (-C)] < ∞.

(i) If -C is a martingale, then
(
5 (-C)

)
C>0 is a submartingale.

(ii) If (-C) is a submartingale and 5 is increasing, then
(
5 (-C)

)
C>0 is a submartingale.

Our next result is trivial in the discrete case:



3.3. Continuous-Time Martingales and Supermartingales 29

Proposition 3.13. Let (-C)C>0 be a submartingale or supermartingale. Then

∀C > 0 sup
06B6C

E
[
|-B |

]
< ∞.

Proof. By symmetry, it is enough to prove this when (-C) is a submartingale. We use |-B | = 2-+B −-B.
By Proposition 3.12, (-+C ) is a submartingale, so

0 6 B 6 C =⇒ E[-+B ] 6 E[-+C ] .

Also,
E[-B] > E[-0] .

Hence,
E
[
|-B |

]
6 2 E[-+C ] − E[-0] . J

Our next proofs will use the fact that if (-C) is a (sub)(super)martingale and C1 < C2 < · · · < C?,
then

(
(-C8 ,ℱC8 )

)
1686? is a discrete time (sub)(super)martingale.

The following points towards quadratic variation. We call a process (-C) square-integrable if
∀C -C ∈ !2.

Proposition 3.14. Let (-C)C>0 be a square-integrable martingale and 0 6 C0 < · · · < C?. Then

E
[ ?∑
8=1
(-C8 − -C8−1)2

��� ℱC0

] 1
= E

[
-2
C?
− -2

C0

�� ℱC0

] 2
= E

[
(-C? − -C0)2

�� ℱC0

]
.

Hence, the same holds unconditionally.

Proof. This is a type of Pythagorean theorem and depends on orthogonality. We have ∀8 ∈ [1, ?]

E[(-C8 − -C8−1)2 | ℱC0] = E
[
E
[
(-C8 − -C8−1)2

�� ℱC8−1

] ��� ℱC0

]
= E

[
E
[
-2
C8

�� ℱC8−1

]
− 2-C8−1 E

[
-C8

�� ℱC8−1

]
+ -2

C8−1

��� ℱC0

]
= E

[
E
[
-2
C8

�� ℱC8−1

]
− -2

C8−1

��� ℱC0

]
= E

[
-2
C8
− -2

C8−1

�� ℱC0

]
.

Now, sum on 8 to get 1 . If we take ? = 1, we get 2 . J

Next, we have analogues of discrete-time inequalities. Note that if 5 : [0, C] → R is right-
continuous, then sup06B6C 5 (B) = supB∈[0,C]∩(Q∪{C}) 5 (B), whence we obtain measurability of the
supremum for a stochastic process with right-continuous sample paths.

Proposition 3.15. Let (-C)C>0 be a submartingale or supermartingale with right-continuous sample
paths.

(i) (Maximal inequality)

∀C > 0 ∀� > 0 � P
[

sup
06B6C

|-B | > �
]
6 E

[
|-0 |

]
+ 2 E

[
|-C |

]
.



30 Chapter 3. Filtrations and Martingales

(ii) (Doob’s !? inequality) If - is a martingale, then

∀C > 0 ∀? > 0 E
[

sup
06B6C

|-B |?
]
6

( ?

? − 1

) ?
E
[
|-C |?

]
.

Proof. (i) If � is a finite set in [0, C] with 0, C ∈ �, then the discrete-time inequality yields

� P
[
sup
B∈�
|-B | > �

]
6 E

[
|-0 |

]
+ 2 E

[
|-C |

]
.

Now take � to be countable and dense in [0, C] with 0, C ∈ � and write � as an increasing union of
finite sets �< with 0, C ∈ �<. Then take the limit in the above inequality for �< as < goes to∞ to
get

� P
[

sup
06B6C

|-B | > �
]
6 E

[
|-0 |

]
+ 2 E

[
|-C |

]
.

Finally, use this inequality for a sequence �= increasing to �.
(ii) The proof is similar; now we invoke the monotone convergence theorem. J

Remark. If we did not assume right-continuity, we would get the same results for supB∈� |-B | for
any countable � ⊆ [0, C]: we may add {0, C} to � if necessary. In particular, by letting �→∞, we
get from (i) that supB∈� |-B | < ∞ almost surely.

We call a function càdlàg or RCLL if it is right-continuous with left-limits everywhere.

Exercise (due 10/12). Let (-C)C>0 be a process with càdlàg sample paths. Let �C be the event that
B ↦→ -B is continuous for B ∈ [0, C]. Show that ∀C > 0 �C ∈ ℱ-

C .

As for discrete times, we prove convergence using upcrossings, where for a function 5 : � → R
(� ⊆ R) and 0 < 1, the upcrossing number of 5 along [0, 1] is

"
5

01
(�) B sup

{
: > 0 ; ∃B8, C8 ∈ � with B1 < C1 < · · · < B: < C:and 5 (B8) 6 0, 5 (C8) > 1 for 1 6 8 6 :

}
.

In Section 3.4, we use this, as in discrete time, to study convergence as C →∞. Here, we study
right and left limits at finite times. We will use the following easy lemma:

Lemma 3.16. Let � ⊆ R+ be dense and countable. Let 5 : � → R satisfy

∀D ∈ � sup
C∈�∩[0,D]

�� 5 (C)�� < ∞
and

∀0, 1 ∈ Q with 0 < 1 "
5

01

(
� ∩ [0, D]

)
< ∞.

Then∀C > 0 5 (C+) B limB↓C∈� 5 (C) exists and 5 (C−) B limB↑C∈� 5 (C) exists. In addition, C ↦→ 5 (C+)
is càdlàg on R+. J

(Note that C ↦→ 5 (C+) has left limits by the upcrossing condition.)
In the proof of the next theorem, we will use the fact that a backward (sub)(super)martingale(

(.=,ℱ=)
)
=60 with sup=60 E

[
|.= |

]
< ∞ is uniformly integrable. (If you haven’t seen this, here’s a hint

to prove it. Note that it does not matter whether the process is a submartingale or a supermartingale.
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Assume the former. Show that there is a backward martingale (/=)=60 and nonnegative random
variables,= ∈ ℱ=−1 such that .= = /= +,= and,= > ,=−1. Use that every backward martingale
is uniformly integrable.)

Recall that if a sequence converges almost surely, then it converges in !1 if and only if it is
uniformly integrable. The same follows for continuous time.

Theorem 3.17. Let (-C)C>0 be a supermartingale and � be a countable dense subset of R+.
(i) ∃# ⊆ Ω such that P(#) = 0 and ∀l ∉ #

∀C > 0 -C+ (l) B lim
�3B↓C

-B (l) and -C− (l) B lim
�3B↑C

-B (l)

exist.
(ii) ∀C ∈ R+ -C+ ∈ !1 and satisfies

-C > E[-C+ | ℱC]

with equality if C ↦→ E[-C] is right-continuous (e.g., if - is a martingale). The process
(-C+)C>0 is indistinguishable from a process that is an (ℱC+)-supermartingale and, if - is a
martingale, an (ℱC+)-martingale.

Proof. (i) Fix D ∈ �. We saw in the remark that

sup
B∈�∩[0,D]

|-B | < ∞ a.s.

For finite �′ ⊆ � ∩ [0, D], Doob’s upcrossing inequality yields

∀0 < 1 E
[
"-
01 (�

′)
]
6

E
[
(-D − 0)−

]
1 − 0 .

Thus, using an increasing sequence of finite subsets of � ∩ [0, D] whose union is � ∩ [0, D] and
using the monotone convergence theorem, we get

E
[
"-
01

(
� ∩ [0, D]

) ]
6

E
[
(-D − 0)−

]
1 − 0 < ∞,

whence "-
01

(
� ∩ [0, D]

)
< ∞ almost surely. Let

# B
[
∃D ∈ �, sup

B∈�∩[0,D]
|-B | = ∞ or ∃0, 1 ∈ Q with 0 < 1 and "-

01

(
� ∩ [0, D]

)
= ∞

]
.

We have seen that P(#) = 0 as a countable union of sets of probability 0. For l ∉ # , we may
apply Lemma 3.16 to get (i).

(ii) Fix C ∈ R+. Choose � 3 C= ↓ C monotonically, so -C+ B lim=→∞ -C= almost surely. If we
re-index time, .= B -C−= (= 6 0), then (.=)=60 is a backward supermartingale. By Proposition 3.13,

sup
=60

E
[
|.= |

]
< ∞,

whence -C= → -C+ in !1 by uniform integrability. In particular, -C+ ∈ !1.
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Since !1 convergence implies !1 convergence of conditional expectations (because of the
inequality E

[��E[/1 | �] − E[/2 | �]
��] 6 E

[
E
[
|/1 − /2 |

�� �] ]
= E

[
|/1 − /2 |

]
), we get

-C > E[-C= | ℱC]
!1

−→ E[-C+ | ℱC] .

If B ↦→ E[-B] is right-continuous, then the expectation of the right-hand side equals E[-C], which is
the expectation of the left-hand side, whence the two sides agree almost surely.

Now redefine -C+ to be lim�3B↓C -B when the limit exists and 0 elsewhere. This changes -C+
on a subset of # , whence it is indistinguishable from its definition in (i). Furthermore, -C+ ∈ ℱC+

now. Consider B < C and choose B= ↓ B and C= ↓ C with B=, C= ∈ � and B= 6 C=. To show that
-B+ > E[-C+ | ℱB+], it suffices to show that

∀� ∈ ℱB+ E[-B+1�] > E
[
E[-C+ | ℱB+]1�

]
= E[-C+1�]

(by considering � B
[
-B+ < E[-C+ | ℱB+]

]
). Indeed, !1 convergence yields

E[-B+1�] = lim
=→∞

E[-B=1�] > lim
=→∞

E[-C=1�] = E[-C+1�] .

[-B= > E[-C= | ℱB=] and � ∈ ℱB+ ⊆ ℱB=]

Thus, (-C+) is an (ℱC+)-supermartingale. If (-C) had been a submartingale, then we would
have concluded (-C+) is an (ℱC+)-submartingale, whence (-C) is a martingale implies (-C+) is an
(ℱC+)-martingale. J

Exercise (due 10/19). Let (-C)C>0 be a supermartingale with càdlàg sample paths. Show that
C ↦→ E[-C] is càdlàg.

There is a kind of converse to this exercise:

Theorem 3.18. Let (ℱC) be right-continuous and complete (often called “the usual conditions”). If
(-C) is a supermartingale such that C ↦→ E[-C] is right-continuous, then (-C) has a modification
that is a supermartingale with càdlàg sample paths.

Proof. Consider the modification of (-C+) that we used in the proof of Theorem 3.17(ii). We saw
there that -C+ ∈ ℱC+ , which now equalsℱC . The theorem showed now that -C = E[-C+ | ℱC] = -C+
almost surely. Thus, use (-C+) as the modification of (-C). Lemma 3.16 shows that -C+ is càdlàg. J

3.4. Optional Stopping Theorems

Our first two results really belong in Section 3.3. They are about convergence as time C →∞.
Theorem 3.19. Let - be a right-continuous submartingale or supermartingale bounded in !1.
Then there exists -∞ ∈ !1 such that limC→∞ -C = -∞ almost surely.

Proof. We may assume - is a supermartingale. Let � be a countable dense subset of R+. In the
proof of Theorem 3.17, we saw that

∀B ∈ R+ ∀0 < 1 E
[
"-
01

(
� ∩ [0, B]

) ]
6

E
[
(-B − 0)−

]
1 − 0 .
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Taking the supremum over B and using the monotone convergence theorem yields

E
[
"-
01 (�)

]
6

1
1 − 0 sup

B>0
E
[
(-B − 0)−

]
< ∞.

[by hypothesis]

Apply this to 0, 1 ∈ Q to get "-
01
(�) < ∞ a.s. simultaneously in 0, 1 ∈ Q, whence

-∞ B lim�3C→∞ -C exists in [−∞,∞] almost surely. By Fatou’s lemma, we have

E
[
|-∞ |

]
6 lim
�3C→∞

E
[
|-C |

]
< ∞,

whence -∞ ∈ !1. Finally, right-continuity shows the conclusion. J

Whether convergence holds in !1 is just as in the case of deterministic time:

Definition 3.20. A martingale - is closed if there exists / ∈ !1 such that

∀C > 0 -C = E[/ | ℱC] a.s.

Theorem 3.21. Let - be a right-continuous martingale. The following are equivalent:
(i) - is closed;
(ii) - is uniformly integrable;
(iii) -C converges almost surely and in !1 as C →∞.
In this case

∀C > 0 -C = E[-∞ | ℱC] a.s.,

where -∞ B limC→∞ -C . J

Since we are now interested in -∞, we will define -) even where ) = ∞: If limC→∞ -C = -∞
almost surely and ) is a [0,∞]-valued random variable, then we write

-) (l) B -) (l) (l),

defined almost surely. We saw in Theorem 3.7 that if - is progressive and ) is a stopping time, then
-) is ℱ) measurable on [) < ∞]. If - is adapted, then -∞ ∈ ℱ∞, whence -) is ℱ) -measurable
on [) = ∞]. Therefore, if - is a right-continuous submartingale or supermartingale and ) is a
stopping time, then -) ∈ ℱ) (by Proposition 3.4).

One of the main reasons martingales are useful is:

Theorem 3.22 (Optional stopping theorem for martingales). Let - be a uniformly integrable,
right-continuous martingale. Let ( 6 ) be stopping times. Then -(, -) ∈ !1 and

-( = E[-) | ℱ(], (∗)
-) = E[-∞ | ℱ) ],

E[-0] = E[-) ] = E[-∞] .

Remark. This extends to uniformly integrable, right-continuous supermartingales with “>” in the
conclusions; see Stochastic Calculus and Applications, second edition, by Samuel N. Cohen and
Robert J. Elliott, Theorem 5.3.1.
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Note: In the case that ( and ) are constants, the first equation is the definition of martingale
and the rest are from Theorem 3.21.

Proof. We use the approximations of ( and ) from Proposition 3.8, now defined where [( = ∞] or
[) = ∞]:

(= B d2=(e/2= and )= B d2=)e/2=.

These are stopping times that decrease to ( and ) and also satisfy (= 6 )=. Thus, we may apply the
discrete-time version of this theorem to get

∀= -(= = E[-)= | ℱ(=] .

We want to let =→∞ to get Eq. (∗), i.e., that

∀� ∈ ℱ( E[1�-(] = E[1�-) ]

(because indeed -( ∈ ℱ(). Now, right-continuity yields -(= → -( and -)= → -) almost surely
and in !1, the latter since

-(= = E[-∞ | ℱ(=] and -)= = E[-∞ | ℱ)=]

by the discrete-time theorem. In particular, -(, -) ∈ !1. Thus, for each � ∈ ℱ( ⊆ ℱ(= , we have

E[1�-(=] = E[1�-)=]

E[1�-(] E[1�-) ] .

This shows Eq. (∗), and the rest is immediate from the fact that ) 6 ∞ is a stopping time. J

Uniform integrability is a key assumption (e.g., the double-or-nothing martingale). To make it
easier to use, we have the following two corollaries.

Corollary 3.23. Let - be a right-continuous martingale and ( 6 ) be bounded stopping times.
Then -(, -) ∈ !1 and -( = E[-) | ℱ(].

Proof. Suppose ) 6 A almost surely. Note that (-C∧A)C>0 is a martingale, closed by -A . Thus, it is
uniformly integrable. Since ( ∧ A = ( and ) ∧ A = ) , the result follows from applying Theorem 3.22
to (-C∧A)C>0. J

A trivial fact is that if / ∈ !1, then

∀B, C > 0 / ∈ ℱB =⇒ E[/ | ℱC] = E[/ | ℱC∧B] .

We now replace B by a stopping time, ) :
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Proposition. If ) is a stopping time, then ∀/ ∈ !1

∀C > 0 / ∈ ℱ) =⇒ E[/ | ℱC] = E[/ | ℱC∧) ] .

Proof. Let . B E[/ | ℱC∧) ]. Since . ∈ ℱC∧) ⊆ ℱC , it suffices to show that

∀� ∈ ℱC E[1�/] = E[1�. ] .

Consider � =
(
� ∩ [) 6 C]

)
∪

(
� ∩ [) > C]

)
. Now, /1[)6C] ∈ ℱC (property (j) of stopping times)

and since / ∈ ℱ) and ) ∈ ℱ) , also /1[)6C] ∈ ℱ) , whence /1[)6C] ∈ ℱC ∩ℱ) = ℱC∧) (property
(f)). Therefore,

/1[)6C] = E[/1[)6C] | ℱC∧) ] = E[/ | ℱC∧) ] 1[)6C]︸︷︷︸
∈ℱC∧)

= .1[)6C] ,

so
E[/1�1[)6C]] = E[.1�1[)6C]] .

Also, � ∩ [) > C] ∈ ℱC and since we have that ∀B > 0 � ∩ [) > C] ∩ [) 6 B] ∈ ℱB, also
� ∩ [) > C] ∈ ℱ) , so again � ∩ [) > C] ∈ ℱC∧) , whence by definition of . ,

E
[
/1�∩[)>C]

]
= E

[
.1�∩[)>C]

]
.

Adding these last two displays gives the result. J

We apply this to stopping a process, i.e., if - is a process, the stopped process (-C∧) )C>0.
Corollary 3.24. Let - be a right-continuous martingale and ) be a stopping time.

(i) The process (-C∧) )C>0 is a martingale.
(ii) If - is uniformly integrable, then so is (-C∧) )C>0, which is closed by -) :

-C∧) = E[-) | ℱC] a.s. (∗)

Proof. (ii) By Theorem 3.22, -) ∈ !1, so we may apply the proposition to / B -) to obtain

E[-) | ℱC] = E[-) | ℱC∧) ] .

Also, C ∧ ) is a stopping time (property (f)), so Theorem 3.22 gives E[-) | ℱC∧) ] = -C∧) . This
gives Eq. (∗)—which, by the way, also implies uniform integrability.

(i) Recall that ∀B > 0 (-C∧B)C>0 is a uniformly integrable martingale. Applying Eq. (∗) to this
process, we get ∀C 6 B

-(C∧B)∧)︸   ︷︷   ︸
=-C∧)

= E[-)∧B | ℱC] . J

Exercise (due 10/26). Deduce the proposition from Corollary 3.24 for (ℱC) that is right-continuous
and complete.

Exercise. There is a kind of converse to Theorem 3.22. Suppose that -C is defined for all C ∈ [0,∞],
including C = ∞. Show that if - is progressive and for every finite or infinite stopping time, ) , -)
is integrable with mean 0, then - is a uniformly integrable martingale. Hint: consider � ∈ ℱC and
define ) := C1� + ∞1�c to deduce that -C = E[-∞ | ℱC].
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Applications

Let � be a real Brownian motion. For 0 ∈ R, let )0 B inf{C > 0 ; �C = 0}.
(a) For 0, 1 > 0, consider ) B )−0 ∧ )1 and the stopped martingale "C B �C∧) . Because

|"C | 6 0 ∨ 1, " is uniformly integrable, whence

0 = E["0] = E[") ] = E[�) ] = 1 P[)1 < )−0] − 0 P[)−0 < )1] .

Since the two probabilities add to 1, we can solve to find

P[)1 < )−0] =
0

0 + 1 .

We needed only that Brownian motion is a continuous martingale from 0 that leaves (−0, 1).
(b) For 0, 1 > 0 and ) B )−0 ∧ )1, consider the martingale "C B �2

C − C. Again, "C∧) is a
martingale, though no longer bounded. Still, we have from the martingale property that

∀C > 0 0 = E["0] = E["C∧) ],

i.e.,
E
[
�2
C∧)

]
= E[C ∧ )] .

We may let C →∞ and use the bounded convergence theorem on the left-hand side and monotone
convergence theorem on the right-hand side to obtain

E[�2
) ] = E[)] .

Using (a), we find that E[)] = 01.
(c) For 0 > 0, and \ > 0, consider the martingale

#\C B e\�C−\
2C/2.

The stopped process, #\
C∧)0 , takes values in (0, e

\0), so is uniformly integrable, whence

1 = E[#\0 ] = E[#\)0] = e\0 E[e−\2)0/2] . (∗)

Taking \ B
√

2� gives the Laplace transform of )0:

E[e−�)0] = e−0
√

2� (� > 0). (3.7)

Note that if we used \ = −
√

2� in Eq. (∗), we would get a different result. The reason is that when
\ < 0, #\ is not uniformly integrable.

Exercise (due 10/26). Exercise 3.26.

Exercise (due 10/26). For G ∈ R3 and ' > |G |, let )3,' B inf{C > 0 ; |�C | = '}, where (�C)C>0 is a
3-dimensional Brownian motion started from G. Show that

E[)3,'] =
'2 − |G |2

3
.

Extra credit: compute the Laplace transform of )3,'.
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Exercise. Let � be 1-dimensional Brownian motion and ) B )−0 ∧ )1 for 0, 1 > 0. Use an earlier
martingale to compute E[)�) ].

We’ll later need the continuous-time analogue of the discrete-time optional stopping theorem
for nonnegative supermartingales.

Theorem 3.25. Let - be a nonnegative right-continuous supermartingale and ( 6 ) be stopping
times. Then -(, -) ∈ !1 and

-( > E[-) | ℱ(] .
Also,

E[-(] > E[-) ]
and

E
[
-(1[(<∞]

]
> E

[
-)1[(<∞]

]
> E

[
-)1[)<∞]

]
.

Proof. The strategy of proof for the martingale case (Theorem 3.22) mostly works, but now we
need some extra arguments. We are not assuming uniform integrability, and even for nonnegative
martingales, equality need not hold in the conclusion.

We first claim that if ) is bounded, then E[-(] > E[-) ]. Let (= B d2=(e/2= and )= B
d2=)e/2=. Right-continuity ensures that -(= → -( and -)= → -) as = → ∞. The optional
stopping theorem in discrete time for bounded stopping times gives

∀= > 0 -(=+1 > E[-(= | ℱ(=+1]

(note (=+1 6 (=). This means that
(
(-(−= ,ℱ(−=)

)
=60 is a backward supermartingale. The optional

stopping theorem also yields E[-(=] 6 E[-0], so this backward supermartingale is !1-bounded,
whence converges in !1 to -(. Likewise, -)= → -) in !1.

Since (= 6 )=, the optional stopping theorem also implies that

E[-(=] > E[-)=] .

Taking =→∞ gives the claim.
Now, we prove the theorem. For any < > 0, we may apply the first part to the bounded stopping

times 0 6 ( ∧ < to get E[-(∧<] 6 E[-0]. Fatou’s lemma then yields E[-(] 6 E[-0] < ∞ and
similarly -) ∈ !1.

Property (d) of stopping times says that for � ∈ ℱ(,

(� (l) B

((l) for l ∈ �,

∞ for l ∉ �

is a stopping time. Likewise, ) � is a stopping time because ℱ( ⊆ ℱ) . Applying the first part of the
proof to the bounded stopping times (� ∧ < 6 ) � ∧ < gives

∀< > 0 E[-(�∧<] > E[-) �∧<] .

Now if ( > <, then ) > <, so

-(�∧<1[(><] = -) �∧<1[(><] ,
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whence
E
[
-(1�∩[(6<]

]
> E

[
-)∧<1�∩[(6<]

]
.

Apply the monotone convergence theorem to the left-hand side and Fatou’s lemma to the right-hand
side to obtain

E
[
-(1�∩[(<∞]

]
> E

[
-)1�∩[(<∞]

]
.

Since -(1�∩[(=∞] = -)1�∩[(=∞] , we get

E[-(1�] > E[-)1�] = E
[
E[-) | ℱ(]1�

]
.

Therefore, -( > E[-) | ℱ(]. J

Exercise. Prove that if - is a nonnegative right-continuous supermartingale and � > 0, then

� P
[
sup
C>0

-C > �
]
6 E[-0] .
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Chapter 4

Continuous Semimartingales

A semimartingale is by definition the sum of a local martingale and a finite-variation process,
both of which we define and study here. The next chapter studies stochastic integration with respect
to continuous semi-martingales. A key process studied here will be the quadratic variation process
of a continuous local martingale.

4.1. Finite-Variation Processes

4.1.1. Functions with Finite Variation

This is a review from real analysis. Let � ⊆ R be an interval. We say 0 : � → R has finite (or
bounded) variation if

sup
{ ?∑
8=1

��0(C8) − 0(C8−1)
�� ; C0 < C1 < · · · < C? ∈ �} < ∞. (∗)

This is equivalent to the property that there exists a signed Borel measure ` on � such that

∀B < C ∈ � 0(C) − 0(B) = `
(
(B, C]

)
.

Such a ` is uniquely determined by 0. A signed measure ` has a Hahn–Jordan decomposition
` = `+ − `−, where `+, `− > 0 and `+ ⊥ `−. We write |` | B `+ + `−. A function of finite
variation is thus the difference of two bounded increasing functions and conversely.

For 5 ∈ !1(`), we write∫
�

5 d0 B
∫
�

5 d` and
∫
�

5 |d0 | B
∫
�

5 |d` |.

We have ���∫
�

5 d0
��� 6 ∫

�

| 5 | |d0 |.

Furthermore, the function C ↦→
∫
�∩(−∞,C] 5 |d0 | on � has finite variation, represented by the

measure 5 · `.
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Proposition 4.2. If 0 has finite variation on [B, C], then∫ C

B

|d0 | = supremum in Eq. (∗)

= lim
Y↓0

{ ?∑
8=1

��0(C8) − 0(C8−1)
�� ; B = C0 < C1 < · · · < C? = C, max

8
|C8 − C8−1 | < Y

}
. J

We also have
Lemma 4.3. If 0 has finite variation on [B, C] and 5 : [B, C] → R is continuous, then∫ C

B

5 d0 = lim
Y↓0

{ ?∑
8=1

5 (C8−1)
[
0(C8) − 0(C8−1)

]
;

B = C0 < C1 < · · · < C? = C,
max8 |C8+1 − C1 | < Y

}
. J

Corollary. If 0 has finite variation on [B, C] and 5 : [B, C] → R is continuous, then∫ C

B

5 |d0 | = lim
Y↓0

{ ?∑
8=1

5 (C8−1)
��0(C8) − 0(C8−1)

�� ; B = C0 < C1 < · · · < C? = C,
max8 |C8+1 − C1 | < Y

}
.

We will not use this, so we skip the proof.
We call a function 0 : R+ → R a finite-variation function if 0�� has finite variation for all

bounded � ⊆ R+. In this case, there is a f-finite positive measure ` such that

∀B < C ∈ R+
∫
(B,C]
|d0 | = `

(
(B, C]

)
.

For 5 ∈ !1(`), we write ∫ ∞

0
5 d0 B lim

C→∞

∫ C

0
5 d0.

4.1.2. Finite-Variation Processes

Fix a filtered probability space.
Definition 4.4. A process � is a finite-variation process if � is adapted, all its sample paths are
finite-variation functions on R+, and, for us, �0 = 0 and all sample paths are continuous. If also the
sample paths are increasing, then � is an increasing process.

If � is a finite-variation process, then the process

+C B

∫ C

0
|d�B |

is an increasing process: adaptedness follows from Proposition 4.2. As for the case of functions, �
is the difference of two increasing processes:

�C =
+C + �C

2
− +C − �C

2
.

Integration with respect to a finite-variation process can be done pointwise, but we need something
to guarantee the result will be adapted:



4.1. Finite-Variation Processes 41

Proposition 4.5. Let � be a finite-variation process and � be a progressive process satisfying

∀C > 0 ∀l ∈ Ω
∫ C

0

���B (l)�� ��d�B (l)��︸                     ︷︷                     ︸
integration with respect to B, not l

< ∞.

Then the process � · � defined by

(� · �)C B
∫ C

0
�B d�B

is a finite-variation process.

Proof. We already saw that � · � has sample paths that are finite-variation functions, so it remains
to check that � · � is adapted. Recall that for all C, � : Ω × [0, C] → R is measurable with respect to
ℱ ⊗ℬ

(
[0, C]

)
. Thus, it suffices to show that if

ℎ :
(
Ω × [0, C],ℱC ⊗ℬ

(
[0, C]

) )
→

(
R,ℬ(R)

)
and

∀l ∈ Ω
∫ C

0

��ℎ(l, B)�� ��d�B (l)�� < ∞,
then (

l ↦→
∫ C

0
ℎ(l, B) d�B (l)

)
∈ ℱC .

This is like Fubini’s theorem. We start with ℎ of the form ℎ(l, B) = 1Γ(l)1(D,{] (B) for Γ ∈ ℱC and
0 6 D < { 6 C. In this case,∫ C

0
ℎ(l, B) d�B (l) = 1Γ(l)︸︷︷︸

∈ℱC

[
�{ (l)︸ ︷︷ ︸
∈ℱ{⊆ℱC

− �D (l)︸ ︷︷ ︸
∈ℱD⊆ℱC

]
∈ ℱC .

The class of such Γ × (D, {] is closed under finite intersections, so forms a c-system. Also the
class of � ∈ ℱC ⊗ℬ

(
[0, C]

)
such that ℎ = 1� satisfies the conclusion is closed under complements

and countable disjoint unions, so forms a �-system. Therefore, the class is exactly ℱC ⊗ℬ
(
[0, C]

)
.

Taking a limit of simple functions dominated by |ℎ | gives the desired result. J

Suppose we have only

∃ negligible # ⊆ Ω ∀l ∉ # ∀C > 0
∫ C

0

���B (l)�� · ��d�B (l)�� < ∞.
If the filtration is complete, then we can define �′ · �, where

�′C (l) =

�C (l) if l ∉ #,

0 if l ∈ #.
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Because of completeness, �′ is progressive. We then define � · � B �′ · �.
If � and  are progressive, then so is � , where (� )C B �C C . If � and � satisfy the

integrability condition of Proposition 4.5, then

 · (� · �) = ( �) · �

because for functions and measures,

: (ℎ`) = (:ℎ)`.

In the simple case �C ≡ C and � is progressive with

∀l ∈ Ω ∀C > 0
∫ C

0
|�B (l) | dB < ∞,

we obtain a finite-variation process
∫ C

0 �B dB.

4.2. Continuous Local Martingales

For a process - = (-C)C>0 and a stopping time ) , we write -) B (-C∧) )C>0 for the process -
stopped at ) . Note that if ( is also a stopping time, then

(-) )( = -)∧( = (-()) .

Recall from Corollary 3.24 that if - is a martingale and ) is a bounded stopping time, then -) is
a uniformly integrable martingale. But there are other processes that have this property besides
martingales.

Like local integrability on R+, but instead of [0, C=], we use [0, )=] in the following definition.

Definition 4.6. An adapted process " with continuous sample paths and "0 = 0 a.s. is called
a continuous local martingale if there exist stopping times )1 6 )2 6 · · · → ∞ such that for all
=, ")= is a uniformly integrable martingale. If we do not assume "0 = 0 a.s. but ("C − "0)C>0
satisfies the preceding condition, then we still call " a continuous local martingale. Stopping
times )= that witness the definition are said to reduce " .

One need not assume sample paths are continuous in order to define local martingales, but we
will.

Note that it is not assumed that "C ∈ !1. In particular, "0 need only be ℱ0-measurable.
To distinguish martingales from local martingales, we may speak of true martingales. Some

examples of the difference:

Example. Let � be an (ℱC)-Brownian motion from 0 and / ∈ ℱ0, / ∉ !1. Then "C B /�C is a
continuous local martingale but not a true martingale by Exercise 4.22.

Exercise (due 11/2). Exercise 4.22.
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Example. Let � be a real Brownian motion and ) B inf{C > 0 ; �C = −1}. Define

-C B


� C

1−C ∧) if C < 1,

−1 if C > 1.

By Corollary 3.24(i), �) is a martingale. We claim that - is a continuous local martingale with
respect to (ℱ-

C )C>0 but not a martingale. To see this, let

)= B inf{C > 0 ; -C = =}.

These are stopping times that increase to infinity. We want to show that 0 6 B < C implies

-)=B = E
[
-
)=
C

�� ℱ-
B

]
.

Write

i(B) B


B
1−B if B < 1,

∞ if B > 1.

Since - C = �)
i(C) , we have

-)=B = �
i()=)∧)
i(B) and ℱ

-
B = ℱ

�
i(B)∧) ,

so the desired equation is
�
i()=)∧)
i(B) = E

[
�
i()=)∧)
i(C)

�� ℱ�
i(B)∧)

]
.

Since i()=) is an (ℱ�
• )-stopping time and �i()=)∧) is a bounded martingale, the equation follows

from the optional stopping theorem. To see that - is not a true martingale, we note that
-0 = 0 ≠ −1 = E[-1]. In effect, �) is not closed, but is still a martingale.

Some properties of continuous local martingales:
(b) If " is a continuous adapted process with "0 = 0 and )= are increasing stopping times going

to infinity with ")= a martingale, then " is a continuous local martingale: we may replace
)= by )= ∧ = to get stopping times that reduce " because (")=)= is a uniformly integrable
martingale by Theorem 3.21.

(c) If " is a continuous local martingale and ) is any stopping time, then ") is a continuous
local martingale, because if )= reduce ", then (") ))= = (")=)) and Corollary 3.24(ii)
shows that )= reduce ") .

(d) Similarly, if )= reduce " and (= →∞ are stopping times, then )= ∧ (= reduce " .
(e) If )= reduce " and ) ′= reduce "′, then )= ∧ ) ′= reduce both " and "′ by (d), whence also

reduce " + "′ (the sum of two uniformly integrable classes is uniformly integrable). Thus,
the space of continuous local martingales is a vector space.
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Exercise (due 11/9). Show that if - is a discrete-time adapted process in !1 and )= are stopping
times going to infinity such that -)= is a martingale for each =, then - is a martingale.

If " is a continuous local martingale reduced by ()=) and "0 ∈ !1 then ")= is a uniformly
integrable martingale, since adding an !1 function to a uniformly integrable class results in a
uniformly integrable class.
Proposition 4.7. Let " be a continuous local martingale with "0 ∈ !1.

(i) If " > 0, then " is a supermartingale.
(ii) If " is dominated (i.e., ∃/ ∈ !1 with |"C | 6 / for all C > 0), then " is a uniformly integrable

martingale.
(iii) " is reduced by

)= B inf
{
C > 0 ; |"C | > = + |"0 |

}
.

Proof. (i) Let )= reduce " . Then E["0] = E["C∧)=] for = > 0. By Fatou’s lemma,

E["C] 6 E["0] < ∞.

Furthermore,
B 6 C =⇒ ∀= "B∧)= = E["C∧)= | ℱB] . (∗)

By Fatou’s lemma for conditional expectation, we get

"B > E["C | ℱB] .

(ii) Combined with Eq. (∗), the Lebesgue dominated convergence theorem implies that
"B = E["C | ℱB].

(iii) Proposition 3.9 shows that )= are stopping times. By property (c) of local martingales,
")= is a continuous local martingale. Since it is dominated by = + |"0 |, part (ii) shows that it is a
uniformly integrable martingale, as required. J

It is not true that a uniformly integrable continuous local martingale is necessarily a martingale,
even if it is bounded in !2. A natural example appears in Exercise 5.33 (which was historically the
first example, due to Johnson and Helms in 1963; two years later, Itô and Watanabe introduced local
martingales).

Recall Corollary 2.17 that Brownian motion has infinite variation on every non-trivial interval.
This came from the fact that the quadratic variation was positive on every interval (indeed, it equals
the length of interval), which was a simple consequence of Brownian motion coming from Gaussian
white noise. Every continuous local martingale " also has infinite variation on every interval where
it is “changing”. To prove this, we could try to use Proposition 3.14: if " is a square-integrable
martingale, then for 0 = C0 < C1 < · · · < C?, we have

E["2
C?
− "2

C0] = E
[ ?∑
8=1
("C8 − "C8−1)2

]
.

However, " need not even be a martingale, nor square-integrable. In addition, we don’t have almost
sure convergence of the quadratic variation to a something greater than 0 (though we will prove this
convergence in probability in the next section). Instead, localization will allow us to get a proof,
using a proper stopping time derived from the assumption to the contrary that the variation is finite.
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Theorem 4.8. Let " be a continuous local martingale that is also a finite-variation process. Then
P[∀C > 0 "C = 0] = 1.

Proof. Since C ↦→
∫ C

0 |d"B | is an increasing process, for = ∈ N

)= B inf
{
C > 0 ;

∫ C

0
|d"B | > =

}
is a stopping time by Proposition 3.9. It is enough to show that

∀= ")= = 0 a.s.,

since )= →∞.
Fix = and write # B ")= . Then

∀C > 0 |#C | = |"C∧)= | =
���∫ C∧)=

0
d"B

��� 6 ∫ C∧)=

0
|d"B | 6 =.

By property (c) and Proposition 4.7(ii), # is a bounded martingale. For C > 0, consider 0 = C0 <
C1 < · · · < C? = C. By Proposition 3.14,

E[#2
C ] = E

[ ?∑
8=1
(#C8 − #C8−1)2

]

6 E
[
sup
8

|#C8 − #C8−1 |︸             ︷︷             ︸
6 2=, small by continuity

·

6 = by Proposition 4.2︷              ︸︸              ︷
?∑
8=1
|#C8 − #C8−1 |

]
.

Thus, the bounded convergence theorem yields E[#2
C ] = 0, whence #C = 0 a.s. Because # is

continuous, it follows that # = 0 a.s., as desired. J

Exercise (due 11/9). Let ? > 1 and - be a right-continuous martingale satisfying supC E
[
|-C |?

]
< ∞.

Show that for all measurable ) : Ω→ [0,∞], -) ∈ !?. Show that this is not always true for ? = 1.

4.3. The Quadratic Variation of a Continuous Local Martingale

For the rest of the chapter, we assume (ℱC) is complete.
Again like Brownian motion, continuous local martingales have finite quadratic variation on

every bounded interval. This will be a crucial result and is the main result of Chapter 4.

Theorem 4.9. Let " be a continuous local martingale. There is an increasing process 〈", "〉 =(
〈", "〉C

)
C>0 such that

(
"2
C − 〈", "〉C

)
C>0 is a continuous local martingale. Such a process 〈", "〉

is unique up to indistinguishability and has the following form: if C > 0 and 0 = C=0 < C
=
1 < · · · <

C=?= = C is an increasing sequence of subdivisions of [0, C] with mesh going to zero, then

〈", "〉C = lim
=→∞

?=∑
8=1
("C=

8
− "C=

8−1
)2 in probability. (4.3)
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Remark. The sum in Eq. (4.3) is not monotone in =, unlike for total variation.

We call 〈", "〉 the quadratic variation of " . For example, if � is a Brownian motion, then
〈�, �〉C = C.

From Eq. (4.3), we see that 〈", "〉 does not depend on "0, nor on (ℱC)C>0. Also, Eq. (4.3)
holds even if the subdivisions are not increasing, but we will prove that only in Chapter 5.

The proof of Theorem 4.9 relies on some calculations.

Lemma A. Let (-: ):∈N be a martingale, (:8)8∈N be an increasing sequence with :0 = 0, and
8(:) B min{8 ; : 6 :8}. Define

.< B

<∑
:=1

-:−1(-: − -:−1)

and

/ℓ B

ℓ∑
8=1

-:8−1 (-:8 − -:8−1).

Then

E
[
(.:ℓ − /ℓ)2

]
= E

[ :ℓ∑
:=1
(-:8 (:)−1 − -:−1)2(-: − -:−1)2

]
.

Proof. We have

E[.:ℓ/ℓ] =
ℓ∑
8=1

:ℓ∑
:=1

E
[
-:8−1 (-:8 − -:8−1)-:−1(-: − -:−1)

]
.

If :8 6 : − 1, then by conditioning on ℱ:−1, we see that the (8, :) summand is 0. Similarly, if
: 6 :8−1, then by conditioning on ℱ:8−1 , we get that the (8, :) summand is 0. Therefore,

E[.:ℓ/ℓ] =
:ℓ∑
:=1

E
[
-:8 (:)−1 (-:8 (:) − -:8 (:)−1)-:−1(-: − -:−1)

]
.

Writing

-:8 (:) − -:8 (:)−1 =

:8 (:)∑
9=:8 (:)−1+1

(
- 9 − - 9−1

)
,

we get that the (:, 9) summand is 0 unless 9 = :: if 9 < : , condition on ℱ:−1, whereas if 9 > : ,
condition onℱ9−1. Thus, we have

E[.:ℓ/ℓ] =
:ℓ∑
:=1

E
[
-:8 (:)−1-:−1(-: − -:−1)2

]
. (1)

By choosing :8 ≡ 8, we obtain

E[.2
:ℓ
] =

:ℓ∑
:=1

E
[
-2
:−1(-: − -:−1)2

]
. (2)
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If we apply Eq. (2) to the martingale (-:8 )8∈N, we obtain

E[/2
ℓ ] =

ℓ∑
8=1

E
[
-2
:8−1
(-:8 − -:8−1)2

]
.

Now condition on ℱ:8−1 and use Proposition 3.14 to write

E
[
(-:8 − -:8−1)2

�� ℱ:8−1

]
=

:8∑
:=:8−1+1

E
[
(-: − -:−1)2

�� ℱ:8−1

]
,

whence

E[/2
ℓ ] =

ℓ∑
8=1

E
[
-2
:8−1

:8∑
:=:8−1+1

E
[
(-: − -:−1)2

�� ℱ:8−1

] ]
=

:ℓ∑
:=1

E
[
-2
:8 (:)−1

(-: − -:−1)2
]
.

(3)

Using Eqs. (1) to (3), we get the desired result. J

Lemma B. If (-: ):∈N is a martingale, then

∀< ∈ N E
[( <∑

:=1
(-: − -:−1)2

)2]
6 6 · max

06:6<
‖-: ‖4∞.

Proof. Write � B max06:6< ‖-: ‖∞. Note that∑
16:< 96<

E
[
(-: − -:−1)2(- 9 − - 9−1)2

]
=

<−1∑
:=1

E
[
(-: − -:−1)2 E

[ <∑
9=:+1

(- 9 − - 9−1)2
��� ℱ:

] ]
=

<−1∑
:=1

E
[
(-: − -:−1)2 E

[
-2
< − -2

:

�� ℱ:

] ]
[by Proposition 3.14]

6 �2 ·
<−1∑
:=1

E
[
(-: − -:−1)2

]
.

In addition,
E
[
(-: − -:−1)4

]
6 4�2 E

[
(-: − -:−1)2

]
.

Therefore,

E
[ ( <∑
:=1
(-: − -:−1)2

)2
]
6 6�2

<∑
:=1

E
[
(-: − -:−1)2

]
= 6�2 E

[
-2
< − -2

0
]

[by Proposition 3.14]

6 6�4. J
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Lemma C. If ∀= ∈ N -= = (-=C )C∈� is a process with continuous sample paths and

lim
=,<→∞

E
[
sup
C∈�
(-=C − -<C )2

]
= 0,

then there exists =: →∞ and . = (.C)C∈� with continuous sample paths such that almost surely

∀C ∈ � lim
:→∞

-
=:
C = .C .

Proof. Choose =: →∞ such that

∞∑
:=1

E
[
sup
C∈�
(-=:C − -

=:+1
C )2

]1/2
< ∞.

Then E
[∑∞

:=1 supC∈� |-
=:
C − -

=:+1
C |

]
=
∑∞

:=1 E
[
supC∈� |-

=:
C − -

=:+1
C |

]
< ∞, so

∞∑
:=1

sup
C∈�
|-=:C − -

=:+1
C | < ∞ almost surely.

Off a negligible set # , we have uniform convergence of -=:C , so for l ∉ # one may define
. (l) B lim:→∞ -

=:
C (l), whereas for l ∈ # , define . (l) := 0. (Note that # depends on - (=: )C

for all C ∈ �—or at least a dense subset of such C—and all : , so that we cannot conclude that
.C ∈ f(- (=: )C , : > 1).) J

Proof of )ℎ4>A4< 4.9. We first show uniqueness. Suppose that � and �′ are increasing processes
such that ("2

C − �C) and ("2
C − �′C) are both continuous local martingales. Then their difference,

�′C − �C , is a continuous local martingale and a finite-variation process, whence is 0 by Theorem 4.8
(up to indistinguishability).

To prove existence, first assume "0 = 0 and " is bounded. By Proposition 4.7(ii), " is a true
martingale. Fix  > 0 and an increasing sequence of subdivisions of [0,  ] with mesh going to 0,
0 = C=0 < C

=
1 < · · · < C

=
?=
=  .

It is easy to see that if 0 6 A < B and / ∈ !∞(ℱA), then C ↦→ / ("B∧C − "A∧C) is a martingale.
Therefore, for all =, the process

-=C B

?=∑
8=1

"C=
8−1

(
"C=

8
∧C − "C=

8−1∧C
)
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is a bounded martingale. Now for 0 6 9 6 ?=,

("C=
9
)2 − 2-=C=

9
= "2

C=
9
− 2

9∑
8=1

"C=
8−1
("C=

8
− "C=

8−1
)

= "2
C=
9
− 2"C=

9
"C=

9−1
+ "2

C=
9−1

+ "2
C=
9−1
− 2"C=

9−1
"C=

9−2
+ "2

C=
9−2

+ · · ·
+ "2

C=1
− 2"C=1

"C=0
+ "2

C=0

+ "2
C=0

=

9∑
8=1
("=

C8
− "C=

8−1
)2

(4.4)

since "C=0
= "0 = 0. (In Chapter 5, we will see this implies "2

C − 〈", "〉C = 2
∫ C

0 "B d"B. Note
that if " is a finite-variation process, then 〈", "〉 = 0 and this is ordinary calculus.)

By Lemma A, if = 6 <,

E
[
(-= − -

<
 )

2] = E
[ ?<∑
9=1
("C=

8= ( 9)−1
− "C<

9−1
)2 · ("C<

9
− "C<

9−1
)2

]
,

where 8= ( 9) B min{8 ; C<
9
6 C=

8
}. The right-hand side is

6 E
[

max
16 96?<

��"C=
8= ( 9)−1

− "C<
9−1

��2 · ?<∑
8=1
("C<

9
− "C<

9−1
)2

]
6 E

[
max
9

��"C=
8= ( 9)−1

− "C<
9−1

��4]1/2
· E

[(∑
9

("C=
9
− "C=

9−1
)2

)2]1/2
.

[Cauchy–Schwarz inequality]
The first term converges to 0 as <, =→∞ by continuity of sample paths and boundedness of

" . The second term is less than or equal to
√

6 · sup06C6 ‖"C ‖2∞ by Lemma B. Therefore,

lim
=,<→∞

E
[
(-= − -

<
 )

2] = 0.

By Doob’s !2-inequality (Proposition 3.15(ii)), we get

lim
<,=→∞

E
[
sup
C6 
(-=C − -<C )2

]
= 0.

By Lemma C, there exists . = (.C)06C6 with continuous sample paths and =: → ∞ such that
almost surely,

∀C ∈ [0,  ] lim
:→∞

-
=:
C = .C .

Also,
∀C ∈ [0,  ] lim

=→∞
-
=:
C = .C in !2.
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Because the filtration is complete, .C ∈ ℱC . Since B 6 C implies that E[-=C | ℱB] = -=B , we obtain
that E[.C | ℱB] = .B for 0 6 B 6 C 6  , i.e., (.C∧ )C>0 is a continuous martingale.

By Eq. (4.4), the sample paths of"2
C −2-=C are increasing along the sequence C=0 < C

=
1 < · · · < C

=
?=
.

Therefore, the sample paths of "2
C − 2.C are increasing on [0,  ] off a negligible set # . Thus, define

the increasing process �( ) on [0,  ] by

�
( )
C B


"2
C − 2.C on Ω \ #,

0 on #.

Then �( ) is an increasing process and
(
"2
C∧ − �

( )
C∧ 

)
C>0 is a continuous martingale.

In this manner, for all ℓ ∈ N, we obtain a process �(ℓ) on [0, ℓ]. By the uniqueness argument
at the beginning of this proof,

(
�
(ℓ+1)
C∧ℓ

)
C>0 and

(
�
(ℓ)
C∧ℓ

)
C>0 are indistinguishable. This allows us to

define an increasing process 〈", "〉 such that
(
〈", "〉C∧ℓ

)
C>0 is indistinguishable from

(
�
(ℓ)
C∧ℓ

)
C>0

for each ℓ ∈ N. It satisfies that
(
"2
C − 〈", "〉C

)
C>0 is a martingale.

This is not quite Eq. (4.3) because there C was arbitrary and the subdivisions were of [0, C].
However, call “C” there now by “ ”. As before,

(
�
( )
C∧ 

)
C>0 is indistinguishable from

(
〈", "〉C∧ 

)
C>0.

In particular, 〈", "〉 = � ( ) almost surely. As we saw, this gives !2-convergence in Eq. (4.3),
which is stronger than convergence in probability. This completes the proof when "0 = 0 and " is
bounded.

For the general case, write "C = "0 + #C . Then "2
C = "

2
0 + 2"0#C + #2

C . By Exercise 4.22,
("0#C)C is a continuous local martingale, so by uniqueness, 〈", "〉 = 〈#, #〉. Thus, we may take
"0 = 0 without loss of generality.

Now use the stopping times )= B inf
{
C > 0 ; |"C | > =

}
. The case we proved applies to ")= :

Write �[=] B 〈")= , ")=〉. By uniqueness, for all =,
(
�
[=+1]
C∧)=

)
C
and

(
�
[=]
C

)
C
are indistinguishable, so

there exists an increasing process � such that for all = ∈ N, �)= and �[=] are indistinguishable. By
construction, for all =, ("2

C∧)= − �C∧)=)C is a martingale, whence ("2
C − �C)C is a continuous local

martingale. Thus, we may define 〈", "〉 B �. Now, Eq. (4.3) in the bounded case says that

∀= ∀C lim
<→∞

/
(<)
C∧)= = 〈", "〉C∧)= in probability,

where

/
(<)
C B

?<∑
8=1
("C<

8
∧C − "C<

8−1∧C)
2.

That is,
∀= ∀C ∀Y > 0 ∃<0 ∀< > <0 P

[��/ (<)
C∧)= − 〈", "〉C∧)=

�� > Y] < Y.
In addition, there exists =0 such that P[)=0 < C] < Y. Therefore,

∀< > <0 P
[��/ (<)C − 〈", "〉C

�� > Y] < 2Y,

so / (<)C

P−→ 〈", "〉C , as desired. J

Exercise (due 11/30). Exercise 4.23.
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Proposition 4.11. If " is a continuous local martingale and ) is a stopping time, then almost
surely,

∀C > 0 〈") , ") 〉C = 〈", "〉)C .

Proof. By property (c) of continuous local martingales,
(
"2
C∧) − 〈", "〉C∧)

)
C
is a continuous local

martingale. By uniqueness,
(
〈", "〉C∧)

)
C
is indistinguishable from 〈") , ") 〉C . J

Exercise (due 11/30). Show that if " is a continuous local martingale and ) is a stopping time,
then almost surely,

∀C > 0 〈" − ") , " − ") 〉C = 〈", "〉C − 〈", "〉)C .

Exercise (due 11/30). Let � be an (ℱC)-Brownian motion and (, ) be stopping times. Calculate

〈�) − �(, �) − �(〉.

Hint: Do first the case ( 6 ) .

We next show how various properties of " are reflected in 〈", "〉. Our first result is that "
changes only where 〈", "〉 changes.

Proposition 4.12. Let " be a continuous local martingale and 0 6 C1 < C2 6 ∞. Then a.s.
∀C ∈ [C1, C2] "C = "C1 if and only if a.s. ∀C ∈ [C1, C2] 〈", "〉C = 〈", "〉C1 .

Proof. ⇒: By Eq. (4.3), 〈", "〉C2 = 〈", "〉C1 . Since 〈", "〉 is increasing, we get the result.
⇐: " C8 is a continuous local martingale by property (c), whence so is " C2 −" C1 by property (e).

By Eq. (4.3), 〈" C2 −" C1 , " C2 −" C1〉 = 0. Therefore, (" C2 −" C1)2 is a continuous local martingale.
By Proposition 4.7(i), it is a supermartingale. Thus, E

[
("C − "C1)2

]
6 E

[
("C1 − "C1)2

]
= 0 for

C ∈ [C1, C2]. J

For an increasing process �, we define �∞ B limC→∞ �C ∈ [0,∞].

Theorem 4.13. Let " be a continuous local martingale with "0 ∈ !2.
(i) The following are equivalent:

(a) " is a true martingale bounded in !2.
(b) E

[
〈", "〉∞

]
< ∞.

If these hold, then
(
"2
C − 〈", "〉C

)
C>0 is a uniformly integrable martingale and so

E["2
∞] = E["2

0 ] + E
[
〈", "〉∞

]
.

(ii) The following are equivalent:

(a) " is a true martingale and ∀C > 0 "C ∈ !2.
(b) ∀C ∈ [0,∞) E

[
〈", "〉C

]
< ∞.

If these hold, then
(
"2
C − 〈", "〉C

)
C>0 is a true martingale.
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Proof. (i) Without loss of generality, "0 = 0.
(a)⇒ (b): By Doob’s !2-inequality,

∀B > 0


 sup

06C6B
|"C |




2 6 2‖"B‖2,

whence supC>0 |"C | ∈ !2 if (a) holds. Let (= B inf{C > 0 ; 〈", "〉C > =}. By property (c) of
continuous local martingales,

(
"2
C∧(= − 〈", "〉C∧(=

)
C>0 is a continuous local martingale. Also, it is

dominated by (supC>0 "
2
C + =) ∈ !1, so by Proposition 4.7(ii), it is a uniformly integrable martingale.

Therefore,
∀C > 0 E

[
〈", "〉C∧(=

]
= E

[
"2
C∧(=

]
6 E

[
sup
B>0

"2
B

]
< ∞.

Take =→∞ and C →∞ to get (b).
(b)⇒ (a): If (b) holds, then set

)= B inf{C > 0 ; |"C | > =}.

Now ��"2
C∧)= − 〈", "〉C∧)=

�� 6 =2 + 〈", "〉∞ ∈ !1,

so again
(
"2
C∧)= − 〈", "〉C∧)=

)
C>0 is a uniformly integrable martingale and

∀C > 0 E["2
C∧)=] = E

[
〈", "〉C∧)=

]
6 E

[
〈", "〉∞

]
< ∞. (∗)

Take =→∞ to get ("C)C>0 is bounded in !2 by Fatou’s Lemma.
To see that " is a martingale, note that Eq. (∗) implies ("C∧)=)=>1 is uniformly integrable, so

converges in !1 to "C as = → ∞. By Proposition 4.7(iii), ")= is a martingale, whence so is its
!1-limit, " .

Lastly, if (a) and (b) hold, then��"2
C − 〈", "〉C

�� 6 sup
B>0

"2
B + 〈", "〉∞ ∈ !1,

so by Proposition 4.7(ii), "2 − 〈", "〉 is a uniformly integrable martingale.
(ii) Apply (i) to "0 for each 0 > 0. J

Exercise (due 11/30). Exercise 4.24.

4.4. The Bracket of Two Continuous Local Martingales

The reason for our notation 〈", "〉 is that it leads to:
Definition 4.14. If " and # are continuous local martingales, the bracket (or covariation) 〈", #〉
is the finite-variation process

〈", #〉C B
1
2

(
〈" + #, " + #〉C − 〈", "〉C − 〈#, #〉C

)
.
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Proposition 4.15. Let " and # be continuous local martingales.
(i) 〈", #〉 is the unique (up to indistinguishability) finite-variation process such that

(
"C#C −

〈", #〉C
)
C>0 is a continuous local martingale.

(ii) The map (", #) ↦→ 〈", #〉 is bilinear and symmetric.
(iii) If 0 = C=0 < C

=
1 < · · · < C

=
?=
= C is an increasing sequence of subdivisions of [0, C] with mesh

going to 0, then

lim
=→∞

?=∑
8=1
("C=

8
− "C=

8−1
) (#C=

8
− #C=

8−1
) = 〈", #〉C in probability.

(iv) If ) is a stopping time, then

〈") , #) 〉 = 〈", #〉) = 〈") , #〉.

(v) If " and # are both true martingales bounded in !2, then "# − 〈", #〉 is a uniformly
integrable martingale, whence 〈", #〉∞ exists as the almost sure and !1 limit of 〈", #〉C as
C →∞ and satisfies

E["∞#∞] = E["0#0] + E
[
〈", #〉∞

]
.

Proof. (i) This follows from Theorem 4.9, with uniqueness from Theorem 4.8.
(ii) This follows from uniqueness in (i).
(iii) This follows from Eq. (4.3) applied to " , # and " + # .
(iv) The first equality follows from (i) as in the proof of Proposition 4.11. By (iii), given

0 6 B 6 C, we may take the subdivisions of [0, C] to include B in order to deduce that

〈") , #〉C = 〈", #〉C a.s. on [) > C]

and
〈") , #〉C = 〈") , #〉B a.s. on [) 6 B],

whence 〈") , #〉C = 〈", #〉)C almost surely (consider B ∈ Q+).
(v) Apply Theorem 4.13(i) to " , # and " + # to get three uniformly integrable martingales.

Combining them gives the result. J

Exercise (due 11/30). Give another proof that

〈" − ") , " − ") 〉 = 〈", "〉 − 〈", "〉)

by using Proposition 4.15.

Proposition 4.16. If � and �′ independent (ℱC)-Brownian motions, then 〈�, �′〉 = 0.

We will skip the proof in favor of the following exercise:

Exercise (due 11/30). Let" and # be independent continuous local martingales (sof(") ⫫ f(#)).
Give two proofs as follows that 〈", #〉 = 0:
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(1) Assume first that " and # are bounded. For 0 = C0 < C1 < · · · < C= = C, show that

E
[( =∑

8=1
("C8 − "C8−1) (#C8 − #C8−1)

)2
]
6 max

1686=

(
E["2

C8
] − E["2

C8−1]
)
·
(
E[#2

C ] − E[#2
0 ]

)
.

Deduce that 〈", #〉 = 0.

In the general case, localize " and # and use Proposition 4.15.
(2) Assume first that " and # are martingales. Show that for 0 6 B 6 C, � ∈ ℱ"

B , � ∈ ℱ#
B , we

have
E["C#C1�∩�] = E["B#B1�∩�] .

Deduce that "# is an
(
ℱ

"
C ∨ℱ#

C

)
C>0-martingale and that 〈", #〉 = 0.

In the general case, localize " and # .

Definition 4.17. We say that two continuous local martingales are orthogonal if their bracket is 0;
this is equivalent to their product being a continuous local martingale.

Thus, " ⫫ # implies " and # are orthogonal. The converse is false:
Exercise (due 11/30). Show that if � is an (ℱC)-Brownian motion and ) is a stopping time, then
〈�) , � − �) 〉 = 0. Give an example where �) and � − �) are not independent.

If 〈", #〉 = 0 and " , # are true martingales bounded in !2, then

E[")#) ] = E["0#0]

for all stopping times ) by Proposition 4.15(v) and Theorem 3.22 (the optional stopping theorem).
Exercise. Prove, conversely, that if " and # are true martingales bounded in !2 and E[")#) ] =
E["0#0] for all finite or infinite stopping times ) , then 〈", #〉 = 0.

We are next going to prove a Cauchy–Schwarz type inequality that involves integrating
with respect to the bracket of two continuous local martingales. The proof involves the usual
Cauchy–Schwarz inequality a couple of times, including via the following:
Lemma. Let 0 : R+ → R be a finite-variation function and {1, {2 : R+ → R be increasing functions.
If

∀0 6 B < C < ∞
��0(C) − 0(B)�� 6 √

{1(C) − {1(B) ·
√
{2(C) − {2(B),

then for any Borel functions ℎ, : : R+ → R+,∫ ∞

0
ℎ · : |d0 | 6

(∫ ∞

0
ℎ2 d{1

)1/2 (∫ ∞

0
:2 d{2

)1/2
. (∗)

Proof. Suppose that (∗) holds for functions ℎ8 and :8 that are both are 0 outside a Borel set �8, with
�8 disjoint for different 8. Write ℎ :=

∑
ℎ8 and : :=

∑
:8. Then∫ ∞

0
ℎ · : |d0 | =

∫ ∞

0

∑
ℎ8:8 |d0 | 6

∑(∫ ∞

0
ℎ2
8 d{1

)1/2 (∫ ∞

0
:2
8 d{2

)1/2

6
(∫ ∞

0

∑
ℎ2
8 d{1

)1/2 (∫ ∞

0

∑
:2
8 d{2

)1/2
=

(∫ ∞

0
ℎ2 d{1

)1/2 (∫ ∞

0
:2 d{2

)1/2
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by the Cauchy–Schwarz inequality. That is, (∗) then holds also for the pair ℎ, : . A similar
computation using the hypothesis shows that if B = C0 < C1 < · · · < C? = C, then

?∑
8=1

��0(C8) − 0(C8−1)
�� 6 √

{1(C) − {1(B) ·
√
{2(C) − {2(B).

(Actually, this is a special case of the initial computation with ℎ8 = 1(C8−1,C8]
d0
|d0 | and :8 =

1(C8−1,C8] sgn
(
0(C8) − 0(C8−1)

)
.) Taking a limit of such subdivisions and using Proposition 4.2,

we obtain ∫
(B,C]
|d0 | 6

(∫
(B,C]

d{1
)1/2 (∫

(B,C]
d{2

)1/2
,

in other words, (∗) holds for functions of the form 1(B,C] . By our first computation, it follows that if
� is a finite disjoint union of intervals (B8, C8], then∫

�

|d0 | 6
(∫
�

d{1
)1/2 (∫

�

d{2
)1/2

. (∗∗)

The class of � such that (∗∗) holds is closed under countable increasing unions and decreasing
intersections. Furthermore, the class of finite disjoint unions of intervals (B, C] is an algebra. By
Halmos’ monotone class lemma, it follows that (∗∗) holds for all � ∈ ℬ(R+). Therefore, (∗) holds
when ℎ and : are multiples of the same indicator, and thus when they are simple functions. We may
take monotone increasing limits of simple functions to get the full result. J

Proposition 4.18 (Kunita–Watanabe). If " and # are continuous local martingales and � and  
are measurable processes, then almost surely,∫ ∞

0
|�B | · | B |

��d〈", #〉B�� 6 (∫ ∞

0
�2
B d〈", "〉B

)1/2 (∫ ∞

0
 2
B d〈#, #〉B

)1/2
.

Proof. For B = C0 < C1 · · · < C? = C, we have��� ?∑
8=1
("C8 − "C8−1) (#C8 − #C8−1)

��� 6 ( ?∑
8=1
("C8 − "C8−1)2

)1/2 ( ?∑
8=1
(#C8 − #C8−1)2

)1/2
.

Taking a limit and using Theorem 4.9 and Proposition 4.15, we get almost surely��〈", #〉C − 〈", #〉B�� 6 (
〈", "〉C − 〈", "〉B

)1/2 (〈#, #〉C − 〈#, #〉B)1/2
.

By taking B, C ∈ Q+ and using continuity, we obtain that this holds almost surely simultaneously in
0 6 B < C < ∞. The result now follows from the lemma. J
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4.5. Continuous Semimartingales

Definition 4.19. A process - is a continuous semimartingale if there is a continuous local
martingale " and a finite-variation process � such that

∀C > 0 -C = "C + �C .

By )ℎ4>A4< 4.8, the decomposition - = " + � is unique up to indistinguishability; it is called the
canonical decomposition of - .

Definition 4.20. Let - = "+� and -′ = "′+�′ be the canonical decompositions of two continuous
semimartingales, - and -′. The bracket of - and -′ is

〈-, -′〉 B 〈", "′〉.

Proposition 4.21. Let - and -′ be continuous semimartingales. Given an increasing sequence of
subdivisions 0 = C=0 < C

=
1 < · · · < C

=
?=
= C of [0, C] whose mesh tends to 0, we have

lim
=→∞

?=∑
8=1
(-C=

8
− -C=

8−1
) (-′C=

8
− -′C=

8−1
) = 〈-, -′〉C in probability.

Proof. We have

(-C=
8
− -C=

8−1
) (-′C=

8
− -′C=

8−1
) = ("C=

8
− "C=

8−1
) ("′C=

8
− "′C=

8−1
) + terms involving � or �′.

The sums of the first terms converge in probability to 〈", "′〉 = 〈-, -′〉 by Proposition 4.15(iii).
The other terms have sums going to 0 almost surely by continuity; e.g.,��� ?=∑

8=1
("C=

8
− "C=

8−1
) (�′C=

8
− �′C=

8−1
)
��� 6 max

1686?=
|"C=

8
− "C=

8−1
|︸                  ︷︷                  ︸

→ 0

·
∫ C

0
|d�′B |. J
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Chapter 5

Stochastic Integration

This chapter is the heart of the course.

5.1. The Construction of Stochastic Integrals

We fix a complete filtered probability space.
We construct stochastic integrals in stages. In Section 5.1.1, we begin with the analogue of step

functions and proceed to integrate with respect to !2-bounded martingales. We’ll find that all the
hard work was done earlier, especially Theorem 4.9. In Section 5.1.2, we extend to integrate with
respect to continuous local martingales and in Section 5.1.3, to continuous semimartingales; these
extensions will be easy. In Section 5.1.4, we prove some limit theorems about stochastic integrals.

5.1.1. Stochastic Integrals for Martingales Bounded in !2

Every !2-boundedmartingale is closed, so one can think of the space of !2-boundedmartingales
as a subspace of !2(Ω). However, they are certainly not necessarily all continuous. Thus, we define
H2 to be the space of continuous !2-bounded martingales " with "0 = 0 and identify it with a
subspace of !2(Ω), so for ", # ∈ H2, we have

(", #)H2 := ("∞, #∞)!2 (Ω) = E["∞#∞] = E
[
〈", #〉∞

]
by Proposition 4.15(v) and the fact that "0 = #0 = 0.

This subspace H2 is closed:

Proposition 5.1. The space H2 is a Hilbert space.

Proof. Suppose that ("=)=∈N is a Cauchy sequence in H2, i.e., ("=
∞)=∈N is Cauchy in !2(Ω). By

Doob’s !2-inequality, E
[
supC>0 ("=

C − "<
C )2

]
6 4 E

[
("=
∞ − "<

∞)2
]
, so by Lemma C in Chapter 4

for the proof of Theorem 4.9, there exists a subsequence (=: ):∈N and a . with continuous sample
paths such that almost surely,

∀C > 0 "
=:
C → .C .

Also, there exists / ∈ !2(Ω) such that "=
∞ → / in !2. This implies

"=
C = E["=

∞ | ℱC] → E[/ | ℱC],
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whence
∀C .C = E[/ | ℱC] .

Therefore, . is an !2-bounded continuous martingale. Since "=
∞ → / in !2, we get that . is the

limit of "= in H2. J

Recall that� denotes the progressive f-field. For " ∈ H2, write 〈", "〉 P for the measure
on� given by

� ↦→ E
[∫ ∞

0
1� (l, B) d〈", "〉B

]
;

the total mass of 〈", "〉 P is E
[
〈", "〉∞

]
= ‖" ‖2

H2 . Then

!2(") B !2 (Ω × R+,�, 〈", "〉 P)
=

{
� ∈ � ; E

[∫ ∞

0
�2
B d〈", "〉B

]
< ∞

}
.

This has the usual inner product

(�,  )!2 (") = E
[∫ ∞

0
�B B d〈", "〉B

]
.

Note that ∫ ∞

0
�B B d〈", "〉B ∈ !1(Ω,P)

for �,  ∈ !2(").
The analogue of step function is:

Definition 5.2. An elementary process is a process � of the form

�B (l) =
?−1∑
8=0

�(8) (l)1(C8 ,C8+1] (B)

for 0 = C0 < C1 < · · · < C? and �(8) ∈ !∞(ℱC8 ,P). We denote this class byℰ.

It is straightforward to check that ℰ ⊆ �; for this, we could even use 1[C8 ,C8+1) . The stricter
measurability requirement from using (C8, C8+1] makesℰ a smaller class. We haveℰ ⊆ !2(") for
" ∈ H2. In fact,ℰ is dense in !2("):
Proposition 5.3. ∀" ∈ H2

ℰ is dense in !2(").

Proof. This is equivalent to showing that ℰ⊥ = {0}. Let  ⊥ ℰ. Then for 0 6 B < C and
� ∈ !∞(ℱB), we have

0 =
(
 , � ⊗ 1(B,C]

)
!2 (") = E

[
�

∫ C

B

 D d〈", "〉D
]
= E

[
� (-C − -B)

]
,

where -C B
∫ C

0  D d〈", "〉D ∈ !1(Ω,P). That is, by Proposition 4.5, - =  · 〈", "〉 is a
finite-variation process that is also a martingale, whence by Theorem 4.8, - = 0. This means almost
surely,  = 0 d〈", "〉-a.e., i.e.,  = 0 in !2("). J
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Exercise (due 12/7). Prove that if " is a bounded continuous martingale and � is a bounded
increasing process, then

E["∞�∞] = E
[∫ ∞

0
"C d�C

]
.

If " ∈ H2 and ) is a stopping time, then

〈") , ") 〉∞ = 〈", "〉)∞ = 〈", "〉) 6 〈", "〉∞,

so ") ∈ H2.

Exercise (due 12/7). Derive ") ∈ H2 from the optional stopping theorem (Theorem 3.22) instead.

Let 1[0,)] denote the process (l, C) ↦→ 1[0,) (l)] (C). If ) is a stopping time, then 1[0,)] is
adapted and left-continuous, so progressive by Proposition 3.4. Therefore, if � ∈ !2("), also
1[0,)]� ∈ !2(").

Here is our first definition of stochastic integral.

Theorem 5.4. Let " ∈ H2. Given an � ∈ ℰ as in Definition 5.2, the formula

(� · ")C B
?−1∑
8=0

�(8)
(
"C8+1∧C − "C8∧C

)
defines a process � · " ∈ H2. The map � ↦→ � · " fromℰ → H2 extends uniquely to a linear
isometry !2(") → H2, also denoted � ↦→ � ·" . For all � ∈ !2("), � ·" is the unique element
of H2 such that

∀# ∈ H2 〈� · ", #〉 = � · 〈", #〉. (5.2)

(Recall
(
� · 〈", #〉

)
C
=

∫ C

0 �B d〈", #〉B.) If ) is a stopping time, then

∀� ∈ !2(") (1[0,)]�) · " = (� · ")) = � · ") . (5.3)

We call � · " the stochastic integral of � with respect to " and write

(� · ")C =:
∫ C

0
�B d"B .

Note that the two uses of · in Eq. (5.2) are unambiguous because every finite-variationmartingale
is 0 by Theorem 4.8.

More abstractly, one could alternatively use Eq. (5.2) to define � ·" as follows: Given " ∈ H2

and � ∈ !2("), the map

H2 3 # ↦→ E
[ (
� · 〈", #〉

)
∞
]
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satisfies ��E[ (
� · 〈", #〉

)
∞
] �� 6 E

���∫ ∞

0
�B d〈", #〉B

��� 6 E
[∫ ∞

0
|�B | |d〈", #〉B |

]
6 E

[(∫ ∞

0
�2
B d〈", "〉B

)1/2
·
(∫ ∞

0
d〈#, #〉B

)1/2]

6 E
[∫ ∞

0
�2
B d〈", "〉B

]1/2
E
[∫ ∞

0
d〈#, #〉B

]1/2

= ‖�‖!2 (") · ‖# ‖H2 ,

[Kunita–Watanabe]

[Cauchy–Schwarz inequality]

(∗)

and thus is a continuous linear functional on H2. Hence, there is a unique � · " ∈ H2 such that

E
[ (
� · 〈", #〉

)
∞
]
= (� · ", #)H2 = E

[
〈� · ", #〉∞

]
.

One can then deduce Eq. (5.2) and everything else.
In fact, we should have verified � ∈ !1 (��d〈", #〉��) almost surely and(

� · 〈", #〉
)
∞ ∈ !

1(P),

but this follows as in (∗), starting instead with

E
[∫ ∞

0
|�B | · |d〈", #〉B |

]
.

Note that a special case of (∗), with � = 1, is

E
[
|〈", #〉∞ |

]
6 ‖" ‖H2 · ‖# ‖H2 . (∗∗)

Proof of Theorem 5.4. It is easy to see that the definition of � · " for � ∈ ℰ does not depend on
its representation as in Definition 5.2. It follows that � ↦→ � · " is linear onℰ. To see that the map
is an isometry into H2, write

" (8) B �(8) (" C8+1 − " C8 ),

so that � ·" =
∑?−1

8=0 " (8) . We saw in the proof of Theorem 4.9 that " (8) is a continuous martingale,
so � · " ∈ H2. By Proposition 4.15(iv), we have

∀B, C > 0 〈" B, " C〉 = 〈", "〉B∧C .

Thus, 〈" (8) , " ( 9)〉 = 0 for 8 ≠ 9 and

〈" (8) , " (8)〉 = �2
(8)

(
〈", "〉C8+1 − 〈", "〉C8

)
.

Therefore,

〈� · ", � · "〉 =
?−1∑
8=0

�2
(8)

(
〈", "〉C8+1 − 〈", "〉C8

)
=

∫ •

0
�2
B d〈", "〉B
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(i.e., 〈� · ", � · "〉C =
∫ C

0 �
2
B d〈", "〉B). In particular,

‖� · " ‖2
H2 = E

[
〈� · ", � · "〉∞

]
= E

[∫ ∞

0
�2
B d〈", "〉B

]
= ‖�‖2

!2 (") ,

as desired.
By Proposition 5.3,ℰ is dense in !2("), so � ↦→ � · " has a unique continuous extension to

a map from !2(") to H2.
If � ∈ ℰ, we have, similarly to above,

〈� · ", #〉 =
?−1∑
8=1
〈" (8) , #〉 =

?−1∑
8=0

�(8)
(
〈", #〉C8+1 − 〈", #〉C8

)
=

∫ •

0
�B d〈", #〉B = � · 〈", #〉,

i.e., Eq. (5.2) holds for � ∈ ℰ. Now, Eq. (∗) shows that � ↦→
(
� · 〈", #〉

)
∞ is continuous as a

map from H2 to !1(P) and Eq. (∗∗) that - ↦→ 〈-, #〉∞ is continuous from H2 to !1(P). Since
� ↦→ � · " is an isometry from !2(") → H2, it follows that � ↦→ 〈� · ", #〉∞ is continuous
from !2(") → !1(P). Therefore,

〈� · ", #〉∞ =
(
� · 〈", #〉

)
∞

for all � ∈ !2("), # ∈ H2. Replace # by # C to obtain Eq. (5.2) in general.
We’ve already seen that something weaker than Eq. (5.2) characterizes � · " among elements

of H2.
To see Eq. (5.3), let # ∈ H2 and note that

〈
(� · ")) , #

〉
= 〈� · ", #〉) =

(
� · 〈", #〉

)) = 1[0,)]� · 〈", #〉 =
〈
(1[0,)]�) · ", #

〉
,

[Proposition 4.15(iv)]

[Eq. (5.2)]

[deterministic]

[Eq. (5.2)]

whence by the uniqueness of Eq. (5.2),
(
1[0,)]�

)
· " = (� · ")) . Similarly,

〈� · ") , #〉 = � · 〈") , #〉 = � · 〈", #〉) = 1[0,)]� · 〈", #〉,

[Eq. (5.2)]

so (� · ")) = � · ") . J

We could rewrite Eq. (5.2) as〈∫ •

0
�B d"B, #

〉
C
=

∫ C

0
�B d〈", #〉B .

If " ∈ H2 and � ∈ !2("), then by Eq. (5.2),

〈� · ", � · "〉 = � · 〈", � · "〉 = � · 〈� · ", "〉 = �2 · 〈", "〉. (5.4)

If also # ∈ H2 and  ∈ !2(#), then similarly we obtain

〈� · ",  · #〉 = � · 〈", #〉.
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Proposition 5.5. Let " ∈ H2, � ∈ !2("), and  be progressive. Then

 � ∈ !2(") ⇐⇒  ∈ !2(� · "),
in which case

( �) · " =  · (� · ").
Proof. By Eq. (5.4), we have

E
[ (
 2�2 · 〈", "〉

)
∞
]
= E

[ (
 2 · 〈� · ", � · "〉

)
∞
]
,

which gives ‖ �‖!2 (") = ‖ ‖!2 (�·") . If this is finite, then for # ∈ H2, we have〈
( �) · ", #

〉
=  � · 〈", #〉 =  ·

(
� · 〈", #〉

)
=  · 〈� · ", #〉 =

〈
 · (� · "), #

〉
,

[Eq. (5.2)] [see below]

[Eq. (5.2)] [Eq. (5.2)]
where the second equality is justified as follows: by the Kunita–Watanabe inequality,∫ ∞

0
�2 ��d〈", "〉�� < ∞ and

∫ ∞

0
 2�2 ��d〈", "〉�� < ∞

implies

∀C
∫ C

0
|�B |

��d〈", #〉B�� < ∞ and
∫ C

0
| B�B |

��d〈", #〉B�� < ∞.
By the uniqueness part of Eq. (5.2), we conclude that ( �) · " =  · (� · "). J

Recall that for ", # ∈ H2, (", #)H2 = E["∞#∞] = E[〈", #〉∞]. By considering " C and
# C , this implies that E["C#C] = E[〈", #〉C] for C ∈ [0,∞].

Suppose that ", # ∈ H2, � ∈ !2("), and  ∈ !2(#). Since � · " ,  · # ∈ H2, we get

∀C ∈ [0,∞] E
[∫ C

0
�B d"B

]
= E

[
(� · ")C

]
= E

[
(� · ")0

]
= 0

[martingale]

(5.6)

and

E
[∫ C

0
�B d"B ·

∫ C

0
 B d#B

]
= E

[
(� · ")C ( · #)C

]
= E

[
〈� · ",  · #〉C

]
= E

[ (
� · 〈", #〉

)
C

]
= E

[∫ C

0
�B B d〈", #〉B

]
.

In particular,

E
[(∫ C

0
�B d"B

)2]
= E

[∫ C

0
�2
B d〈", "〉B

]
; (5.8)

this equality of norms is referred to as the Itô isometry.
Note that we have defined

∫ C

0 �B d�B for progressive � with
∫ ∞
0 E[�2

B ] dB < ∞ by stopping �
at C. If � is deterministic, this agrees with the Wiener integral almost surely: check first for step
functions. Thus, when � is deterministic, � · � is a Wiener-integral process.
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Exercise (due 1/18). Exercise 5.25; assume supC,l
���C (l)�� < ∞.

We may rewrite the martingale condition for � · " as follows:

0 6 B < C 6 ∞ =⇒ E
[∫ C

0
�A d"A

��� ℱB

]
=

∫ B

0
�A d"A , (5.9)

or, with
∫ C

B
�A d"A B

∫ C

0 �A d"A −
∫ B

0 �A d"A ,

E
[∫ C

B

�A d"A

��� ℱB

]
= 0.

5.1.2. Stochastic Integrals for Local Martingales

The stopping time identities Eq. (5.3) will allow us to extend stochastic integrals to continuous
local martingales. If " is a continuous local martingale, we again write !2(") for the set of
progressive processes � in !2 (〈", "〉 P)

. We write !2
loc(") for the set of the progressive � such

that
a.s. ∀C > 0

∫ C

0
�2
B d〈", "〉B < ∞.

Theorem 5.6. Let " be a continuous local martingale. If � ∈ !2
loc("), then there exists a unique

continuous local martingale with initial value 0, denoted � · " , such that for all continuous local
martingales # ,

〈� · ", #〉 = � · 〈", #〉. (5.10)

If ) is a stopping time, then for all � ∈ !2
loc("),(

1[0,)]� · "
)
= (� · ")) = � · ") . (5.11)

If � ∈ !2
loc(") and  is progressive, then  ∈ !2

loc(� · ") if and only if � ∈ !2
loc("), in which

case
 · (� · ") = ( �) · ". (5.12)

If " ∈ H2 and � ∈ !2("), then this definition of � · " agrees with that of Theorem 5.4.

Proof. Since 〈" − "0, #〉 = 〈", #〉 for every continuous local martingale # , we may set
� · " B � · (" − "0) (to be defined) and assume that "0 = 0. Also, we may take � to be 0 on
the negligible set where for some C > 0,

∫ C

0 �
2
B d〈", "〉B = ∞.

The idea is to localize and put together the resulting definitions.
For = > 1, let

)= B inf
{
C > 0 ;

∫ C

0
(1 + �2

B ) d〈", "〉B > =
}
.

This gives a sequence of stopping times that increase to infinity. Since

∀C > 0 〈")= , ")=〉C = 〈", "〉C∧)= 6 =,

[Proposition 4.11]
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Theorem 4.13 tells us that ")= ∈ H2. Also,∫ ∞

0
�2
B d〈")= , ")=〉B =

∫ )=

0
�2
B d〈", "〉B 6 =,

so � ∈ !2(")=). Therefore, Theorem 5.4 defines � · ")= . These are consistent: if < > =, then

(� · ")<))= = � · (")<))= = � · ")= .

[Eq. (5.3)]

Thus, there exists a unique process, � · " , such that ∀= (� · "))= = � · ")= . Since � · ")= has
continuous sample paths, so does � · ". Since (� · ")C = lim=→∞ (� · ")=)C , we get that � · "
is adapted. Since (� · "))= is a martingale (in H2, even), we get that � · " is a continuous local
martingale.

Now we verify the properties (5.10)–(5.12).
To prove Eq. (5.10), we may assume that #0 = 0. For = > 1, write

) ′= = inf
{
C > 0 ; |#C | > =

}
, (= B )= ∧ ) ′=.

As before, #) ′= ∈ H2, so

〈� · ", #〉(= =
(
〈� · ", #〉)=

)) ′= =
〈
(� · "))= , #

〉) ′= =
〈
(� · "))= , #) ′=

〉
= 〈� · ")= , #)

′
=〉 = � · 〈")= , #)

′
=〉 = � · 〈", #〉(=

=
(
� · 〈", #〉

)(= .
[Proposition 4.15(iv)]

[definition] [Eq. (5.2)] [Proposition 4.15(iv)]

[deterministic]

Since (= → ∞, this gives 〈� · ", #〉 = � · 〈", #〉, as desired. If - is also a continuous
local martingale with -0 = 0 and 〈-, #〉 = � · 〈", #〉 for all continuous local martingales # , then
〈� · " − -, #〉 = 0, so choosing # B � · " − - , we get - = � · " from Proposition 4.12.

The proof of Eq. (5.11) is like that of Eq. (5.3), and proof of Eq. (5.12) is like that of
Proposition 5.5.

If " ∈ H2 and � ∈ !2("), then 〈� ·", � ·"〉 = � · 〈", � ·"〉 = �2 · 〈", "〉 by two uses
of Eq. (5.10). This shows that � · " ∈ H2, so the characteristic property Eq. (5.12) (which holds
by Eq. (5.10)) shows that the definitions agree. J

We again write ∫ C

0
�B d"B B (� · ")C .

We can then rewrite Eq. (5.10) as〈∫ •

0
�B d"B, #•

〉
C
=

∫ C

0
�B d〈", #〉B .
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If � ∈ !2
loc("), 0 6 C 6 ∞, and E

[∫ C

0 �
2
B d〈", "〉B

]
< ∞, then (� · ")C ∈ H2 by Theorem 4.13,

so we have the analogues of Eqs. (5.6), (5.8) and (5.9):

E
[∫ C

0
�B d"B

]
= 0,

E
[(∫ C

0
�B d"B

)2]
= E

[∫ C

0
�2
B d〈", "〉B

]
.

In particular, if � ∈ !2(") (the case C = ∞), then � · " ∈ H2 (even though " need not be in H2).

Exercise (due 1/18). Give an example of a continuous local martingale" and a process� ∈ !2
loc(")

such that

E
[∫ 1

0
�B d"B

]
≠ 0 and E

[( ∫ 1

0
�B d"B

)2]
≠ E

[∫ 1

0
�2
B d〈", "〉B

]
.

Hint: use " that is not a true martingale.

Exercise (due 1/18). Exercise 5.25 (in general).

5.1.3. Stochastic Integrals for Semimartingales

We call a progressive process � locally bounded if

a.s. ∀C > 0 sup
06B6C
|�B | < ∞.

This is equivalent to the existence of stopping times )= ↑ ∞ such that 1[0,)=]� is bounded, i.e., that
there exists a negligible set
 such that

sup
l∉
, C>0

��1[0,)= (l)] (C)�C (l)�� < ∞.
Note that if � is adapted and continuous, then � is locally bounded.

The assumption that � is locally bounded is convenient, because then for each finite-variation
process + ,

a.s. C > 0
∫ C

0
|�B | |d+B | < ∞,

i.e., � ∈ !1
loc

(
|d+ |

)
, and for each continuous local martingale, " , we have � ∈ !2

loc(").
Definition 5.7. Let - = " + + be the canonical decomposition of a continuous semimartingale,
- , and � be locally bounded. We define the stochastic integral � · - to be the continuous
semimartingale with canonical decomposition

� · - B � · " + � · +.

We also write
∫ C

0 �B d-B B (� · -)C .

Remark. We could have done the same as long as � ∈ !2
loc(") ∩ !

1
loc

(
|d+ |

)
.
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The following properties are evident:
(i) (�, -) ↦→ � · - is bilinear.
(ii) If � and  are locally bounded, then � · ( · -) = (� ) · - . Rewritten: if .C =

∫ C

0  B d-B,
then

∫ C

0 �B d.B =
∫ C

0 �B B d-B.
(iii) For all stopping times ) , (� · -)) = (1[0,)]�) · - = � · -) .
(iv) If - is a continuous local martingale, then so is � · -; if - is a finite-variation process, then

so is � · - .
The next property is less evident:
(v) If �B (l) =

∑?−1
8=0 �(8) (l)1(C8 ,C8+1] (B), 0 = C0 < C1 < · · · < C?, and �(8) ∈ ℱC8 is locally

bounded, then

(� · -)C =
?−1∑
8=1

�(8) (-C8+1∧C − -C8∧C).

This is clear if " = 0, so it suffices to prove it when + = 0. If � is bounded and " ∈ H2,
then this is the definition of � · " . In general, we may assume "0 = 0; let

)= B inf
{
C > 0 ; |�C | > =

}
= min

{
C8 ; |�(8) | > =

}
and

(= B inf
{
C > 0 ; 〈", "〉B > =

}
.

Note that

1[0,)=] (B)�B =
?−1∑
8=0

�
(=)
8

1(C8 ,C8+1] (B),

where � (=)(8) B 1[)=>C8]�(8) ∈ ℱC8 . Therefore,

(� · ")C∧)=∧(= = (1[0,)=]� · "(=)C =
?−1∑
8=0

�
(=)
(8) ("

(=
C8+1∧C − "

(=
C8∧C).

[Eq. (5.11)] [definition]

Now let =→∞.
Exercise. Show that if / ∈ ℱ0 and - is a continuous semimartingale, then � · - = /- , where
�C B / for all C.
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5.1.4. Convergence of Stochastic Integrals

Proposition 5.8 (Dominated Convergence Theorem). Let - = "++ be the canonical decomposition
of a continuous semimartingale and C > 0. Suppose that �, � (1) , � (2) , . . . are locally bounded,
progressive processes and that  is a nonnegative, progressive process such that almost surely,

(i) ∀B ∈ [0, C] lim=→∞ �
(=)
B = �B,

(ii) ∀B ∈ [0, C] ∀= > 1 |� (=)B | 6  B, and
(iii)

∫ C

0 ( B)
2 d〈", "〉B < ∞ and

∫ C

0  B |d+B | < ∞.
Then

lim
=→∞

∫ C

0
�
(=)
B d-B =

∫ C

0
�B d-B in probability.

That� and� (=) be locally bounded can beweakened. In (i) and (ii), we canweaken “∀B ∈ [0, C]”
to “∀B ∈ [0, C] outside a set of d〈", "〉-measure 0 and of |d+ |-measure 0”; this will be clear from
the proof. Part (iii) is automatic if  is locally bounded.

Proof. The Lebesgue dominated convergence theorem gives
∫ C

0 �
(=)
B d+B →

∫ C

0 �B d+B where (i)–(iii)
hold, hence almost surely. It remains to show that∫ C

0
�
(=)
B d"B

P−→
∫ C

0
�B d"B .

For ? > 1, let

)? B inf
{
A ∈ [0, C] ;

∫ A

0
( B)2 d〈", "〉B > ?

}
∧ C.

Then almost surely, by (iii), for all large ?, )? = C. Now,

E
[∫ )?

0
(� (=)B − �B)2 d〈", "〉B

]
6 E

[∫ )?

0
(2 B)2 d〈", "〉B

]
6 4? < ∞,

whence

E
[( (
(� (=) − �) · "

)
)?

)2]
= E

[∫ )?

0
(� (=)B − �B)2 d〈", "〉B

]
→ 0

as = → ∞ by Lebesgue’s dominated convergence theorem applied to 〈", "〉)? P. Because
P[)? = C] → 1 as ? →∞, we get the result. J

We can deduce the following Riemann-integral type of result:

Proposition 5.9. Let - be a continuous semimartingale and � be a continuous adapted process. If
C > 0 and 0 = C=0 < C

=
1 < · · · < C

=
?=
= C is any sequence of subdivisions with mesh going to 0, then

lim
=→∞

?=−1∑
8=0

�C=
8
(-C=

8+1
− -C=

8
) =

∫ C

0
�B d-B in probability.
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Proof. Note that the sum on the left-hand side equals
∫ C

0 �
(=)
B d-B for the step function progressive

process

�
(=)
B B

?=−1∑
8=0

�C=
8
1(C=

8
,C=
8+1] (B) + �01{0} (B)

by property (v) in Section 5.1.3. Since B B max06A6B |�A | is locally bounded, the result follows. J

It is crucial that the Riemann sum used the left-hand endpoints. For example, let � = - . Then

?=−1∑
8=0

-C=
8+1

(
-C=

8+1
− -C=

8

)
=

?=−1∑
8=0

-C=
8
(-C=

8+1
− -C=

8
) +

?=−1∑
8=0

(
-C=

8+1
− -C=

8

)2
.

∫ C

0
-B d-B

Proposition 5.9

〈-, -〉C

Proposition 4.21
if subdivisions are increasing

Thus, we get a different limit when we use the right-hand endpoints unless the martingale part of - is
constant on [0, C]. On the other hand, this calculation is useful: if we add to it that of Proposition 5.9,
we get

(-C)2 − (-0)2 = 2
∫ C

0
-B d-B + 〈-, -〉C .

This can also be derived from Itô’s formula (in the next section).

Exercise (due 1/25). Show that if - is a continuous semimartingale, C > 0, and 0 = C=0 < · · · < C
=
?=
= C

is any sequence of subdivisions of [0, C] with mesh going to 0, then

lim
=→∞

?=∑
8=1
(-C=

8
− -C=

8−1
)2 = 〈-, -〉C in probability.

5.2. Itô’s Formula

This is analogous to the fundamental theorem of calculus: in order to calculate an integral, it
helps to know how to differentiate. However, there is no stochastic derivative. The formula also
shows that the class of continuous semimartingales is closed under compositions with �2 functions.

Theorem 5.10 (Itô’s Formula). Let - be a continuous semimartingale and � ∈ �2(R) (i.e., twice
continuously differentiable). Then

∀C > 0 � (-C) = � (-0) +
∫ C

0
�′(-B) d-B +

1
2

∫ C

0
�′′(-B) d〈-, -〉B.

[antiderivative] [value at 0] [integrand] [derivative]
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We may also write this as

� (-) = � (-0) + �′(-) · - + 1
2�
′′(-) · 〈-, -〉,

[CLM+FV] [FV]

showing that � (-) is a continuous semimartingale and giving its canonical decomposition. More
generally, if -1, . . . , - ? are continuous semimartingales and � ∈ �2(R?), then

∀C > 0 � (-1
C , . . . , -

?
C ) = � (-1

0 , . . . , -
?

0 ) +
?∑
8=1

∫ C

0
�8 (-1

B , . . . , -
?
B ) d- 8B

+ 1
2

?∑
8, 9=1

∫ C

0
�8 9 (-1

B , . . . , -
?
B ) d〈- 8, - 9 〉B,

which we may write for - = (-1, . . . , - ?) as

� (-) = � (-0) + ∇� (-) · - +
1
2
〈
-,

(
∇2� (-)

)
· -

〉
,

where

� · - B
( ?∑
:=1

� 9 : · - :
)@
9=1

and 〈-,.〉 B
?∑

9 ,:=1
〈- 9 , . :〉

when � is a (@ × ?)-matrix-valued process and . is a ?-dimensional process.

Lemma. If .=
P−→ 0 and /=

P−→ / , then .=/=
P−→ 0.

This lemma is a special case of Slutsky’s theorem, Exercise 25.7 in Billingsley’s book,
Probability and Measure.

Proof. Let Y > 0. Choose  such that

P
[
|/ | >  

]
< Y.

Choose # such that

P
[
|/= − / | > 1

]
< Y and P

[
|.= | > Y/( + 1)

]
< Y

for = > # . Then for = > # ,

P
[
|.=/= | > Y

]
6 P

[
|.= | > Y

 +1
]
+ P

[
|/= | >  + 1

]
< Y + P

[
|/ | >  

]
+ P

[
|/= − / | > 1

]
< 3Y. J

Lemma. If - is a continuous semimartingale and 0 = C=0 < · · · < C=?= = C form an increasing
sequence of subdivisions of [0, C] whose mesh goes to zero, then there exists a subsequence (=: ):>1
such that almost surely,

?=:−1∑
8=0
(-

C
=:
8+1
− -

C
=:
8
)2X

C
=:
8
⇒ 1[0,C] d〈-, -〉

as : →∞.
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Proof. Write `= B
∑?=−1

8=0 (-C=8+1 − -C=8 )
2XC=

8
. Let � B {C=

8
; = > 1, 0 6 8 6 ?=}. We have

by Proposition 4.21 that

`=
(
[0, A]

) P−→ 〈-, -〉A

as =→∞ for each A ∈ �. Choose (=: ) such that this converges almost surely for all A ∈ �. Then it
also converges for all A ∈ [0, C]. J

Proof of Theorem 5.10. Suppose first ? = 1. Let (C=
8
)?=
8=0 be an increasing sequence of subdivisions

of [0, C] with mesh going to 0. Then

� (-C) = � (-0) +
?=−1∑
8=0

(
� (-C=

8+1
) − � (-C=

8
)
)

= � (-0) +
?=−1∑
8=0

(
�′(-C=

8
) (-C=

8+1
− -C=

8
) + 1

2
�′′(b=,8) (-C=

8+1
− -C=

8
)2

)
for some b=,8 between -C=

8
and -C=

8+1
. By Proposition 5.9,

?=−1∑
8=0

�′(-C=
8
) (-C=

8+1
− -C=

8
) P−→

∫ C

0
�′(-B) d-B .

Since max8
���′′(b=,8) − �′′(-C=

8
)
��→ 0 as =→∞ (because �′′ ◦ - is uniformly continuous on [0, C]

and the mesh goes to 0), the first lemma in combination with Proposition 4.21 shows that it suffices
to prove that

?=−1∑
8=0

�′′(-C=
8
) (-C=

8+1
− -C=

8
)2 P−→

∫ C

0
�′′(-B) d〈-, -〉B .

In fact, we prove this holds almost surely along a subsequence [which could be taken to be a
subsequence of any given sequence, so the claim of the display does hold]. Note that the left-hand
side equals ∫ C

0
�′′(-B) d`= (B),

where `= is as in the proof of the second lemma. Since �′′ ◦ - is continuous on [0, C], the result
follows from the lemma (with weak convergence applied to �′′ ◦ -).

For ? > 1, we consider � on the broken line from -0 to -C that is linear between -C=
8
and -C=

8+1
.

We may again choose b=,8 on that broken line between -C=
8
and -C=

8+1
to write

� (-C) = � (-0) +
?=−1∑
8=0
∇� (-C=

8
) · (-C=

8+1
− -C=

8
)

+ 1
2

?=−1∑
8=0
(-C=

8+1
− -C=

8
) · ∇2� (b=,8) (-C=

8+1
− -C=

8
).

[dot product]

[dot product]
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Proposition 5.9 shows that the first sum converges to
∫ C

0 ∇� (-B) · d-B in probability. We can apply
the second lemma to - 9 , -ℓ and - 9 + -ℓ to get a subsequence (=: ) such that almost surely,

?=:−1∑
8=0

(
-
9

C
=:
8+1
− - 9

C
=:
8

) (
- ;
C
=:
8+1
− - ;

C
=:
8

)
X
C
=:
8
⇒ 1[0,C]d〈- 9 , -ℓ〉,

and this completes the proof. J

Exercise (due 1/25). Exercise 5.26.

If we use � (G, H) B GH, then we get a formula for integration by parts:

-C.C = -0.0 +
∫ C

0
-B d.B +

∫ C

0
.B d-B + 〈-,.〉C .

If we use . = - , then

-2
C = -

2
0 + 2

∫ C

0
-B d-B + 〈-, -〉C . (∗)

When - is a continuous localmartingale, we get the formula promised during the proof of Theorem4.9
and seen at the end of Section 5.1.3:

-2 − 〈-, -〉 = -2
0 + 2

∫ •

0
-B d-B .

Also, Eq. (∗) implies the integration by parts formula by applying Eq. (∗) to - , . , and - +. . In fact,
we can prove Itô’s formula from integration by parts (and therefore from Eq. (∗)):

Exercise (due 1/25). (1) Use integration by parts to show that if Itô’s formula holds for some
� ∈ �2(R?), then it also holds for all � of the form

� (G1, . . . , G?) = G8� (G1, . . . , G?).

(2) Deduce that Itô’s formula holds for all polynomials, �.
(3) Show that if  ⊆ R? is compact, then for each � ∈ �2(R?), there exist polynomials %= such

that

lim
=→∞

(
‖� − %=‖� ( ) +

?∑
8=1
‖�8 − (%=)8‖� ( ) +

?∑
8, 9=1
‖�8 9 − (%=)8, 9 ‖� ( )

)
= 0.

(4) Deduce that if - takes values only in  , then Itô’s formula holds for all � ∈ �2(R?).
(5) By using stopping times, deduce the full Itô’s formula.

Exercise. Show that if - and . are continuous semimartingales, then 〈-., -.〉 = -2 · 〈.,.〉 +
2(-. ) · 〈., -〉 + .2 · 〈-, -〉.
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If � is a 3-dimensional Brownian motion, then the components of � − �0 are independent,
whence 〈�8, � 9 〉 = 0 for 8 ≠ 9 , and Itô’s formula becomes

� (�C) = � (�0) +
∫ C

0
∇� (�B) · d�B +

1
2

∫ C

0
Δ� (�B) dB.

If � ∈ �2(R+ × R?) instead, then we get

� (C, �C) = � (0, �0) +
∫ C

0
∇� (B, �B) · d�B +

∫ C

0

(m�
mC
+ 1

2
Δ�

)
(B, �B) dB.

[gradient for
space variables]

[Laplacian for
space variables]

We actually do not need � to have a second derivative in C. Indeed, in general, if -1, . . . , - ?

are continuous semimartingales and - 8 (8 ∈ �) are finite-variation, then we need only �8 continuous
(1 6 8 6 ?) and �8, 9 continuous (8, 9 ∉ �).

Suppose* ⊆ R? is open and � ∈ �2(*). If -B ∈ * almost surely for 0 6 B < ) () random)
and -0 ∈  , where  is compact, then we may still apply Itô’s formula to � (-) ). To see this, let
 ⊆ +1 ⊆ +2 ⊆ · · · be open with += ⊆ * and

⋃
=+= = *. Let

)= B inf{C > 0 ; -C ∉ +=},

which is a stopping time by Proposition 3.9. By using a partition of unity, we may construct
�= ∈ �2(R?) such that �=�+= = ��+=. Itô’s formula applied to �= (-)=) involves only � and its
derivatives. Then we may let =→∞, noting that )= ∧ ) → ) .
Exercise (due 1/25). Exercise 5.28 (“to be determined” means you should give it).

A C-valued random process whose real and imaginary parts are continuous local martingales
is called a complex continuous local martingale.
Proposition 5.11. Let " be a continuous local martingale and � ∈ C. The (stochastic) exponential
process

ℰ(�") B exp
{
�" − 〈�", �"〉/2

}
is a complex continuous local martingale that satisfies

ℰ(�") = e�"0 + �ℰ(�") · ",

where
�ℰ(�") · " B

(
Re

(
�ℰ(�")

) )
· " + i

(
Im

(
�ℰ(�")

) )
· ".

We saw some examples in Section 3.3 that were true martingales.

Proof. The function
� (A, G) B exp

{
�G − �2A/2

}
satisfies the time-reversed heat equation, �1 + �22/2 = 0. Applying Itô’s formula to Re � and Im �

gives

�
(
〈", "〉, "

)
= � (0, "0) + �2

(
〈", "〉, "

)
· " + (�1 + �22/2)

(
〈", "〉, "

)
· 〈", "〉

= � (0, "0) + �2
(
〈", "〉, "

)
· " = e�"0 + �ℰ(�") · ". J
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Exercise (due 2/1). Let " be a continuous local martingale with "0 = 0.
(1) Show that

∀C, 0, 1 > 0 P
[
"C > 0, 〈", "〉C 6 1

]
6 exp

{
− 0

2

21

}
.

(2) Show that

∀0, 1 > 0 P
[
∃C > 0 "C > 0, 〈", "〉C 6 1

]
6 exp

{
− 0

2

21

}
.

5.3. A Few Consequences of Itô’s Formula

5.3.1. Lévy’s Characterization of Brownian Motion

We know that if � is a real Brownian motion, then 〈�, �〉C = C. In fact, � is the only continuous
local martingale with this property:

Theorem 5.12 (Lévy). Let - = (-1, . . . , -3) be an adapted continuous process. The following are
equivalent:

(i) - is a 3-dimensional (ℱC)-Brownian motion.
(ii) Each - 8 is a continuous local martingale and ∀8, 9 , C 〈- 8, - 9 〉C = X8 9 C.

Note this implies that if - is a Brownian motion and each coordinate is an (ℱC)-martingale, then
- is an (ℱC)-Brownian motion. Also, if � is progressive and ±1-valued and � is a 1-dimensional
(ℱC)-Brownian motion, then � · � is also an (ℱC)-Brownian motion, an extension of the symmetry
used in the reflection principle. More generally, if � = (�1, . . . , �3) is a 3-dimensional (ℱC)-
Brownian motion and � is a (3 × 3)-matrix-valued process whose entries are in !2

loc(�
1), then

� · � is an (ℱC)-Brownian motion iff � is a.s. an orthogonal matrix.

Proof. We have seen (i)⇒ (ii) in Chapter 4. Assume (ii). Then for all b ∈ R3 , the process

b · -C =
3∑
9=1

b 9-
9
C

is a continuous local martingale with

〈b · -, b · -〉C =
∑
9 ,:

b 9b: 〈- 9 , - :〉C = |b |2C.

Use � B i in Proposition 5.11 to conclude that
(
eib ·-C+|b |2C/2)

C
is a complex continuous local

martingale. Since it is bounded on every finite interval, it is a true complex martingale. That is, for
0 6 B < C < ∞,

E
[
eib ·-C+|b |2C/2

�� ℱB

]
= eib ·-B+|b |2B/2,

or
E
[
eib ·(-C−-B)

�� ℱB

]
= e−|b |

2 (C−B)/2.

This means that for all � ∈ ℱB, the %( · | �)-distribution of -C − -B is 

(
0, (C − B)�

)
, and thus

-C − -B ⫫ ℱB. Hence, all - 9 have independent increments with respect to (ℱC). Furthermore,
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9 ≠ : implies that - 9
C − -

9
B and - :C − - :B are independent given ℱB. It follows that - − -0 is

a 3-dimensional (ℱC)-Brownian motion started from 0; since - − -0 ⫫ ℱ0 and -0 ∈ ℱ0, also
- − -0 ⫫ -0, whence - is a 3-dimensional (ℱC)-Brownian motion. J

Exercise. Let - 8 be continuous square-integrable martingales for 1 6 8 6 3. Show that - :=
(-1, . . . , -3) is a 3-dimensional (ℱC)-Brownian motion if and only if for all 8, 9 , and B < C,
E
[
(- 8C − - 8B) (-

9
C − -

9
B )

�� ℱB

]
= X8 9 (C − B).

Exercise (due 2/1). Show that a continuous local martingale " is an (ℱC)-Brownian motion if and
only if for all 5 ∈ �2(R), (

5 ("C) −
1
2

∫ C

0
5 ′′("B) dB

)
C>0

is a continuous local martingale.

Exercise. Let � be a Brownian motion. Suppose that � ∈ !2
loc(�) is such that � · � is a Gaussian

process. Show that � · � is indistinguishable from a Wiener-integral process.

Exercise. Let � be a Brownian motion. Suppose that � is a measurable process (not necessarily
adapted) such that E

[
|� |

]
∈ !1

loc(R+). Show that the Brownian motion with random drift defined by
-C := �C +

∫ C

0 �B dB also satisfies -C = VC +
∫ C

0 E[�B | ℱ-
B ] dB for some (ℱ-

C )-Brownian motion, V.

5.3.2. Continuous Martingales as Time-Changed Brownian Motions

We have seen several quantitative similarities between continuous local martingales and
Brownian motion. This is not a coincidence. In fact, a continuous local martingale " is a Brownian
motion V with time process 〈", "〉:

"C = V〈","〉C .

This is similar in spirit to other ways of representing random walks or random variables via Brownian
motion. For example, for simple random walk on Z, we could let � be a Brownian motion from 0,
g1 B inf{C ; |�C | = 1}, g2 B inf{C > g1 ; |�C − �g1 | = 1}, etc. Then

(
�g=

)
=>0 has the law of simple

random walk with g0 B 0, and also has the nice property that E[g= − g=−1] = 1. If the steps have
mean 0 and finite variance more generally, this is a bit harder to achieve:

Exercise (due 2/8). (Skorokhod) Let � be a Brownian motion and / be a random variable with
E[/] = 0 and E

[
/2] < ∞. Let ? B E

[
/1[/>0]

]
.

(1) Show that
G − H
?

1(0,∞) (G)1(−∞,0] (H) d�/ (G) d�/ (H)

is a probability measure on R2, where �/ is the c.d.f. of / .
(2) Let (-,. ) have the law of (1), independent of �. Write )0 B inf{C ; �C = 0}. Show that

�)-∧). ∼ �/ and
E[)- ∧ ). ] = E

[
/2] .

(3) Show there exists a continuous closed martingale " on some filtered probability space such
that "0 = 0 and "∞ ∼ �/ .
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Skorokhod’s embedding can be done even with an
(
ℱ

�
C

)
-stopping time, but that is much harder;

see, e.g., Billingsley.
We need a strengthening of Proposition 4.12. For a function 5 : R+ → R, write

� 5 B
⋃{
[B, C] ; B < C, 5 �[B, C] is constant

}
for its intervals of constancy.

Lemma 5.14. Let " be a continuous local martingale. Then �" = �〈","〉 almost surely.

Proof. By continuity of " and 〈", "〉, this will follow from the statement that for 0 6 0 < 1,

P
[ (
[0, 1] ⊆ �"

)
4

(
[0, 1] ⊆ �〈","〉

) ]
= 0.

(This will also show that
[
�" = �〈","〉

]
is measurable.)

Fix 0 < 1. By Eq. (4.3) of Theorem 4.9, it follows directly that

P
[ (
[0, 1] ⊆ �"

)
\
(
[0, 1] ⊆ �〈","〉

) ]
= 0.

For the other direction, let # B " − "0. By exercise, we have

〈#, #〉 = 〈", "〉 − 〈", "〉0 .

Define )0 B inf
{
C > 0 ; 〈#, #〉C > 0

}
. Now, this may not be a stopping time. However, let us

change to the filtration (ℱC+)C , with respect to which )0 is a stopping time by Proposition 3.9(i).
In addition, # is still a continuous local martingale by Theorem 3.17. Since 〈#, #〉)0 = 0, it
follows from Proposition 4.12 that #)0 = 0 a.s. If [0, 1] ⊆ �〈","〉 (l), then )0(l) > 1, whence
∀C 6 1 #C (l) = 0 for a.e. such l. This proves the other direction. J

Exercise (due 2/1). Show that if - = " + + is the canonical decomposition of a continuous
semimartingale, then �- = �" ∩ �+ almost surely.

Exercise. Let - be a continuous semimartingale and � be a locally bounded, progressive process.
Show that almost surely,

�0
� ∪ �- ⊆ ��·- ,

where �0
�
B �� ∩ �−1 [{0}] .

Theorem 5.13 (Dambis–Dubins–Schwarz). If " is a continuous local martingale with 〈", "〉∞ =
∞ almost surely, then there exists a Brownian motion V such that

a.s. ∀C > 0 "C = V〈","〉C .

Remarks. (1) If 〈", "〉∞ < ∞ with positive probability, one can do the same, but one may need
a larger probability space to define V after time 〈", "〉∞. It follows that for every C > 0, up
to a set of probability 0, we have supB<C " (B) > 0 iff infB<C " (B) < 0 iff supB<C |" (B) | > 0 iff
〈", "〉C > 0 by Theorem 2.13.

(2) V is not adapted to (ℱC), but to a “time-changed” filtration.
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(3) V ⫫ 〈", "〉 if and only if " is an Ocone continuous local martingale if and only if the
conditional law of ("C − "B)C>B given ("C)C6B is symmetric for all B > 0.

Proof. We will define V by the conclusion, “inverting” 〈", "〉. Assume first "0 = 0 almost surely.
For A > 0, set

gA B inf
{
C > 0 ; 〈", "〉C > A

}
.

By Proposition 3.9, gA is a stopping time. Except on the event 
 B
[
〈", "〉∞ < ∞

]
, we have

gA < ∞ for all A. Since P[
] = 0, we may redefine gA to be 0 on
. Recall that (ℱC) is complete
by assumption, so still gA is a stopping time.

Note that 〈", "〉 can be constant on intervals (where a.s., " is constant by Lemma 5.14).
Still, A ↦→ gA is increasing and left-continuous, so has right limits, namely,

lim
B↓A
gB = gA+ = inf{C > 0 ; 〈", "〉C > A},

except on
, where gA+ = 0.
Define VA B "gA for A > 0. By Theorem 3.7, VA ∈ ℱgA , i.e., V is adapted to (�A), where

�A B ℱgA and�∞ B ℱ∞. Because (ℱC) is complete, so is (�A).
Let 
′ be the set of probability 0 where " is non-constant on some interval where 〈", "〉 is

constant. Then off

′, we have "gA = "gA+ , whence V is continuous. Redefine V B 0 on


′. We
have off 
 ∪
′,

V〈","〉C = "g〈"," 〉C

and
g〈","〉C 6 C 6 g〈","〉+C .

Because " is constant on that interval, we get V〈","〉C = "C .
It remains to show that V is a Brownian motion. We use Lévy’s characterization, i.e.,

we prove that V and (V2
B − B)B>0 are continuous (�A)-martingales. Consider = ∈ N. Since

〈", "〉g=∞ = 〈", "〉g= = = almost surely, Theorem 4.13(i) yields that "g= and ("g=)2 − 〈", "〉g=
are uniformly integrable martingales. The optional stopping theorem thus gives

0 6 A 6 B 6 = =⇒ E
[
VB

�� �A ] = E
[
"g=
gB

�� ℱgA

]
= "g=

gA
= VA .

Similarly,

E
[
V2
B − B

�� �A ] = E
[
("g=

gB
)2 − 〈", "〉g=gB | ℱgA

]
= ("g=

gA
)2 − 〈", "〉g=gA = V

2
A − A.

This finishes the proof when "0 = 0.
If "0 ≠ 0, write "C = "0 + "′C . The previous argument gives a Brownian motion V′ such that

a.s. ∀C > 0 "′C = V
′
〈" ′," ′〉C .

We actually showed that V′ is a (�A)-Brownian motion, so V′ ⫫ �0 = ℱ0 3 "0. Therefore,
VB B "0 + V′B is a Brownian motion. J

Exercise (due 2/8). Exercise 5.27.

The following additional result will be useful in Chapter 7 when we show conformal invariance
of complex Brownian motion.
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Proposition 5.15. Let ", # be continuous local martingales such that "0 = #0 = 0, 〈", "〉 =
〈#, #〉, 〈", #〉 = 0, and 〈", "〉∞ = 〈#, #〉∞ = ∞. Let V, W be the real Brownian motions such
that " = V〈","〉 and # = W〈#,#〉. Then V ⫫ W. Thus, (", #) is a time change of a 2-dimensional
Brownian motion.

(Note: if 〈", "〉 is not deterministic, then " is not independent of # .)

Proof. Again, let gA B inf
{
C > 0 ; 〈", "〉 > A

}
, so VA = "gA , WA = #gA and V, W are (�A)-

Brownian motions, where �A B ℱgA . Since 〈", #〉 = 0, we have "# is a continuous local
martingale. As before, we get ("#)g= is a uniformly integrable martingale for = > 1 (now using
Proposition 4.15(v)), whence

0 6 A 6 B 6 = =⇒ E
[
VBWB

�� �A ] = E
[
"g=
gB
#g=gB

�� ℱgA

]
= "g=

gA
#g=gA = VAWA .

Thus, VW is a (�A)-martingale and so 〈V, W〉 = 0. By Theorem 5.12, (V, W) is a 2-dimensional
Brownian motion. Since V0 = W0 = 0, it follows that V ⫫ W. J

The proposition also holds without the assumption that 〈", "〉∞ = 〈#, #〉∞ = ∞; see the first
remark after Theorem 5.13. In addition, there is an extension due to Knight when 〈", "〉 ≠ 〈#, #〉,
but one loses the filtration (�A); it is more difficult.
Exercise (due 2/8). (1) Let " be a continuous local martingale such that "0 = 0 and 〈", "〉 is

deterministic with 〈", "〉∞ = ∞. Show that " is a Gaussian process.
(2) Show that if " and # are continuous local martingales such that "0 = #0 = 0, 〈", "〉 and
〈#, #〉 are deterministic, 〈", "〉∞ = 〈#, #〉∞ = ∞ and 〈", #〉 = 0, then " ⫫ # . Do not
use Knight’s theorem. Hint: modify the proof of Lévy’s theorem.

Exercise (due 2/15). Exercise 5.33.

Exercise. Let " be a continuous martingale with "C ∈ !2(P) for all C ∈ R+ and 〈", "〉∞ = ∞
almost surely. Write 3 (B, C) := ‖"B − "C ‖2 for B, C ∈ R+. Show that the stochastic process " is
almost surely locally Hölder continuous of order U for all U < 1 with respect to the metric 3 on R+.

5.3.3. The Burkholder–Davis–Gundy Inequalities

Here we give yet another relation between a continuous local martingale and its quadratic
variation. This will be useful in Chapter 8. For a process - , write

-∗C B sup
B6C
|-B |.

Theorem 5.16 (Burkholder–Davis–Gundy). There exist 2, � : (0,∞) → (0,∞) such that for all
continuous local martingales " with "0 = 0, for all stopping times ) ,

∀? ∈ R+ 2(?) E
[√
〈", "〉)

?]
6 E

[
("∗) )?

]
6 � (?) E

[√
〈", "〉)

?]
.

Remark. Note that the case ? = 2 is immediate from Doob’s !2-inequality and Theorem 4.13: if
"∗
)
∈ !2, then ") ∈ H2 and

E
[
("∗) )2

]
6 4 E

[
(") )2

]
= 4 E

[
〈", "〉)

]
6 4 E

[
("∗) )2

]
,

whereas if 〈", "〉) ∈ !1, then "∗
)
∈ !2.
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We need some preliminary results.

Proposition. Let " be a continuous local martingale with "0 = 0. Write

)G B inf{C > 0 ; "C = G}.

We have
∀0, 1 > 0 P

[
)0 < )−1

]
6

1

0 + 1 P["∗∞ > 0] .

Proof. Because ")0∧)−1 is a bounded martingale, we have

0 = E[")0∧)−1 ] = 0 P[)0 < )−1] − 1 P[)−1 < )0] + E
[
"∞1[)0=)−1=∞,"∗∞>0]

]
> 0 P[)0 < )−1] − 1 P[)−1 6 )0, "∗∞ > 0]
= −1 P["∗∞ > 0] + (0 + 1) P[)0 < )−1] . J

Corollary. Let -,. > 0, -0 = .0 = 0, and - − . be a continuous local martingale. Then

∀0 < 1 < 0 P
[
-∗∞ > 0, .

∗
∞ < 1

]
6
1

0
P
[
(- − . )∗∞ > 0

]
.

Proof. Since [
-∗∞ > 0, .

∗
∞ < 1

]
⊆

[
sup(- − . ) > 0 − 1

]
∩

[
inf (- − . ) > −1

]
,

it follows that on this event, - − . hits 0 − 1 before −1, so the proposition applies. J

Corollary. Let " be a continuous local martingale with "0 = 0 and A > 0. Then

∀1 ∈ (0, 1) P
[
("∗∞)2 > 4A, 〈", "〉∞ < 1A

]
6 1 P

[
("∗∞)2 > A

]
and

∀1 ∈ (0, 1
4 ) P

[
〈", "〉∞ > 2A, ("∗∞)2 < 1A

]
6 41 P

[
〈", "〉∞ > A

]
.

Proof. Since "2 − 〈", "〉 is a continuous local martingale, the previous corollary gives

∀1 ∈ (0, 1) P
[
("∗∞)2 > A, 〈", "〉∞ < 1A

]
6 1 P

[
"∗∞ > 0

]
.

Here, we have used the fact that "∗∞ > 0 iff 〈", "〉∞ > 0 by Proposition 4.12. Apply this to
# B " − ") , where ) B inf

{
C > 0 ; "∗C >

√
A
}
. Then

[#∗∞ > 0] = [("∗∞)2 > A],
〈#, #〉 = 〈", "〉 − 〈", "〉) 6 〈", "〉,

and
["∗∞ > 2

√
A ] ⊆ [#∗∞ >

√
A ]

since #∗∞ > "∗∞ −
√
A in that case. This gives the first inequality.

Likewise, 〈", "〉 − "2 is a continuous local martingale, so

∀1 ∈ (0, 1
4 ) P

[
〈", "〉∞ > A, ("∗∞)2 < 41A

]
6 41 P

[
〈", "〉∞ > 0

]
.
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Apply this to # B " − ") , where ) B inf
{
C > 0 ; 〈", "〉C >

√
A
}
. Then[

〈#, #〉∞ > 0
]
=

[
〈", "〉∞ > A

]
,[

〈", "〉∞ > 2A
]
⊆

[
〈#, #〉∞ > A

]
,

and [
("∗∞)2 < 1A

]
⊆

[
(#∗∞)2 < 41A

]
since ∀C > 0 "C ∈ (−

√
1A,
√
1A ) in that case. This gives the second inequality. J

Proof of Theorem 5.16. Recall that for - > 0 and ? > 0,

E
[
- ?

]
=

∫ ∞

0
? P[- > A]A ?−1 dA = 1?

∫ ∞

0
? P[- > 1A]A ?−1 dA

for 1 > 0. By the corollary, for 1 ∈ (0, 1),

P
[
("∗∞)2 > 4A

]
6 P

[
〈", "〉∞ > 1A

]
+ P

[
("∗∞)2 > 4A, 〈", "〉∞ < 1A

]
6 P

[
〈", "〉∞ > 1A

]
+ 1 P

[
("∗∞)2 > A

]
.

Multiply by ?

2 A
?

2 −1 and integrate from A = 0 to∞:

2−? E
[
("∗∞)?

]
6 1−?/2 E

[
〈", "〉?/2∞

]
+ 1 E

[
("∗∞)?

]
.

Choose 1 ∈ (0, 2−?) to obtain � (?) for ) = ∞.
Similarly, for 1 ∈ (0, 1

4 ), we have

P
[
〈", "〉∞ > 2A

]
6 P

[
("∗∞)2 > 1A

]
+ 41 P

[
〈", "〉∞ > A

]
,

so
2−?/2 E

[
〈", "〉?/2∞

]
6 1−?/2 E

[
("∗∞)?

]
+ 41 E

[
〈", "〉?/2∞

]
.

Choose 1 ∈ (0, 2−?/2/4) to obtain 2(?) for ) = ∞.
Finally, as usual, apply these inequalities to ") to obtain them for any ) , not just ) = ∞. J

Exercise. Let " be a continuous local martingale with "0 = 0 and 0, 1 > 0. Applying the previous
exercise on page 73 to both " and −" , we see that

P
[
("∗∞)2 > 0, 〈", "〉∞ 6 1

]
6 2e−

0
21 .

Show that
P
[
〈", "〉∞ > 0, ("∗∞)2 6 1

]
6 P

[
(�∗0)2 6 1

]
,

where � is a real Brownian motion starting at 0. You may use the extension of Theorem 5.13 to the
case 〈", "〉∞ < ∞ with positive probability.

An exponential bound on P
[
(�∗0)2 6 1

]
is shown in Exercise 6.29(6); it can also be bounded by

using an alternating infinite series expression for its exact value (e.g., page 342 of Feller, volume 2,
or (7.15) of Mörters and Peres). Taking its first term gives the bound 4

c
exp

{
− c20

81
}
. As a third

alternative, one can get an exponential bound by a direct iterated martingale argument using a
sequence of stopping times and conditioning on the associated f-fields to bound the conditional
probabilities.
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Exercise. Let� be a bounded, continuous, adapted process with�0 ≡ 0 and � be a Brownianmotion.
Show that ‖(� · �)∗C /�C ‖? → 0 as C ↓ 0 for all ? ∈ (0, 1). Find an � so that ‖(� · �)C/�C ‖1 6→ 0 as
C ↓ 0.

Corollary 5.17. If " be a continuous local martingale with "0 = 0 and

E
[√
〈", "〉∞

]
< ∞,

then " is a uniformly integrable martingale.

Proof. By Theorem 5.16 with ? = 1, we have |" | 6 "∗∞ ∈ !1, so Proposition 4.7(ii) applies. J

Note that this condition is weaker than E
[
〈", "〉∞

]
< ∞, which is the condition for " ∈ H2.

Exercise (due 2/15). Let � be a Brownian motion with �0 = 0 and ) be a stopping time with
E
[√
)

]
< ∞. Show that E[�) ] = 0 and E

[
�2
)

]
= E[)] (this is trickier than it looks). Give a

stopping time ) where both equalities fail yet E[) 2] < ∞ for all 2 < 1/2.

Exercise. Let � be a Brownian motion with �0 = 0 and ) be a finite stopping time. Show that for
all ` ≠ 0, we have E[�) + `)] = `E[)].

Appendix: The Cameron–Martin and Girsanov Theorems

While the proof of the Cameron–Martin theorem given in the appendix to Chapter 2 is short
and elementary, it is instructive to see how stochastic calculus can also be used for a short proof.
This will lead us to extensions of the theorem. It is convenient here to change the sign of the drift.
Let � be an (ℱC)C-Brownian motion. We begin with linear drift up to some finite time, A, after
which we add no further drift: �C − \ (C ∧ A). Note that the quadratic variation does not change
with a deterministic drift. Let " := ℰ(\�) be the exponential martingale corresponding to �.
Recall from the exercise on page 28 that we may differentiate " with respect to \ to get another
martingale, namely, (�C − \C)"C . We claim this means that with respect to the probability measure
Q := "A P, the process

(
�C − \ (C ∧ A)

)
C
is an (ℱC)C-martingale. First note the following general

principle: if - is an adapted process and # is a uniformly integrable nonnegative martingale such
that (-C#C)C is a martingale, then (-C#∞)C is a martingale. Indeed, -C#∞ is integrable because
E[|-C |#∞] = E

[
E[|-C |#∞ | ℱC]

]
= E[|-C |#C]. Now we may calculate for 0 6 B 6 C and � ∈ ℱB

that
E[-C#∞1�] = E

[
E[-C#∞1� | ℱC]

]
= E[-C#C1�] = E[-B#B1�] = E[-B#∞1�] .

Using this principle, we see that (�C − \C)06C6A is a martingale with respect to Q, and it is obvious
that (�C − \A)A6C<∞ is a martingale with respect to Q. This proves our claim. Now the quadratic
variation of

(
�C − \ (C ∧ A)

)
C
is the same with respect to Q as with respect to P because Q � P.

Hence, it follows from Lévy’s theorem that
(
�C − \ (C ∧ A)

)
C
is an (ℱC)C-Brownian motion with

respect to Q. Writing & for the P-law of (�C − \C)C and, for Wiener measure, we may conclude
that &��A � ,��A for all A ∈ R+, where�• is the natural filtration on � (R+,R); we say that & is
locally absolutely continuous with respect to, , written &

loc�, . Of course, if \ ≠ 0, then & ⊥ , .
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Exercise. Let � be a 3-dimensional (ℱC)C-Brownian motion and ` ∈ R3 . Define -C := �C + `C and
) := inf{C > 0 ; |-C | = 1}. Write "C := exp{−` · �C − |` |2C/2} and Q := ") P.
(1) Verify that ") is a uniformly integrable P-martingale.
(2) Show that the Q-law of -) is Brownian motion up to time ) .
(3) Let % be the Q-law of (-) , )) on � (R+,R3) × R+. Show that the P-law of (-) , )) is <%,

where <(|, C) = e `·|C−|` |2C/2. Deduce that -) and ) are independent with respect to P; that
for some constant 2`, the P-law of -) has density G ↦→ 2`e `·G with respect to hypersurface
measure on the sphere of radius 1; and that the P-law of ) has density C ↦→ 2−1

` e−|` |2C/2 with
respect to the Q-law of ) , the hitting time for ordinary Brownian motion.

For more general drift functions, suppose that 5 ∈ !2(R+) and �C :=
∫ C

0 5 (B) dB. We will
consider - := � − �. To analyze this, let !C :=

∫ C

0 5 (B) d�B, which is just a Wiener integral. By
Proposition 5.11, we have dℰ(!) = 5ℰ(!) d�. Thus, integration by parts gives us

d
(
-ℰ(!)

)
= - 5ℰ(!) d� +ℰ(!)

(
d� − 5 dC

)
+ 5ℰ(!) dC = - 5ℰ(!) d� +ℰ(!) d�,

whence -ℰ(!) is a continuous local martingale. For C ∈ [0,∞], we have !C ∼ 

(
0, ‖ 5 1[0,C] ‖2

)
,

whence E
[
e!C

]
= e‖ 5 1[0,C ] ‖2/2 = e〈!,!〉C , so E

[
ℰ(!)C

]
= 1. This implies that ℰ(!) is a uniformly

integrable martingale: by Proposition 4.7, it is a supermartingale, and so

1 = E
[
ℰ(!)C

]
> E

[
E[ℰ(!)∞ | ℱC]

]
= E

[
ℰ(!)∞

]
= 1,

which implies ℰ(!)C = E
[
ℰ(!)∞

�� ℱC

]
a.s., as desired. Furthermore, 〈-ℰ(!), -ℰ(!)〉C =∫ C

0
(
- (B) 5 (B) + 1

)2
ℰ(!)2B dB has finite expectation, whence -ℰ(!) is a true martingale by Theo-

rem 4.13(ii). As above, it follows that - is a martingale with respect to Q := ℰ(!)∞ P. Again,
the quadratic variation of - is the same as that of �, whence - is an (ℱC)C-Brownian motion with
respect to Q. The explicit form ofℰ(!)∞ is exp

{∫ ∞
0 5 (B) d�B −

∫ ∞
0 5 (B)2 dB/2

}
.

In fact, we may add random drifts as well: Suppose that ! is a continuous local martingale such
thatℰ(!) is a uniformly integrable martingale with mean 1. Then � − 〈�, !〉 is an (ℱC)C-Brownian
motion with respect toℰ(!)∞ P, whence the P-law of � − 〈�, !〉 is mutually absolutely continuous
with Wiener measure. This follows just as above, with the following extension of the “general
principle” we used.

Proposition. If # is a nonnegative uniformly integrable martingale, - is adapted, and -# is a
local martingale, then (-C#∞)C is a local martingale.

Proof. We claim that a sequence of stopping times that reduces -# also reduces -#∞. Indeed, let
) be a stopping time such that -)#) is a martingale; it suffices to show that -)#∞ is a martingale.
Integrability follows as before: E[|-)C |#∞] = E

[
E[|-)C |#∞ | ℱ)∧C]

]
= E[|-)C |#)C ]. Let 0 6 B 6 C

and � ∈ ℱB. Similar to the calculation near the end of the proof of the proposition on page 35, we
have

E[-)C 1�∩[)>B]#∞] = E
[
E[-)C 1�∩[)>B]#∞ | ℱ)∧C]

]
= E

[
-)C 1�∩[)>B] E[#∞ | ℱ)∧C]

]
= E[-)C 1�∩[)>B]#)C ] .
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Applying this to C = B, we obtain E[-)B 1�∩[)>B]#∞] = E[-)B 1�∩[)>B]#)B ]. Because -)#) is a
martingale, we conclude that E[-)C 1�∩[)>B]#∞] = E[-)B 1�∩[)>B]#∞]. On the other hand, -)C = -)B
on the event [) 6 B], whence E[-)C 1�∩[)6B]#∞] = E[-)B 1�∩[)6B]#∞]. Adding these equations
gives E[-)C 1�#∞] = E[-)B 1�#∞], as desired. J

This part of the proof has nothing to do with Brownian motion, so we may deduce this theorem
of Girsanov:

Theorem 5.22 (Girsanov). Let " and ! be continuous local martingales such that ℰ(!) is a
uniformly integrable martingale with mean 1. Then " − 〈", !〉 is a continuous local martingale
with respect toℰ(!)∞ P.

Proof. Let - := " − 〈", !〉. By Proposition 5.11, we have dℰ(!) = ℰ(!) d!, so that from
integration by parts,

d
(
-ℰ(!)

)
= -ℰ(!) d! +ℰ(!)

(
d" − d〈", !〉

)
+ℰ(!) d〈", !〉 = -ℰ(!) d! +ℰ(!) d",

whence -ℰ(!) is a continuous local martingale. J

Exercise. Find " and ! as in Girsanov’s theorem such that the P-law of " is not equal to the
ℰ(!)∞ P-law of " − 〈", !〉.

Exercise. Show that if ! is a continuous local martingale such that 〈!, !〉∞ = ∞ a.s., thenℰ(!) is
not uniformly integrable. Show that for each Y > 0, there exists a continuous martingale ! such that
P[〈!, !〉∞ < ∞] < Y andℰ(!) +ℰ(−!) is uniformly integrable.

Exercise. Show that if ! is a continuous local martingale such that 〈!, !〉∞ 6 U < ∞ a.s. for some
constant, U, then E

[
e2(!∗∞)2

]
< ∞ for all constants 2 < 1/(2U).

Returning to Brownian motion with random drift, suppose that ! is not only a continuous local
martingale such thatℰ(!) is a uniformly integrable martingale with mean 1, but also is adapted to the
completed canonical filtration ℱ�

• . In other words, there are Borel functions 5C : �
(
[0, C],R) → R

such that !C = 5C
(
(�B)06B6C

)
a.s. Write this relation as ! = 5 (�). Since V := � − 〈�, !〉 is a

Brownian motion with respect to Q := ℰ(!)∞ P, we have that the process - = � satisfies the
equation - = V + 〈-, 5 (-)〉, i.e., - is a Brownian motion with drift that depends on - .

To give a concrete example satisfying all these assumptions, suppose that 1 : R+ × R→ R is
Borel with 6 := supG |1(·, G) | ∈ !2

loc(R+). Then (l, B) ↦→ 1
(
B, �B (l)

)
∈ !2

loc(�), so we may define
!C :=

∫ C

0 1(B, �B) d�B. Because 〈!, !〉C 6
∫ C

0 6(B)
2 dB < ∞, the preceding exercise implies that

ℰ(!) is a martingale. We conclude that for each C0 < ∞, the pair (-, V) on
(
Ω, (ℱC)C6C0 ,ℰ(!)C0 P

)
solves the stochastic differential equation d-C = dVC + 1(C, -C) dC for 0 6 C 6 C0, and V is a Brownian
motion up to time C0. Becauseℰ(!) is a martingale, the laws for pairs (-, V) corresponding to two
endings times C0 and C′0 are consistent. Therefore, Kolmogorov’s consistency theorem yields a global
solution for all C > 0. Write & for the resulting law of - on � (R+,R). Because the law of - C0 is the
pushforward ofℰ(!)C0 P by - C0 = �C0 , we have that &

loc�, (and,
loc� &). We have that & � ,

iffℰ(!) is uniformly integrable. In Chapter 8, we will discuss solutions to SDEs, but only with
restrictive regularity assumptions on the function 1. We will also allow a function f in front of dVC .
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Chapter 6

General Theory of Markov Processes

The Markov property allows one to make many more calculations than one can for a general
stochastic process. Also, it is desirable for modeling, analogous to not having a time-lag in a
differential equation.

6.1. General Definitions and the Problem of Existence

Let (�,ℰ) be a measurable space. A (Markovian) transition kernel from � to � is a map
& : � ×ℰ → [0, 1] such that

(i) ∀G ∈ � � ↦→ &(G, �) is a probability measure on (�,ℰ), and
(ii) ∀� ∈ ℰ G ↦→ &(G, �) isℰ-measurable.

This looks like a regular conditional probability, and indeed will be one. When � is countable, & is
determined by all &(G, {H}), the transition matrix.

Let �(�) be the space of bounded (real)ℰ-measurable functions on � with the supremum
norm. For 5 ∈ �(�), we write & 5 for the function whose value at G ∈ � is the integral of 5 with
respect to &(G, ·); we write

(& 5 ) (G) =
∫

&(G, dH) 5 (H).

Obviously, 5 > 0 implies & 5 > 0 and ∀ 5 ∈ �(�) & 5 ∈ �(�) (note this is ℰ-measurable by
approximating by simple functions) with ‖& 5 ‖ 6 ‖ 5 ‖ (& is a contraction on �(�)). Thus, &
defines a bounded, positive, linear operator on �(�).

Definition 6.1. A collection (&C)C>0 of transition kernels on � is called a transition semigroup if
(i) &0 = Id, i.e., ∀G ∈ � &0(G, ·) = XG ,
(ii) ∀B, C > 0 &C&B = &C+B, i.e., ∀G ∈ � ∀� ∈ ℰ∫

�

&C (G, dH)&B (H, �) = &C+B (G, �),

called the Chapman–Kolmogorov identity, and
(iii) ∀� ∈ ℰ (C, G) ↦→ &C (G, �) is ℬ(R+) ⊗ℰ-measurable.
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Definition 6.2. Given a filtered probability space
(
Ω,ℱ, (ℱC)06C6∞,P

)
and a transition semigroup

(&C)C>0 on � , an (ℱC)-adapted �-valued process (-C)C>0 is called aMarkov process (with respect
to (ℱC)) with transition semigroup (&C)C>0 if

∀B, C > 0 ∀� ∈ ℰ P[-B+C ∈ � | ℱB] = &C (-B, �). (∗)

If we do not specify (ℱC), then we mean the canonical filtration (ℱ-
C ).

Thus, &C gives many regular conditional probabilities. Inherent in (∗) is the assumption of
time-homogeneity. Note that (∗) gives

∀B, C > 0 ∀� ∈ ℰ P
[
-B+C ∈ �

�� (-A)06A6B] = &C (-B, �).
This can also be stated as saying that - is Markov with respect to its canonical filtration (ℱ-

C )C .
Note also that (∗) gives

∀B, C > 0 ∀ 5 ∈ �(�) E
[
5 (-B+C) | ℱB

]
= (&C 5 ) (-B) : (∗∗)

the definition gives this when 5 is an indicator, from which it follows when 5 is simple and then, by
taking a limit, for general 5 .

One can calculate as follows. Let -0 ∼ W. We claim that if 0 < C1 < C2 < · · · < C? and
�0, �1, . . . , �? ∈ ℰ, then

P
[
-0 ∈ �0, -C1 ∈ �1, . . . , -C? ∈ �?

]
(∗∗∗)

=

∫
�0

W(dG0)
∫
�1

&C1 (G0, dG1) · · ·
∫
�?

&C?−C?−1 (G?−1, dG?).

To show this, we show the more general formula,

∀ 50, 51, . . . , 5? ∈ �(�)
E
[
50(-0) 51(-C1) · · · 5? (-C? )

]
=

∫
W(dG0) 50(G0)

∫
&C1 (G0, dG1) 51(G1)

∫
&C2−C1 (G1, dG2) 52(G2) · · ·∫

&C?−C?−1 (G?−1, dG?) 5? (G?).

For ? = 0, this is the definition of W. Suppose ? > 1 and the formula holds for ? − 1. Then

E
[
50(-0) 51(-C1) · · · 5? (-C? )

]
= E

[
50(-0) 51(-C1) · · · 5?−1(-C?−1) E

[
5? (-C? )

�� ℱC?−1

] ]
= E

[
50(-0) 51(-C1) · · · 5?−1(-C?−1) (&C?−C?−1 5?) (-C?−1)

]
by Eq. (∗∗), so wemay apply the induction hypothesis with functions 50, . . . , 5?−2, 5?−1 · (&C?−C?−1 5?)
to get ∫

W(dG0) 50(G0) · · ·
∫

&C?−1−C?−2 (G?−2, dG?−1) 5?−1(G?−1) (&C?−C?−1 5?) (G?−1),︸                   ︷︷                   ︸
=
∫
&C?−C?−1 (G?−1,dG?) 5? (G?)
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with slightly different notation in case ? = 1.
Conversely, if (∗∗∗) holds and (&C) is a transition semigroup, then (-C)C>0 is a Markov process

with semigroup (&C)C>0 with respect to (ℱ-
C )C>0: use a c-� argument as on page 262 of the book,

number 3.
Note that (∗∗∗) shows that W and (&C)C>0 determine the finite-dimensional distributions of - .
If Definition 6.1(i) and (iii) hold and ∀G ∈ � ∃(ℱC)-adapted - such that Eq. (∗) holds and

&C 5 (G) = E
[
5 (-C)

]
for 5 ∈ �(�), then (&C)C is a transition semigroup:

&C+B 5 (G) = E
[
5 (-C+B)

]
= E

[
E
[
5 (-C+B)

�� ℱB

] ]
= E

[
&C 5 (-B)

]
= &B (&C 5 ) (G).

Thus, if Eq. (∗∗∗) holds for all W (or all XG), the Chapman–Kolmogorov identity holds.

Example. Let - be 3-dimensional Brownian motion. Then -C has density

?C (G) B
1

(2cC)3/2
e−|G |

2/(2C) (C > 0, G ∈ R3).

Let &C (G, ·) have density H ↦→ ?C (H − G) for C > 0. The Markov property of Brownian motion shows
that - is a Markov process with transition semigroup (&C)C>0—in particular, (&C) is a semigroup.

Exercise (due 2/22). Exercise 6.24.

Given a transition semigroup, is there a Markov process with that semigroup? We show the
answer is yes under a topological condition on � .

First, we recall a version of Kolmogorov’s extension theorem. Let Ω∗ B �R+ with the f-field
ℱ
∗ generated by the coordinate maps l ↦→ l(C) (C ∈ R+). For * ⊆ R+, write c* : Ω∗ → �* for

the map l ↦→ l�*. For* ⊆ + ⊆ R+, write c+* : �+ → �* for the map l ↦→ l�*. Let � (R+) be
the collection of finite sets in R+.

A topological space is Polish if it is separable (there exists a countable dense subset) and its
topology is generated by a complete metric.

Theorem 6.3 (Kolmogorov). Let (�,ℰ) be a Polish space with its Borel f-field. Suppose that
∀* ∈ � (R+) `* is a probability measure on �* . If (`*)*∈� (R+) is consistent in the sense that
∀* ⊆ + ∈ � (R+) (c+*)∗`+ = `* , then there exists a unique probability measure ` on (Ω∗,ℱ∗)
such that ∀* ∈ � (R+) (c*)∗` = `* . J

In words: consistent finite-dimensional distributions determine a probability measure.

Corollary 6.4. Let (�,ℰ) be a Polish space with its Borel f-field. If (&C)C>0 is a transition
semigroup on � and W is a probability measure on � , then there exists a unique probability measure
% on Ω∗ such that the canonical process

-C (l) B l(C) (C ∈ R+, l ∈ Ω∗)

is a Markov process with transition semigroup (&C)C>0 and -0 ∼ W.
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Proof. We make sure (∗∗∗) holds. Given 0 6 C1 < C2 < · · · < C?, we define `{C1,...,C?} on � {C1,...,C?}
by

`{C1,...,C?} (�1 × · · · × �?) B
∫
�

W(dG0)
∫
�1

&C1 (G0, dG1) · · ·
∫
�?

&C?−C?−1 (G?−1, dG?)

for �8 ∈ ℰ. The consistency condition amounts to putting some �8 = � and verifying that those
coordinates can be eliminated via Chapman–Kolmogorov (details are left to the reader). J

In particular, for G ∈ � and W = XG , we write PG for the associated measure. Note that G ↦→ PG
is measurable in the sense that for all � ∈ ℱ∗, G ↦→ PG (�) is measurable: when � depends on only
finitely many coordinates, this follows from the measurability assumption in Definition 6.1, and then
the c-� theorem gives it for all �. We may express the general measure P(W) associated to any W by

P(W) (�) =
∫
�

W(dG) PG (�) :

the integral makes sense by measurability of G ↦→ PG and the integral is a probability measure
by the monotone convergence theorem. By uniqueness, this is the measure from Corollary 6.4.
Under additional assumptions (of Section 6.2), we prove there is a càdlàg modification of -
in Section 6.3. There is a lot of operator theory one can develop related to semigroups, but we will
avoid most of it. However, to motivate the next definition, suppose that&C = eC! (reasonable from the
Chapman–Kolmogorov identity). The resolvent of ! is the operator-valued function � ↦→ (� − !)−1

for � ∉ f(!). Formally, for � > 0 and thinking of ! 6 0, we have∫ ∞

0
e−�CeC! dC = (� − !)−1.

Definition 6.5. For � > 0, the �-resolvent of the semigroup (&C)C>0 is the linear operator
'� : �(�) → �(�) defined by

('� 5 ) (G) B
∫ ∞

0
e−�C (&C 5 ) (G) dC ( 5 ∈ �(�), G ∈ �).

Note that Definition 6.1(iii) shows that C ↦→ (&C 5 ) (G) is measurable and '� 5 ∈ ℰ (if
6 ∈ ℬ(R+) ⊗ℰ is bounded, then

(
G ↦→

∫
R+

e−�C6(C, G) dC
)
∈ ℰ by the usual progression starting

from 6 being an indicator).
Clearly, 5 > 0 implies '� 5 > 0 and ∀ 5 ∈ �(�) ‖'� 5 ‖ 6 ‖ 5 ‖/�. We also have the resolvent

equation

� ≠ ` =⇒ '�'` = −
'� − '`
� − ` .

To see this, we first show

Lemma. ∀` > 0 ∀C > 0 &C'` = '`&C .
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Proof. We show this lemma by direct calculation:

(&C'` 5 ) (G) =
∫
�

&C (G, dH) '` 5 (H)

=

∫
�

&C (G, dH)
∫ ∞

0
e−`B&B 5 (H) dB

=

∫ ∞

0
e−`B

∫
�

&C (G, dH)&B 5 (H) dB

=

∫ ∞

0
e−`B&C (&B 5 ) (G) dB

=

∫ ∞

0
e−`B&B (&C 5 ) (G) dB = ('`&C 5 ) (G) J

Now, using the above lemma, we can verify the resolvent equation:

('�'` 5 ) (G) =
∫ ∞

0
e−�C (&C'` 5 ) (G) dC

=

∫ ∞

0
e−�C ('`&C 5 ) (G) dC

=

∫ ∞

0
e−�C

∫ ∞

0
e−`B&B (&C 5 ) (G) dB dC

=

∫ ∞

0
e−�C

∫ ∞

0
e−`B&C+B 5 (G) dB dC

=

∫ ∞

0
e−�Ce`C

∫ ∞

C

e−`A&A 5 (G) dA dC

=

∫ ∞

0
e−`A&A 5 (G)

∫ A

0
e−(�−`)C dC dA

=

∫ ∞

0
e−`A&A 5 (G)

(1 − e−(�−`)A

� − `

)
dA

=

∫ ∞

0
&A 5 (G)

(e−`A − e−�A

� − `

)
dA

=
'` 5 (G) − '� 5 (G)

� − ` .

[Fubini’s theorem]

Example. For real Brownian motion, we have

'� 5 (G) =
∫
R
A� (H − G) 5 (H) dH,

where
A� (I) B

1
√

2�
exp

{
−|I |
√

2�
}
.

See page 157 of the book for a proof.

The resolvent provides useful supermartingales:
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Lemma 6.6. Let - be a Markov process with semigroup (&C)C>0 and filtration (ℱC), 0 6 ℎ ∈ �(�),
and � > 0. Then

C ↦→ e−�C'�ℎ(-C)
is an (ℱC)-supermartingale.

Proof. Since '�ℎ ∈ �(�), integrability of the random variables e−�C'�ℎ(-C) is ensured. We want
to bound, for B, C > 0,

E
[
e−�(C+B)'�ℎ(-C+B)

�� ℱC

]
= e−�(C+B)&B'�ℎ(-C).

[Definition 6.2]

It suffices to show that e−�B&B'�ℎ 6 '�ℎ. Indeed, we have

e−�B&B'�ℎ =

∫ ∞

B

e−�C&Cℎ dC 6 '�ℎ. J

[by the Lemma for resolvent equation]

[ℎ > 0]

6.2. Feller Semigroups

A topological space is locally compact if every point has a neighborhood with compact closure.
A locally compact Polish space has the property that there exist compact  = such that for all =,
 = ⊆  =+1 and every compact set is contained in some  =. See the appendix to this chapter.

In the rest of this section, let � be locally compact and Polish. We say 5 : � → R vanishes at
infinity if for all Y > 0, there exists a compact set  such that | 5 (G) | < Y for G ∉  . Write �0(�)
for the continuous functions that vanish at infinity, and give it the supremum norm.

Definition 6.7. A transition semigroup (&C)C>0 on � is called Feller if
(i) ∀C > 0 ∀ 5 ∈ �0(�) &C 5 ∈ �0(�), and
(ii) ∀ 5 ∈ �0(�) limC→0 ‖&C 5 − 5 ‖ = 0.

A Markov process with a Feller semigroup is called Feller.

Part (i) says that &C (G, ·) depends continuously on G and for all compact  , &C (·,  ) vanishes
at infinity. Part(ii) says that &C (G, ·) has most of its mass near G for small C. Be aware that different
authors use different definitions for “Feller”.

We also see that a Feller semigroup has the property that ∀ 5 ∈ �0(�) C ↦→ &C 5 is uniformly
continuous:

∀B, C > 0 ‖&B 5 −&C 5 ‖ =


&B∧C (& |B−C | 5 − 5 )



 6 ‖& |B−C | 5 − 5 ‖.
Lebesgue’s dominated convergence theorem gives that ∀ 5 ∈ �0� ∀� > 0 '� 5 ∈ �0(�).

For the rest of the section, let (&C)C>0 be a Feller semigroup on � .
We are now going to show how '� is an inverse. However, the operator of which it is the

inverse is not defined on all of �0(�), but only a dense subspace, which we can get as the range of
'� and which does not depend on �.
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Proposition 6.8. For � > 0, let R B
{
'� 5 ; 5 ∈ �0(�)

}
. Then R does not depend on � and is

dense in �0(�).

Proof. We can write the resolvent equation this way:

'� 5 = '`
(
5 + (` − �)'� 5

)
.

Therefore, every '� 5 has the form '`6 for some 6 ∈ �0(�), as desired.
To show R is dense, we write

�'� 5 = �
∫ ∞

0
e−�C&C 5 dC =

∫ ∞

0
e−C&C/� 5 dC,

so 

�'� 5 − 5 

 = 


∫ ∞

0
e−C (&C/� 5 − 5 ) dC





6

∫ ∞

0
e−C ‖&C/� 5 − 5 ‖ dC → 0

by Lebesgue’s dominated convergence theorem. J

If &C = eC! , then ! = d
dC

���
C=0
&C . This motivates

Definition 6.9. Write

� (!) B
{
5 ∈ �0(�) ;

&C 5 − 5
C

converges in �0(�) as C ↓ 0
}

and, for 5 ∈ � (!),
! 5 B lim

C↓0

&C 5 − 5
C

.

The set � (!) is the domain of the (infinitesimal) generator ! of (&C)C>0.

Of course, � (!) is a linear subspace and ! is a linear map from � (!) to �0(�).
We can express differential and integral equations for (&C)C>0 at times other than C = 0:

Proposition 6.10. If 5 ∈ � (!) and B > 0, then &B 5 ∈ � (!) with

! (&B 5 ) = &B (! 5 ).

Proof. We have, for C > 0,

&C (&B 5 ) −&B 5

C
= &B

(&C 5 − 5
C

)
. (∗)

Since everyMarkovian kernel is a contraction, the right-hand side converges to&B (! 5 ) in�0(�). J

Exercise (due 3/8). Prove that

∀B > 0 ∀ 5 ∈ � (!) lim
C↑0

&C+B 5 −&B 5

C
= !&B 5 in �0(�).
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Proposition 6.11. For 5 ∈ � (!) and C > 0, we have

&C 5 = 5 +
∫ C

0
&B (! 5 ) dB = 5 +

∫ C

0
! (&B 5 ) dB.

Proof. Another way of writing (∗), Proposition 6.10, and the exercise is that for all G ∈ � ,
C ↦→ &C 5 (G) has a derivative &C! 5 (G), which is a continuous function of C. [Indeed, repeating
shows that

(
C ↦→ &C 5 (G)

)
∈ �∞(R+).] Thus, the result follows from the fundamental theorem of

calculus. J

We are ready to justify the name “resolvent”.

Proposition 6.12. Let � > 0. Then � (!) = R and

'� : �0(�) → � (!), � − ! : � (!) → �0(�)

are inverses. That is,
(i) ∀6 ∈ �0(�) '�6 ∈ � (!) and (� − !)'�6 = 6, and
(ii) ∀ 5 ∈ � (!) '� (� − !) 5 = 5 .

Proof. (i) We want to show that '�6 ∈ � (!) with !'�6 = �'�6 − 6. We calculate for all Y > 0,

Y−1(&Y'�6 − '�6) = Y−1
(∫ ∞

0
e−�C&Y+C6 dC −

∫ ∞

0
e−�C&C6 dC

)
=

1 − e−�Y

Y

∫ ∞

0
e−�C&Y+C6 dC − 1

Y

∫ Y

0
e−�C&C6 dC ,

[1st term by Lemma for resolvent equation;
decompose the 2nd term to get the next step]

� '�6 6

the last two convergences as Y ↓ 0 being in �0(�).
This also shows that R ⊆ � (!).
(ii) Now we want �'� 5 = 5 + '�! 5 . Using Proposition 6.11, we get

�'� 5 = �
∫ ∞

0
e−�C&C 5 dC

= �
∫ ∞

0
e−�C

(
5 +

∫ C

0
&B! 5 dB

)
dC

= 5 +
∫ ∞

0
e−�B&B! 5 dB = 5 + '�! 5 .

This also shows that � (!) ⊆ R. J

Exercise (due 3/8). Show that if 5=, 5 , 6 ∈ �0(�) and 5= → 5 and ! 5= → 6 in �0(�), then 6 = ! 5 .

Corollary 6.13. The map ! : � (!) → �0(�) determines (&C)C>0.

This justifies the name “generator”.
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Proof. Given !, we know '� for each � > 0, whence we know the Laplace transform of C ↦→ &C 5 (G)
for each 5 ∈ �0(�) and G ∈ � . The uniqueness of the Laplace transform shows that we then
know &C 5 (G). Since &C��0(�) determines &C (Riesz representation theorem—regularity gives
uniqueness), this completes the proof. J

Exercise (due 3/8). Fix 0 ∈ R \ {0}. Let &C (G, ·) B XG+0C .
(1) Show that (&C)C>0 is a Feller semigroup on R.
(2) Given a probability measure W on R, find a Markov process with semigroup (&C)C>0 and initial

distribution W.
(3) Find the generator of (&C)C>0 and its domain.

It is easy to see that the semigroup (&C)C of Brownian motion is Feller. It is also intuitive that
its generator is ! 5 = 1

2 5
′′ in some sense:

&C 5 (G) − 5 (G) = EG 5 (-C) − 5 (G)

= EG
[
5 ′(G) (-C − G) +

1
2
5 ′′(bC) (-C − G)2

]
≈ C

2
5 ′′(G)

for some bC between G and -C , except that we would need bC to be measurable for this argument to
work.

Instead, we use the resolvent. We saw that

∀� > 0 ∀ 5 ∈ �0(R) '� 5 (G) =
∫

1
√

2�
exp

{
−
√

2� |H − G |
}
5 (H) dH.

Take � B 1
2 . If ℎ ∈ � (!), then ∃ 5 ∈ �0(R) such that ℎ = ' 1

2
5 and 5 = ( 12 −!)ℎ. If we differentiate

ℎ(G) =
∫

e−|H−G | 5 (H) dH

twice (see page 161 of the book for details), we get

ℎ′′(G) =
∫
(−2XG + e−|H−G |) 5 (H) dH (informally)

= −2 5 (G) + ℎ(G) (∈ �0(R))
= 2!ℎ (by above).

In particular, � (!) ⊆
{
ℎ ∈ �2(R) ; ℎ, ℎ′′ ∈ �0(R)

}
.

In fact, this equals � (!). If 6 ∈ �2(R) with 6, 6′′ ∈ �0(R), then set

5 B (6 − 6′′)/2 ∈ �0(R)

and ℎ B ' 1
2
5 ∈ � (!).We saw that ℎ ∈ �2(R) and ℎ′′ = −2 5 + ℎ, i.e., (ℎ − ℎ′′)/2 = 5 . Therefore,

(ℎ − 6)′′ = ℎ − 6. Since ℎ − 6 ∈ �0(R), it follows that ℎ − 6 = 0. Thus, 6 = ℎ ∈ � (!), as desired.
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Exercise (due 3/8). Exercise 6.23.

Exercise. We call a probability measure W stationary if for all 5 ∈ �0(�) and all C > 0, we have∫
&C 5 dW =

∫
5 dW. Show that W is stationary iff for all 5 ∈ � (!), we have

∫
! 5 dW = 0.

It is usually very difficult to determine � (!) exactly, but we can find a subset of � (!) by using
the following martingales.

Theorem 6.14. Suppose that for all G ∈ � , there is a càdlàg process - that is Markov with
semigroup (&C) for the probability measure PG . Let ℎ, 6 ∈ �0(�). The following are equivalent:

(i) ℎ ∈ � (!) and !ℎ = 6.
(ii) ∀G ∈ �

C ↦→ ℎ(-C) −
∫ C

0
6(-B) dB

is a PG-martingale.
(iii) ∀G ∈ � ∀C > 0 EG

[
ℎ(-C) −

∫ C

0 6(-B) dB
]
= ℎ(G).

Proof. Assume (i). We have

EG
[
ℎ(-C+B) −

∫ C+B

0
6(-A) dA

��� ℱC

]
= EG [ℎ(-C+B) | ℱC] −

∫ C

0
6(-A) dA − EG

[∫ C+B

C

6(-A) dA
��� ℱC

]
= &Bℎ(-C) −

∫ C

0
6(-A) dA −

∫ C+B

C

EG [6(-A) | ℱC] dA

= &Bℎ(-C) −
∫ C

0
6(-A) dA −

∫ C+B

C

&A−C6(-C) dA

= &Bℎ(-C) −
∫ C

0
6(-A) dA −

∫ B

0
&A6(-C) dA

= ℎ(-C) −
∫ C

0
6(-A) dA

[for the third term, take E[1� · · · ] for � ∈ ℱC]

because &Bℎ = ℎ +
∫ B

0 &A6 dA by Proposition 6.11. This gives (ii).
Obviously, (ii) implies (iii).
Assume (iii). We also have

EG
[
ℎ(-C) −

∫ C

0
6(-B) dB

]
= &Cℎ(G) −

∫ C

0
&B6(G) dB.

Therefore,
&Cℎ − ℎ

C
=

1
C

∫ C

0
&A6 dA,

which converges to 6 in �0(�). J
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For example, consider 3-dimensional Brownian motion. By Itô’s formula,

∀ℎ ∈ �2(R3) C ↦→ ℎ(-C) −
1
2

∫ C

0
Δℎ(-B) dB

is a continuous local martingale. If ℎ and Δℎ are bounded, then this is a true martingale. In particular,
this holds if ℎ,Δℎ ∈ �0(R3). Therefore, Theorem 6.14 tells us that

� (!) ⊇
{
ℎ ∈ �2(R3) ; ℎ,Δℎ ∈ �0(R3)

}
and !ℎ = 1

2Δℎ for such ℎ. Equality does not hold for 3 > 2, where, in fact,

� (!) =
{
ℎ ∈ �0(R3) ; Δℎ ∈ �0(R3) in the sense of distributions

}
(see page 288 of the book by Revuz and Yor).

Example. If 3 = 2, let ℎ(G) B G2
1−G

2
2

|G | log |G | . For 3 > 2, multiply this by a smooth function. See
B. Epstein, Partial Differential Equations, pp. 162–163.

Exercise (due 3/8). Exercise 6.27 (note the hypotheses on page 180 of the book).

6.3. The Regularity of Sample Paths

Let � be a locally compact Polish space and (&C)C>0 be a Feller semigroup on � .

Theorem 6.15. Suppose (-C) is a process and (PG)G∈� are probability measures such that ∀G ∈ �
(-C)C>0 is a PG-Markov process with semigroup (&C)C>0 with respect to (ℱC)C and PG [-0 = G] = 1.
Set ℱ̃∞ B ℱ∞ and ∀C > 0 ℱ̃C B ℱC+ ∨ f(
), where


 B
{
� ∈ ℱ∞ ; ∀G ∈ � PG (�) = 0

}
.

Then there exists a process ( -̃C) that is càdlàg, adapted to (ℱ̃C)C , and for all probability measures W
on � , ( -̃C)C>0 is a P(W)-modification of (-C)C>0, P(W)-Markov with semigroup (&C)C>0 with respect to
(ℱ̃C)C , and ∀� ∈ ℰ P(W) [-̃0 ∈ �] = W(�).

Remark. The hypothesis implies that - itself is P(W)-Markov, etc., for all W on � .

Exercise (due 3/22). Show that (ℱ̃C)C is right-continuous. Hint: check that for all � ∈ ℱ̃C , there
exists � ∈ ℱC+ and # ∈ 
 such that � = � 4 # .

Lemma. Let. be a right-continuous, nonnegative supermartingale with respect to a right-continuous
filtration. Define

) B inf{C > 0 ; .C = 0} ∧ inf{C > 0 ; .C− = 0}.

Then
P
[
∀C ∈ [),∞) .C = 0

]
= 1.

Remark. The right-continuity of the filtration is not necessary.
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Proof. By Proposition 3.9(i),
)= B inf

{
C > 0 ; .C < 1/=

}
is a stopping time. By property (g) of stopping times in Chapter 3, ) B lim=→∞ )= is also a stopping
time. We are concerned only with what happens on [) < ∞]. For 0 < @ ∈ Q, apply Theorem 3.25
to the stopping times )= < ) + @:

E
[
.)+@1[)<∞]

]
6 E

[
.)=1[)=<∞]

]
6 1

=
.

This gives E
[
.)+@1[)<∞]

]
= 0, so .)+@ = 0 almost surely on [) < ∞]. By right-continuity, we get

the result. J

Proof of Theorem 6.15. If � is not compact, then let

�Δ B � ∪ {Δ}

be its one-point compactification; otherwise, let �Δ B � . Every function in �0(�) extends to a
function in � (�Δ) by defining it to be 0 at Δ.

Step 1: (define -̃ on �Δ)
Let ( 5=)=>0 be a sequence of nonnegative functions in �0(�) that separates points of �Δ, i.e.,

∀G ≠ H ∈ �Δ ∃= 5= (G) ≠ 5= (H). Let

H B
{
'? 5= ; ? ∈ N+, = ∈ N

}
.

Then H also separates points of �Δ because lim?→∞‖?'? 5= − 5=‖ = 0, as we saw in the proof
of Proposition 6.8.

For ℎ ∈ H with ℎ = '? 5=, the process
(
e−?Cℎ(-C)

)
C>0 is, for all G, a PG-supermartingale

by Lemma 6.6. Let #ℎ be the event that for some : ∈ N and some 0, 1 ∈ Q with 0 < 1,(
e−?Bℎ(-B)

)
B∈Q+∩[0,:] makes an infinite number of upcrossings of [0, 1]. In the proof of The-

orem 3.17, we saw that PG (#ℎ) = 0. Put # B
⋃
ℎ∈H #ℎ ∈ 
. Then for all W, P(W) (#) = 0,

and
∀l ∉ # ∀ℎ ∈ H ∀C > 0 lim

Q+3B↓C
ℎ
(
-B (l)

)
exists

and
∀l ∉ # ∀ℎ ∈ H ∀C > 0 lim

Q+3B↑C
ℎ
(
-B (l)

)
exists.

BecauseH separates points, it follows that ∀l ∉ #
(
-B (l)

)
B∈Q+ has right and left limits in �Δ (not

necessarily in �).
Thus, we may define

∀l ∉ # ∀C > 0 -̃C (l) B lim
Q+3B↓C

-B (l).

If l ∈ # , put -̃C (l) B G0 for some fixed G0 ∈ � and all C > 0. Then -̃ is �Δ-valued and
(ℱ̃C)C-adapted. Lemma 3.16 shows that

(
ℎ( -̃C)

)
C
is càdlàg for all ℎ ∈ H , whence so is -̃ .
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Step 2: (show ∀C > 0 ∀W P(W)
[
-C = -̃C

]
= 1)

Let C > 0. For all 5 , 6 ∈ �0(�), we have

E(W)
[
5 (-C)6( -̃C)

]
= lim

Q3B↓C
E(W)

[
5 (-C)6(-B)

]
= lim E(W)

[
5 (-C) E(W) [6(-B) | ℱC]

]
= lim E(W)

[
5 (-C)&B−C6(-C)

]
= E(W)

[
5 (-C)6(-C)

]
.

[bounded convergence theorem ]

[Feller property and
bounded convergence theorem]

As in Exercise 6.27, this means that (-C , -̃C)
�

= (-C , -C) under P(W) , whence we have P(W)
[
-C = -̃C

]
= 1.

Step 3: (show that ∀W -̃ is P(W)-Markov with semigroup (&C)C>0 with respect to (ℱ̃C))
We want to verify that

∀B > 0 ∀C > 0 ∀ 5 ∈ �(�) E(W)
[
5 ( -̃B+C)

�� ℱ̃B

]
= &C 5 ( -̃B),

i.e.,
∀� ∈ ℱ̃B E(W)

[
1� 5 ( -̃B+C)

]
= E(W)

[
1�&C 5 ( -̃B)

]
.

By regarding each side as a linear functional on �(�), we see that it suffices to establish the equality
for 5 ∈ �0(�). In addition, since B and C are fixed, we may replace -̃B+C by -B+C . Furthermore, we
may assume � ∈ ℱB+ . Then for A ∈ Q ∩ (B, B + C),

E(W)
[
1� 5 (-B+C)

]
= E(W)

[
1� E(W)

[
5 (-B+C)

�� ℱA

] ]
= E(W)

[
1�&B+C−A 5 (-A)

]
.

Since ‖&B+C−A 5 −&C 5 ‖ → 0 as A ↓ B and -A → -̃B P(W) -a.s. as A ↓ B, we get the result.
Step 4: (-̃ is càdlàg as an �-valued process off another set in 
; this step is not needed if � is

compact)
Note that -̃ being càdlàg in �Δ and Step 2 do not ensure this (even if -̃ = -).
Choose 0 < 6 ∈ �0(�), put �0(�) 3 ℎ B '16 > 0, and

.C B e−Cℎ( -̃C).

Then . is a nonnegative (ℱ̃C)-supermartingale by Lemma 6.6. Also, . is càdlàg (recall that
ℎ(Δ) B 0). Define ) as in the lemma. Let

#1 B
[
∃C ∈ [),∞) .C ≠ 0

]
.

By the lemma, #1 ∈ 
. Let
#2 B

[
∃: ∈ N -: ≠ -̃:

]
;

by Step 2, #2 ∈ 
. Off #1 ∪ #2, we have ) = ∞ because .C = 0 iff -̃C = Δ, and -: ≠ Δ. That is,
off #1 ∪ #2, -̃ is �-valued. J
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6.4. The Strong Markov Property

Theorem 6.16 (Simple Markov Property). Let � be a measurable space, (-C)C>0 be an �-valued
process, and (PG)G∈� be probability measures such that ∀G ∈ � (-C)C>0 is a PG-Markov process with
semigroup (&C)C>0 with respect to (ℱC)C>0 and PG[-0 = G] = 1. Let W be a probability measure on � .
Let

Φ : �R+ −→ R+

be measurable. Then

∀B > 0 E(W)
[
Φ

(
(-B+C)C>0

) �� ℱB

]
= E-B[Φ],

where E-B[Φ] denotes the composition of l ↦→ -B (l) and G ↦→ EG
[
Φ(-)

]
.

Proof. We saw in Section 6.1 that G ↦→ PG is measurable, whence so is G ↦→ EG
[
Φ(-)

]
.

To prove the theorem, it suffices to prove the case when Φ is an indicator of an elementary
cylinder set, or, more generally,

Φ(-) =
?∏
8=1

i8 (-B+C8 ), 0 6 C1 < C2 < · · · < C?, i8 ∈ �(�).

The proof is just like that of (∗∗∗), but with an extra conditioning: We want

the left-hand side of the conclusion of the theorem

=

∫
&C1 (-B, dG1)i1(G1)

∫
&C2−C1 (G1, dG2)i2(G2) · · ·

∫
&C?−C?−1 (G?−1, dG?)i? (G?).

For ? = 1, this is Definition 6.2 (of a Markov process with semigroup). The induction step is: the
left-hand side of the conclusion of the theorem equals

E(W)
[ ?−1∏
8=1

i8 (-B+C8 ) · E(W)
[
i? (-B+C? )

�� ℱB+C?−1

] ��� ℱB

]
= E(W)

[ ?−1∏
8=1

i8 (-B+C8 ) · &C?−C?−1i? (-B+C?−1)
��� ℱB

]
. J

Exercise (due 3/22). Exercise 6.26 (note that the derivative in part 3 is in the norm sense).

If � is a topological space,we write

D(�) B
{
5 ∈ �R+ ; 5 is càdlàg

}
,

and give D(�) the f-field � induced from �R+ , even though D(�) need not be measurable. We
call D(�) the Skorokhod space.
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Theorem 6.17 (Strong Markov Property). Let (-C)C>0 be an �-valued càdlàg process, and (PG)G∈�
be probability measures such that ∀G ∈ � (-C)C>0 is a PG-Markov process with semigroup (&C)C>0
with respect to (ℱC)C>0 and PG [-0 = G] = 1. Assume that � is locally compact Hausdorff, &C maps
�0(�) to � (�) [e.g., � is also Polish and (&C)C>0 is Feller],

Φ : (D(�),�) → R+

is measurable, and ) is an (ℱC+)C-stopping time [e.g., ) is a stopping time]. Then, for all probability
measures W on � ,

E(W)
[
1[)<∞]Φ

(
(-)+C)C>0

) �� ℱ)

]
= 1[)<∞] E-) [Φ] .

Proof. Theorem 3.7 guarantees that -) is measurable on [) < ∞], so the right-hand side is
ℱ) -measurable. Thus, it suffices to show that

∀� ∈ ℱ) E(W)
[
1�∩[)<∞]Φ

(
(-)+C)C>0

) ]
= E(W)

[
1�∩[)<∞] E-) [Φ]

]
.

As in the proof of Theorem 6.16, it suffices to do this for Φ of the form

Φ( 5 ) =
?∏
8=1

i8
(
5 (C8)

)
, 0 6 C1 < C2 < · · · < C?, i8 ∈ �(�).

We again use induction, but this time the case ? = 1 requires work; the induction step is like before:

E(W)
[
1�∩[)<∞]

?∏
8=1

i8 (-)+C8 )
]

= E(W)
[
1�∩[)<∞]

?−1∏
8=1

i8 (-)+C8 ) · E(W)
[
i? (-)+C? )

�� ℱ)+C?−1

] ]
= E(W)

[
1�∩[)<∞]

?−1∏
8=1

i8 (-)+C8 ) · &C?−C?−1i? (-)+C?−1)
]
.

So it remains to prove that

∀C > 0 ∀i ∈ �(�) ∀� ∈ ℱ)

E(W)
[
1�∩[)<∞]i(-)+C)

]
= E(W)

[
1�∩[)<∞]&Ci(-) )

]
.

Because � is locally compact Hausdorff, it suffices to prove this for all i ∈ �0(�) [regularity
ensures uniqueness again]. Write

)= B b=) + 1c/=.
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Then

E(W)
[
1�∩[)<∞]i(-)+C)

]
= lim

=→∞
E(W)

[
1�∩[)<∞]i(-)=+C)

]
= lim
=→∞

∞∑
8=1

E(W)
[
1�∩[(8−1)/=6)<8/=]i(- 8

=
+C)

]
= lim

=→∞

∞∑
8=1

E(W)
[
1�∩[(8−1)/=6)<8/=]&Ci(-8/=)

]
= lim
=→∞

E(W)
[
1�∩[)<∞]&Ci(-)=)

]
= E(W)

[
1�∩[)<∞]&Ci(-) )

]
,

[right-continuity]

[conditioning onℱ8/=]

because - is right-continuous and &Ci is continuous. J

The formulation of the strong Markov property for Brownian motion, Theorem 2.20, was
different, though equivalent, because it used that Brownian motion has independent, stationary
increments.

Exercise (due 3/29). Exercise 6.25, Exercise 6.29.

Exercise. Derive Eq. (3.7), the Laplace transform of the hitting time for Brownian motion, from
Dynkin’s formula, Exercise 6.29(3).

Appendix: Locally Compact Polish Spaces are f-compact

We prove the standard result that if � is a locally compact Polish space, then there is an
increasing sequence ( =)=>1 of compact subsets of � such that every compact subset of � is
contained in some  =.

First note that every separable metric space is second countable, i.e., has a countable basis
for its topology. Indeed, if � is a countable dense set, then the balls centered at points of � with
rational radii form a countable basis.

Second, we claim that every second countable, locally compact space has a countable basis
each of whose members has compact closure. To see this, letU be a countable basis. WriteU′ for
the collection of members ofU whose closure is compact. Let $ be open. For each G ∈ $, there is
a neighborhood + ⊆ $ of G with compact closure. Every element ofU contained in + lies inU′,
whence + is a union of sets inU′. Since this holds for all G ∈ $, also $ is a union of sets inU′.
ThereforeU′ satisfies the requirements.

Putting together these two facts, we see that � has a countable basis each of whose members
has compact closure. Order such a basis as (+=)=>1. Define  = :=

⋃
:6=+: . Then  = is compact and

 = ⊆  =+1. If  is any compact subset of � , then since � =
⋃
=+=, the definition of compactness

provides a finite subcover of  , whence  ⊆  = for some =.
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Although we did not use completeness of � , every locally compact, separable metric space is
Polish. For a proof, see Theorem 5.3 of Classical Descriptive Set Theory by Alexander S. Kechris.
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Chapter 8

Stochastic Differential Equations

We treat mainly the case of Lipschitz coefficients, where we prove existence, uniqueness, and
that the solution is a Feller Markov process whose generator is a second-order differential operator.

8.1. Motivation and General Definitions

A real-valued ordinary differential equation has the form

H′(C) = 1
(
C, H(C)

)
,

also written as
dHC = 1(C, HC) dC.

Here, we are writing the subscript C not to indicate derivative, but the time variable. We may wish to
model noise by adding a term on the right, f d�C or f(C, HC) d�C , where � is Brownian motion. The
equation

dHC = 1(C, HC) dC + f(C, HC) d�C
means, by definition, that

HC = H0 +
∫ C

0
1(B, HB) dB +

∫ C

0
f(B, HB) d�B .

We have a similar notion for vector-valued processes:

Definition 8.1. Let 3, < ∈ N+. Denote the set of 3 × < real matrices by "3×< (R) and give it
the product topology. Let f : R+ × R3 → "3×< (R) and 1 : R+ × R3 → R3 be locally bounded,
measurable functions. Write their coordinates as f = (f8 9 )16863, 16 96< and 1 = (18)16863 . By a
solution of the stochastic differential equation

� (f, 1) : d-C = f(C, -C) d�C + 1(C, -C) dC,

we mean

• a filtered probability space
(
Ω,ℱ, (ℱC)06C6∞,P

)
with a complete filtration,

• an <-dimensional (ℱC)-Brownian motion � = (�1, . . . , �<) started from 0, and
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• an (ℱC)-adapted continuous R3-valued process - = (-1, . . . , -3) such that

∀C > 0 -C = -0 +
∫ C

0
f(B, -B) d�B +

∫ C

0
1(B, -B) dB,

which means

∀8 ∈ [1, 3] - 8C = -
8
0 +

<∑
9=1

∫ C

0
f8 9 (B, -B) d� 9B +

∫ C

0
18 (B, -B) dB.

If also P[-0 = G] = 1, then we say - is a solution of �G (f, 1).

Note that -0 ⫫ � because -0 ∈ ℱ0 ⫫ �.
Existence and uniqueness can be defined in various ways probabilistically:

Definition 8.2. We say � (f, 1) has weak existence if for all G ∈ R3 , there exists a solution
to �G (f, 1). We say � (f, 1) has weak uniqueness if for each G ∈ R3 , over all solutions to
�G (f, 1) (including varying the filtered probability space), the law of - is the same. We say
� (f, 1) has pathwise uniqueness if for each filtered probability space

(
Ω,ℱ, (ℱC),P

)
and for each

(ℱC)-Brownian motion �, any pair, - and -′, of solutions to � (f, 1) such that P[-0 = -
′
0] = 1

are indistinguishable. We say a solution of �G (f, 1) is a strong solution if it is adapted to the
completed canonical filtration of �.

Exercise (due 3/29). Exercise 8.9.

Example (Section 8.4.1). To model the motion of a physical Brownian particle, we should not
consider the forces as changing the position of the particle, but its momentum or, equivalently,
velocity. Furthermore, there is a frictional drag (viscosity). This leads to the stochastic differential
equation

d-C = d�C − �-C dC (1-dimension) (∗)
for the velocity - , where � > 0. This is the Langevin equation, up to constants, historically the
first stochastic differential equation. It is also exponential decay with noise. We can solve this by
applying integration by parts to e�C-C :

d(e�C-C) = �e�C-C dC + e�C d-C
want
= e�C d�C . (∗∗)

Before continuing, note that the equality labeled “want” can be written e�C (�-C dC + d-C) = e�C d�C ,
which has the form � · . = � · / , where . and / are continuous semimartingales. Provided � and
�−1 are locally bounded, progressive processes, Section 5.1.3 shows that this equation is equivalent
to . − . (0) = / − / (0). Therefore, (∗∗) is equivalent to (∗). Hence

-C B -0e−�C +
∫ C

0
e−�(C−B) d�B

solves the Langevin equation. This solution is called the Ornstein–Uhlenbeck process. We have
proved weak existence, weak uniqueness, and pathwise uniqueness. It is also a strong solution: the
integral is a Wiener integral, whence it belongs to the Gaussian space generated by �. We consider
two special cases.
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100 Samples of the Ornstein-Uhlenbeck Process

for Time 10 Compared to Exponential Decay at Rate 2

Figure 8.1: Simulation of the Ornstein–Uhlenbeck process

(1) Suppose P[-0 = G] = 1. Then - is a non-centered Gaussian process with mean function

<(C) B E[-C] = Ge−�C .

Thus, - is gotten by adding <(C) to a centered Gaussian process with covariance function, for
0 6 B 6 C,

 (B, C) B Cov(-B, -C) = E
[∫ C

0
e−�(C−D) d�D ·

∫ B

0
e−�(B−D) d�D

]
=

∫ B

0
e−�(C−D)e−�(B−D) dD = e−�(C+B)

∫ B

0
e2�D dD︸       ︷︷       ︸

e2�B − 1
2�

=
e−� |C−B | − e−�(C+B)

2�
.

[isometry]

Thus, we see decay of the initial condition and convergence to a stationary process.
(2) Suppose -0 ∼
(0, 1

2� ). Then - is a centered Gaussian process with covariance function

 (B, C) + E
[
-0e−�C · -0e−�B

]
=  (B, C) + e−�(C+B)

2�
=

e−� |C−B |

2�
.

We see that the Ornstein–Uhlenbeck process in this case is stationary. Our later theory will
show it is Markov, but this can be shown directly:

Exercise (due 4/5). Show that a centered stationary Gaussian process on R+ is Markov if and only if
there exist � ∈ [0,∞] and 0 > 0 such that the covariance function is

(B, C) ↦→ 0e−� |B−C | .

In this case, give the transition semigroup.
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Exercise. Calculate the quadratic variation of an Ornstein–Uhlenbeck process in two ways, one
from the defining SDE and the other from the solution of the SDE as a stochastic integral.

A simple transformation of Brownian motion gives another description of the stationary
Ornstein–Uhlenbeck process: Suppose that (VC)C is an (ℱC)C-Brownian motion and � > 0. Then(
(2�)−1/2e−�CVe2�C

)
C>0 is a centered Gaussian process with the same initial distribution and covariance

function as in (2) above. Since it is continuous, this process has the same law as a stationary
Ornstein–Uhlenbeck process, but it is adapted to the filtration (ℱe2�C )C . A slightly different description
comes from applying Theorem 5.13 (the Dambis–Dubins–Schwarz theorem) to

(
e−�C (-C − -0)

)
C
,

yielding
(
e−�C (-0 + V(e2�C−1)/(2�))

)
C>0, which works for any -0 ∈ ℱ0.

Exercise. Brownian bridges can be defined in many ways. One such is in Exercise 2.27. We will
define a standard Brownian bridge as a continuous Gaussian process - on [0, 1] with covariance
function (B, C) ↦→ (B ∧ C) (1 − B ∨ C) such that -0 = -1 = 0. Let � be a standard Brownian motion.
(1) Show that d-C = d�C − -C

1−C dC has a unique strong solution on [0, 1) with -0 = 0 given by

-C = (1 − C)
∫ C

0

d�B
1 − B = �C − (1 − C)

∫ C

0

�B dB
(1 − B)2

.

(2) Show that the solution in part (1) extends continuously to -1 = 0 and then is a standard
Brownian bridge.

(3) Show that every standard Brownian bridge - has the property that
(
-C/(1 − C)

)
C∈[0,1) has

independent increments.

We now give an example (due to Tanaka) of a stochastic differential equation where weak
existence and weak uniqueness hold, but pathwise uniqueness fails and there is no strong solution:

d-C = f(-C) d�C ,

where

f(G) B


1 if G > 0,

−1 if G 6 0.

Recall that Theorem 5.12 (of Lévy) implies that if � is an (ℱC)-Brownian motion, � is progressive,
and |� | = 1, then � · � is an (ℱC)-Brownian motion. Therefore, weak uniqueness holds (since -
is progressive, so is f(-)). This also suggests how to get weak existence: Let - be a Brownian
motion starting from G ∈ R and define

�C B

∫ C

0
f(-B) d-B .

Then � is a Brownian motion, and d-C = f(-C) d�C because f2 = 1.
We claim that d(−-C) = f(−-C) d�C , which means that pathwise uniqueness fails. It suffices

to see that ∫ C

0
1{0} (-B) d�B = 0,
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which follows from the fact that its expected quadratic variation is

EG
[∫ C

0
1{0} (-B) dB

]
=

∫ C

0
PG [-B = 0] dB = 0.

One can show that ℱ�
• = ℱ

|- |
• $ ℱ-

• (here, denotes completion), so - is not a strong solution.
Similarly, one shows there does not exist any strong solution. This relies on Tanaka’s formula for
local time (Chapter 9).

Barlow (1982) gave, for each V ∈ (0, 1/2), a function f : R→ R that is Hölder-continuous of
order V and bounded above and below by positive constants such that

d-C = f(-C) d�C

has a weak solution but no strong solution and no pathwise uniqueness.

Exercise (due 4/5). Let " be a continuous semimartingale with "0 = 0. The proof of Proposi-
tion 5.11 shows that for all � ∈ C,

ℰ(�") B exp
{
�" − 1

2
〈�", �"〉

}
satisfies

d-C = �-C d"C , -0 = 1.

Show that there is no other solution. Hint: compute -ℰ(�")−1 using Itô’s formula.

2 4 6 8 10

200

400

600

800

100 Samples of the Exponential Martingale

for Brownian Motion to Time 10

Figure 8.2: Simulation of the exponential martingale. Note: ℰ(�)C → 0 almost surely as C →∞.

Example (Section 8.4.2). A combination of the SDEs of both the Ornstein–Uhlenbeck process and
the preceding exercise is

d-C = f-C d�C + A-C dC
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for constants f > 0 and A ∈ R. To solve this, calculate (if -0 > 0)

d log -C = -−1
C d-C −

1
2
-−2
C d〈-, -〉C = f d�C + A dC − f

2

2
dC,

whence
-C = -0 exp

{
f�C + (A −

f2

2
)C
}
= -0ℰ(f�)CeAC ;

one checks this is indeed a solution. One can also show uniqueness as in the exercise. This is
known as geometric Brownian motion with parameters f and A. It is fundamental in financial
mathematics; A represents interest rate.

In fact, this example is itself an example as in the exercise: take � := 1 and "C := f�C + AC.

2 4 6 8 10
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100 Samples of Geometric Brownian Motion

for Time 10 Compared to Exponential Decay at Rate 2

Figure 8.3: Simulation of geometric Brownian motion

There is a very general relation between existence and uniqueness:

Theorem (Yamada–Watanabe). If � (f, 1) has pathwise uniqueness, then � (f, 1) has weak unique-
ness. If � (f, 1) also has weak existence, then for every filtered probability space

(
Ω,ℱ, (ℱC),P

)
and (ℱC)-Brownian motion, for all G ∈ R3 , �G (f, 1) has a strong solution.

Theorem (Gikhman–Skorokhod). If � (f, 1) has weak uniqueness and a strong solution, then it
has pathwise uniqueness.

We will not prove these because we will establish these properties for the case of Lipschitz
coefficients.
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8.2. The Lipschitz Case

Here we show that when f and 1 are Lipschitz in space uniformly in time, then all the existence
and uniqueness properties hold. (The hypothesis is the same as in the Picard–Lindelöf theorem for
ordinary differential equations, which gives existence and uniqueness there.)

Lemma 8.4 (Gronwall’s Lemma). Let ) > 0 be a constant and 6 be a measurable function on [0, )].
If there exist 0 ∈ R and a measurable, nonnegative function 1 such that 1 · 6 is Lebesgue-integrable
on [0, )] such that

∀C ∈ [0, )] 6(C) 6 0 +
∫ C

0
1(B)6(B) dB,

then
∀C ∈ [0, )] 6(C) 6 0 · e

∫ C
0 1(B) dB .

We will use only the case that 1 is constant, in which case the upper bound is 0 · e1C .

Proof. Let � (C) denote the right-hand side of the hypothesized inequality, 6 6 �. Then � is
an absolutely continuous function with �′ a.e.

= 1 · 6 6 1 · � on [0, )]. It follows that, with
ℎ(C) :=

∫ C

0 1(B) dB, (
e−ℎ�

)′ a.e.
= (�′ − 1�)e−ℎ 6 (1� − 1�)e−ℎ = 0.

Therefore, e−ℎ� 6 e−ℎ(0)� (0) = 0 on [0, )], whence 6 6 � 6 0eℎ, as desired. J

In the rest of this section, we assume f : R+ × R3 → "3×< (R) and 1 : R+ × R3 → R3 are
continuous and

∃ ∀C > 0 ∀G, H ∈ R3

{
|f(C, G) − f(C, H) | 6  |G − H |,
|1(C, G) − 1(C, H) | 6  |G − H |.

Theorem 8.3. � (f, 1) has pathwise uniqueness and for every filtered probability space and
associated Brownian motion, for all G ∈ R3 , �G (f, 1) has a (unique) strong solution.

In particular, we have weak existence. Theorem 8.5 will imply weak uniqueness.
We will prove this using 3 = < = 1 to simplify the notation.

Lemma. Suppose that for all C > 0,

-̃C = -̃0 +
∫ C

0
f(B, -B) d�B +

∫ C

0
1(B, -B) dB

and

.̃C = .̃0 +
∫ C

0
f(B,.B) d�B +

∫ C

0
1(B,.B) dB.

Then for all stopping times g, for all C > 0,

E
[

sup
06B6C

( -̃B∧g − .̃B∧g)2
]
6 3 E

[
( -̃0 − .̃0)2

]
+ 3(4 + C) 2

∫ C

0
E
[
(-A∧g − .A∧g)2

]
dA.
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Proof. By the arithmetic mean-quadratic mean inequality, we see that the left-hand side is

6 3
(
E
[
( -̃0 − .̃0)2

]
+ E

[
sup

06B6C

���∫ B

0

[
f(A, -A∧g) − f(A,.A∧g)

]
1[B6g] d�A

���2]
+ E

[
sup

06B6C

���∫ B

0

[
1(A, -A∧g) − 1(A,.A∧g)1[B6g] dA

] ���2] ) .
The second term can be bounded by the Doob’s !2-inequality: it is

6 4 E
[∫ C

0

[
f(A, -A∧g) − f(A,.A∧g)

]2 dA
]
6 4 2

∫ C

0
E
[
(-A∧g − .A∧g)2

]
dA.

The third term can be bounded by the arithmetic mean-quadratic mean inequality: it is

6 E
[
C ·

∫ C

0

[
1(A, -A∧g) − 1(A,.A∧g)

]2 dA
]
6 C 2

∫ C

0
E
[
(-A∧g − .A∧g)2

]
dA.

Adding these gives the result. J

Proof of Theorem 8.3. We first show uniqueness. Fix a filtered probability space and a Brownian
motion. Suppose that - and -′ are both solutions of � (f, 1) with -0 = -

′
0. Fix " > 0 and define

g B inf
{
C > 0 ; |-C | > " or |-′C | > "

}
.

Then by the lemma, ∀) > 0 ∀C ∈ [0, )]

E
[

sup
06B6C

(-B∧g − -′B∧g)2
]
6 3 2(4 + ))

∫ C

0
E
[
(-A∧g − -′A∧g)2

]
dA.

Thus, Gronwall’s lemma applies to

6(C) B E
[

sup
06B6C

(-B∧g − -′B∧g)2
]
,

yielding 6 = 0. Now let " →∞ to get - = -′ (i.e., indistinguishable).
To show existence, we use Picard’s approximation method. Fix G ∈ R and define recursively

-0
C B G,

∀= > 0 -=+1C B G +
∫ C

0
f(B, -=B ) d�B +

∫ C

0
1(B, -=B ) dB.

Note that by induction, -= is adapted to ℱ�
• and continuous, so the stochastic integrals are defined.

Next, fix ) > 0. For = > 1, set

6= (C) B E
[

sup
06B6C

(-=B − -=−1
B )2

]
.

Because f(·, G) is continuous, it is bounded on [0, )], whence by Doob’s !2-inequality,

E
[

sup
06B6C

���∫ C

0
f(B, G) d�B

���2]
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is bounded on [0, )]. Therefore,

∃�′) ∀C 6 ) 61(C) 6 �′) .

The lemma shows that

∃�) ∀= > 1 ∀C ∈ [0, )] 6=+1(C) 6 �)
∫ C

0
6= (B) dB.

Induction shows that
∀= > 1 6= (C) 6 �′) (�) )=−1 C=−1

(= − 1)! .

In particular,
∑∞

==1 6= ())1/2 < ∞, whence the arithmetic mean-quadratic mean inequality yields

E
[ ∞∑
==1

sup
06C6)

|-=+1C − -=C |
]
< ∞,

so the sum is finite almost surely. Therefore, -=�[0, )] almost surely converges uniformly; let its
limit be - on [0, )], which necessarily has continuous sample paths. As the almost sure limit of -=,
- is also adapted to ℱ�

• .
Since -= → - in !2 (Ω × [0, )]) and 1(·) is Lipschitz, we have∫ C

0
1(G, -=B ) dB

P−→
∫ C

0
1(G, -B) dB.

Similarly,

E
[(∫ C

0
f(B, -=B ) d�B −

∫ C

0
f(B, -B) d�B

)2]
= E

[∫ C

0

(
f(B, -=B ) − f(B, -B)

)2 dB
]
→ 0,

so ∫ C

0
f(B, -=B ) d�B

P−→
∫ C

0
f(B, -B) d�B .

Therefore, - satisfies �G (f, 1) on [0, )]. Because ) is arbitrary, -= has an almost sure limit, - , on
R+ and - is a strong solution to �G (f, 1). J

Exercise. Let f, f′, 1, 1′ all satisfy the Lipschitz conditions of this section. Suppose that on
some open set * ⊆ R3 , we have (f, 1) = (f′, 1′) on R+ × *. Fix G ∈ * and let - and -′
be the corresponding solutions to �G (f, 1) and �G (f′, 1′). Let ) := inf{C ≥ 0 ; -C ∉ *} and
) ′ := inf{C ≥ 0 ; -′C ∉ *}. Show that ) = ) ′ a.s. and -) is indistinguishable from (-′)) ′.

Exercise (due 4/5). Exercise 8.10, Exercise 8.12.

Exercise. Suppose that - is a solution of �0(f, 1), where f, 1 : R→ R are Borel and such that
1/f2 is continuous and locally integrable and f(G) ≠ 0 for all G ∈ R. Let )G := inf{C > 0 ; -C = G}
and 2 < 0 < 3.
(1) Show that )2 ∧ )3 < ∞ a.s.
(2) Calculate P[)2 < )3].
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(3) Show that the answers do not change if f is replaced by 6 · f and 1 is replaced by 62 · 1,
where 6 is a strictly positive, Borel function.

Exercise. Let f, 1 : R→ R be bounded, f be continuous, 1 be Borel, and inf f > 0. Let - solve
� (f, 0). Define !C :=

∫ C

0 1(-B)f(-B)
−1 d�B, -̃ := - − 〈-, !〉, and VC :=

∫ C

0 f(-B)
−1 d-̃B.

(1) Show that d-C = f(-C) dVC + 1(-C) dC.
(2) Use Girsanov’s theorem to show that � (f, 1) has a weak solution whose law is mutually

locally absolutely continuous with respect to the P-law of - .

We now show continuity of the solution to �G (f, 1) as a function of G. The space� (R+,R<) of
continuous functions from R+ to R< has the topology of uniform convergence on compact subsets of
R+, whose Borel f-field �< is the one generated by coordinate maps. Note � (R+,R<) is complete.
The law of <-dimensional Brownian motion started at 0 is Wiener measure, on � (R+,R<). The
idea is to look at the solution of �G (f, 1) as a function �G of the path | of Brownian motion. Write
�< for the,-completion of �<.

Theorem 8.5. There exists a map R3 3 G ↦→ �G :
(
� (R+,R<),�<

)
→

(
� (R+,R3),�3

)
such that

(i) for all C > 0 and G ∈ R3 , there exists iGC :
(
� ( [0, C],R<),�<

)
→ (R3 ,ℛ3) such that

�G (l)C = iGC
(
l�[0, C]

)
,-a.s.;

(ii) for all l ∈ � (R+,R<), G ↦→ �G (l) is continuous from R3 to � (R+,R3); and
(iii) for every complete filtered

(
Ω,ℱ, (ℱC),P

)
and <-dimensional (ℱC)-Brownian motion � with

�0 = 0, for all R3-valued* ∈ ℱ0, the process

C ↦→ �* (�)C

is the pathwise unique solution to � (f, 1) with initial value*.

Remark. Note that (iii) implies weak uniqueness: each solution of �G (f, 1) has the form �G (�) for
some Brownian motion �, whence its law is (�G)∗(,), the pushforward of, under �G .

Proof. Again for simplicity of notation, we prove only the case < = 3 = 1. Let �C be the ,-
completion of the f-field on � (R+,R) generated by the coordinate maps B ↦→ |(B) for B ∈ [0, C],
and�∞ B

∨
C>0�C (which we denoted by �1 above).

The topology on � (R+,R) can be defined by a metric of the form

d(|, |′) B
∞∑
:=1

U:

(
sup
B∈[0,:]

||(B) − |′(B) | ∧ 1
)

for any sequence U: > 0 with
∑∞

:=1 U: < ∞.
Let -G be the solution to �G (f, 1) corresponding to

(
� (R+,R),�∞, (�C)C ,,

)
and the Brownian

motion C ↦→ |(C): such a solution exists and is unique (up to indistinguishability) by Theorem 8.3.
Fix G, H ∈ R. Let

)= B inf
{
C > 0 ; |-GC | > = or |-

H
C | > =

}
.
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By the lemma,

∀C > 0 E
[
sup
B6C
(-GB∧)= − -

H

B∧)=)
2] 6 3(G − H)2 + 3 2(4 + C)

∫ C

0
E
[
(-GB∧)= − -

H

B∧)=)
2] dB.

Note that (-G
B∧)= − -

H

B∧)=)
2 6 4=2, so Gronwall’s lemma implies that

∀) > 0 E
[
sup
B6)
(-GB∧)= − -

H

B∧)=)
2] 6 3(G − H)2e3 2 (4+))) .

Choose U: > 0 such that
∞∑
:=1

U:e3 2 (4+:): C � < ∞ and
∞∑
:=1

U: = 1.

Then by the arithmetic mean-quadratic mean inequality,

E
[
d(-G , - H)2

]
6 E

[ ∞∑
:=1

U: sup
B∈[0,:]

(-GB − -
H
B )2

]
6 3� (G − H)2.

By Kolmogorov’s lemma (Theorem 2.9) applied to the process G ↦→ -G with values in
(
� (R+,R), d

)
,

we get a modification -̃ of - with continuous (in G ∈ R) sample paths. (Note: ∀G ∈ R -G and -̃G
are indistinguishable.) Define

�G (|) B -̃G (|) =
(
-̃GC (|)

)
C>0.

This makes (ii) satisfied.
Since -GC ∈ �C , there exists

iGC :
(
�

(
[0, C],R

)
, f

(
|(B), B ∈ [0, C]

) )
→ (R,ℛ)

such that -GC (|) = iGC
(
|�[0, C]

)
,-a.s. Because

�G (|)C = -̃GC (|)
,-a.s.
= -GC (|),

we obtain (i).
Because -G solves �G (f, 1), we have

∀C > 0 -GC (|) = G +
∫ C

0
f

(
B, -GB (|)

)
d|(B) +

∫ C

0
1
(
B, -GB (|)

)
dB

for,-a.e. |. By definition of �G , we obtain

�G (|)C = G +
∫ C

0
f

(
B, �G (|)B

)
d|(B) +

∫ C

0
1
(
B, �G (|)B

)
dB

for ,-a.e. |. We want to substitute * for G and � for |. The stochastic integral is not defined
pointwise, so we must be careful.
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First, consider the map (G, l) ↦→ �G
(
�(l)

)
C
. For fixed l, this is continuous in G. Now

�G
(
�(l)

)
C
= iGC

(
�(l)�[0, C]

)
P-a.s.

by (i) and the fact that, = �∗ P. The right-hand side belongs to ℱC , whence so does the left-hand
side by completeness. In other words, for fixed G, it isℱC-measurable in l. Therefore, the map is
the limit as =→∞ of the functions

(G, l) ↦→
∑
:∈Z

1[ :
=
, :+1
=
) (G)�:

=

(
�(l)

)
C
,

which shows that the map is measurable with respect to ℛ ⊗ ℱC . Because l ↦→
(
* (l), l

)
is

measurable fromℱC toℛ ⊗ℱC , the composition l ↦→ �* (l)
(
�(l)

)
C
isℱC-measurable. Thus, the

process �* (�) is adapted.
Write

� (G, |) B
∫ C

0
f

(
B, �G (|)B

)
d|(B)

and

�= (G, |) B
=−1∑
8=0

f
(
8C
=
, �G (|)8C/=

) [
|
( (8+1)C

=

)
− |( 8C

=
)
]
.

By Proposition 5.9, ∀G �= (G, |)
,−→ � (G, |) (i.e., in probability). Therefore,

∀G �= (G, �)
P−→ � (G, �).

Because* ⫫ �, it follows (by conditioning on*) that

�= (*, �)
P−→ � (*, �).

By Proposition 5.9 again, �= (*, �)
P−→

∫ C

0 f
(
B, �* (�)B

)
d�B, whence � (*, �) is that stochastic

integral. Because

� (G, |) = �G (|)C − G −
∫ C

0
1
(
B, �G (|)B

)
dB,

it follows that �* (�) solves � (f, 1). J

In the lemma, one may use powers ? > 1, not only ? = 2, and this allows us to show (from our
version of Kolmolgorov’s lemma) that

∀� > 0 ∀) > 0 ∀Y ∈ (0, 1) ∀? > 0 E
[

sup
C∈[0,)],G≠H
|G |,|H |6�

( |-GC − - HC |
|G − H |1−Y

) ?]
< ∞.

Exercise (due 4/12). Exercise 8.14 (the inequality 0 < |/B | in (1) should be 0 6 |/B |; the conclusion
in (4) is that - and -′ are indistinguishable).
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8.3. Solutions of Stochastic Differential Equations as Markov Processes

We now suppose that f and 1 do not depend on time, but still are Lipschitz. Let �G be as
in Theorem 8.5.

Theorem8.6. Let - be a solution of � (f, 1) on a complete filtered probability space
(
Ω,ℱ, (ℱC),P

)
with (ℱC)-Brownian motion �. Then - is a Markov process with respect to (ℱC) with semigroup

&C 5 (G) B
∫

5
(
�G (|)C

)
, (d|) ( 5 ∈ �(R3), C > 0, G ∈ R3).

Proof. We first show that

∀ 5 ∈ �(R3) ∀B, C > 0 E
[
5 (-B+C)

�� ℱB

]
= &C 5 (-B).

Write
-B+C = -B +

∫ B+C

B

f(-A) d�A +
∫ B+C

B

1(-A) dA.

Recall that the stochastic integral is defined as (f(-)·�)B+C−(f(-)·�)B. However, by Proposition 5.9,
we may also write it as ∫ C

0
f(-′D) d�′D,

where -′D B -B+D, �′D B �B+D − �B, and we use the complete filtrationℱ
′
D B ℱB+D: -′ is adapted

to ℱ
′
• and �′ is an <-dimensional ℱ′• -Brownian motion. Thus,

-′C = -B +
∫ C

0
f(-′D) d�′D +

∫ C

0
1(-′D) dD,

i.e., -′ solves � (f, 1) on (Ω,ℱ,ℱ′• ,P) with Brownian motion �′ and initial value

-′0 = -B ∈ ℱ
′
0 .

By Theorem 8.5(iii), we have -′ = �-B (�′). It follows that

E
[
5 (-B+C)

�� ℱB

]
= E

[
5 (-′C )

�� ℱB

]
= E

[
5
(
�-B (�′)

) �� ℱB

]
=

∫
5
(
�-B (|)C

)
, (d|) = &C 5 (-B),

[�′ ∼ , and �′ ⫫ ℱB 3 -B; this is not a stochastic integral,
so we may substitute -B for G]

as desired.
It remains to show that (&C) is a transition semigroup, so we check Definition 6.1 step by step:

(i) (&0 = Id) �G (|)0 = G
(ii) (&C&B = &B+C) Let -G solve �G (f, 1). Then

&B+C 5 (G) = E
[
5 (-GB+C)

]
= E

[
&C 5 (-GB )

]
= &B (&C 5 ) (G).

[-GB+C
�

= �G (|)B+C]

[by the above]

[the first equality with 5 replaced
by &C 5 and B + C by B]
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(iii) ((C, G) ↦→ &C (G, �) is measurable) By the topology of uniform convergence on compact
sets for � (R+,R3), Theorem 8.5 gives that for all 5 ∈ �b(R3),

(C, G) ↦→
∫

5
(
�G (|)C

)
, (d|)

is continuous (since (C, G) ↦→ �G (·)C is continuous). Thus, for all 5 ∈ �b(R3),

(C, G) ↦→ &C 5 (G)

is continuous. By regularity, it follows that if � is closed, (C, G) ↦→ &C (G, �) is measurable. By the
c-� theorem, the same holds for all � ∈ ℬ3 . J

Exercise (due 4/19). Let � be locally compact Polish and (&C)C>0 be a transition semigroup on �
that satisfies

(i) ∀C > 0 ∀ 5 ∈ �0(�) &C 5 ∈ �0(�), and
(ii) ∀ 5 ∈ �0(�) ∀G ∈ � limC↓0&C 5 (G) = 5 (G).

This exercise will show that (&C) is Feller.
(1) The proof of Proposition 6.8 shows that the range R of '� on �0(�) is the same for all � > 0

and is contained in �0(�); also,

∀G ∈ � ∀ 5 ∈ �0(�) lim
�→∞

�'� 5 (G) = 5 (G).

Use the Hahn–Banach theorem to deduce that R is dense in �0(�).
(2) The proof of Lemma 6.6 showed (used) that

∀B > 0 ∀ℎ ∈ �(�) e−B&B'1ℎ =

∫ ∞

B

e−C&Cℎ dC.

Deduce that
∀ℎ ∈ �(�) lim

B↓0
‖&B'1ℎ − '1ℎ‖ = 0.

Infer that
∀ 5 ∈ �0(�) lim

B↓0
‖&B 5 − 5 ‖ = 0,

whence (&C)C is Feller.

Let �2
c (R3) denote the space of 5 ∈ �2(R3) with compact support.

Theorem 8.7. The semigroup (&C)C of Theorem 8.6 is Feller. Its generator ! satisfies
(i) �2

c (R3) ⊆ � (!), and
(ii) ∀ 5 ∈ �2

c (R3) ∀G ∈ R3

! 5 (G) = 1
2

3∑
8, 9=1
(ff∗)8 9 (G) 58 9 (G) +

3∑
8=1

18 (G) 58 (G)

= 1
2
(
ff∗(G),∇2 5 (G)

)︸                 ︷︷                 ︸
natural inner product

+ 1(G) · ∇ 5 (G),

where f∗ is the transpose of f ∈ "3×< (R3).
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Proof. Let 5 ∈ �0(R3). Theorem 8.5 (continuity of G ↦→ �G (|)), the definition of &C , and the
bounded convergence theorem show that &C 5 ∈ � (R3). Similarly, since C ↦→ �G (|)C is continuous,
we obtain

∀G lim
C↓0
&C 5 (G) = 5 (G).

Thus, by the exercise, it suffices to show that

&C 5 ∈ �0(R3)

in order to conclude that (&C)C is Feller. We assume f and 1 are bounded and leave the general case
to another exercise.

Suppose
∀8, 9 |f8, 9 | 6 � and |18 | 6 �.

For a solution -G of �G (f, 1), we obtain, for all C > 0,

E
[
|-GC − G |2

]
6

3∑
8=1
(< + 1)

{ <∑
9=1

E
[(∫ C

0
f8 9 (-GB ) d�

9
B

)2]
+ E

[(∫ C

0
18 (-GB ) dB

)2]}
6 3 (< + 1)�2(C + C2).

Therefore, for all � > 0, Chebyshev’s inequality gives

|&C 5 (G) | =
��E[

5 (-GC )
] ��

6
��E[

5 (-GC )1[|- GC −G |6�]
] �� + ‖ 5 ‖ 3 (< + 1)�2(C + C2)

�2 .

Now let G →∞ and then �→∞ to get &C 5 ∈ �0(R3).
Finally, let 5 ∈ �2

c (R3) and set 6 to be the desired value of ! 5 . By Theorem 6.14, if we show
that

" B 5 (-G) −
∫ •

0
6(-GB ) dB

is a martingale, then it will follow that 5 ∈ � (!) and 6 = ! 5 . Apply Itô’s formula to 5 (-G):

5 (-GC ) = 5 (G) + stochastic integral

+
3∑
8=1

∫ C

0
18 (-GB ) 58 (-GB ) dB +

1
2

3∑
8, 9=1

∫ C

0
58 9 (-GB ) d〈-G,8, -G, 9 〉B

= 5 (G) + stochastic integral︸                           ︷︷                           ︸
continuous local martingale

+
∫ C

0
6(-GB ) dB.

Therefore, " is a continuous local martingale. Because 5 and 6 are bounded, " is a martingale
by Proposition 4.7(ii). J

Exercise (due 4/19). Complete the proof of Theorem 8.7 in the general Lipschitz case as follows.
By what we have shown at the start of the proof of Theorem 8.7 and our version of Theorem 6.17,
-G has the strong Markov property.
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(1) Show that there exists � < ∞ such that

∀|G | > 1 |f(G) | 6 � |G | and |1(G) | 6 � |G |.

For � > 0, let
)� B inf

{
C > 0 ; |-C | = �

}
.

For : ∈ N+, let (: B )�·2:−1 ∧ )�·2:+1 . Show that there exists �′ < ∞ such that

∀C > 0 ∀� > 1 ∀|G | = � · 2:

EG
[
|-C∧(: − G |2

]
6 �′ · �2 · 22: (C + C2) and PG [(: 6 C] 6 4�′(C + C2).

(2) Show that there exists C0 > 0 such that

∀: ∈ N+ ∀� > 1 ∀|G | > � · 2: PG [)�·2:−1 > C0] >
1
2
.

Use the strong Markov property to deduce that for all � > 1,

lim
:→∞

sup
|G |>�·2:

PG
[��{ 9 ∈ [1, :] ; )�·2 9 = ∞ or )�·2 9−1 − )�·2 9 > C0

}�� < :

4

]
= 0.

(3) Show that
∀� > 1 lim

:→∞
sup
|G |>�·2:

PG
[
)� <

:C0
4

]
= 0.

Deduce that ∀ 5 ∈ �0(R3) ∀C > 0 &C 5 ∈ �0(R3).

The words “diffusion process” are assigned different meanings by different authors, but one
common meaning is a process with continuous sample paths that is Markov and solves a stochastic
differential equation. The study of ! as a second-order differential operator can be done via
probability, as we will see (for Brownian motion) in Chapter 7.

Exercise (due 4/19). (1) What is the generator on �2
c (R) of the Ornstein–Uhlenbeck process? of

geometric Brownian motion?
(2) Find Lipschitz f and 1 such that the solution of � (f, 1) has the generator

! 5 (G1, G2) = 2G2 51(G1, G2) + ln(1 + G2
1 + G

2
2) 52(G1, G2)

+1
2 (1 + G

2
1) 511(G1, G2) + G1 512(G1, G2) + 1

2 522(G1, G2)

on �2
c (R2).

Exercise (due 4/19). Exercise 8.11: for (1), we consider only � > 0; for (2), this means to show the
Laplace transform of &C (G, ·) is as on the bottom of page 178 of the book.

Exercise (due 4/19). Let � be 1-dimensional Brownian motion. Define

-GC B (G1/3 + 1
3�C)

3

for C > 0. Let f(G) B G2/3 and 1(G) = G1/3/3.
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(1) Show that -G solves �G (f, 1).
(2) Let ) B inf{C > 0 ; -C = 0}. Show that (-G)) is also a strong solution to �G (f, 1).

Exercise (due 4/26). Let f and 1 be Lipschitz. Let

� B {H ∈ R3 ; f(H) = 0 and 1(H) = 0}.

Show that if -G solves �G (f, 1), then � is absorbing for -G , i.e., if

) B inf{C > 0 ; -GC ∈ �},

then -G = (-G)) .
Extra credit: Show that if G ∉ �, then ) = ∞ almost surely.

Exercise. Suppose that d-C = d�C + 1(-C) dC and -0 = 0, where 1(G) := 2′(G)/
(
22(G)

)
for

some strictly positive function 2 ∈ �2(R). Define g0 := 0 and recursively set g:+1 := inf{C >
g: ; |-g:+1 − -g: | = 1} for : > 0. Show that the discrete-time process (-g: ; : > 0) is a
nearest-neighbor random walk on Z with transition probabilities ?=,=+1 = A=/

(
A= + A=+1

)
, where

A= :=
∫ =

=−1 dG/2(G). (If we interpret 2(G) as the conductivity at G, then A= is the resistance of the
edge between = − 1 and = in an electrical network on Z.)
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Chapter 7

Brownian Motion and Partial Differential
Equations

We discuss the heat equation and especially Laplace’s equation and how they can be solved
using Brownian motion. This is a model for other partial differential equations and diffusions. We
then discuss some path properties of Brownian motion.

7.1. Brownian Motion and the Heat Equation

For the whole chapter, � denotes 3-dimensional Brownian motion with PG the measure such
that PG [�0 = G] = 1, &• is its transition semigroup, and ! is its generator. Recall that

� (!) ⊇
{
k ∈ �2(R3) ; k,Δk ∈ �0(R3)

}
and on that set,

!k = 1
2Δk.

For all i ∈ �(R3)
∀C > 0 &Ci = ?C ∗ i,

where ?C is the density of 
(0, C �), a �∞ function. Thus, &Ci ∈ �∞. If i ∈ �0(R3), then all
derivatives of &Ci lie in �0(R3), as we may see by differentiating under the integral:

m8&Ci = (m8?C) ∗ i.

Thus, for i ∈ �0(R3), we have &Ci ∈ � (!) and ! (&Ci) = 1
2Δ(&Ci) for C > 0.

Exercise. Exercise 7.28; add part (0): Let B ↦→ iB be continuous from R+ to �0(R3). Show that∫ C

0 &BiB dB ∈ �0(R3) ∩ �1(R3) with gradient in �0(R3) and continuous in C ∈ R+, where (&C)C is
the transition semigroup of Brownian motion. Hint for (1): write

∫ C

0 =
∫ C/2
0 +

∫ C

C/2 for the second
derivatives.

The following shows how Brownian motion solves the heat equation with initial value
i ∈ �0(R3). (Direct calculation shows more, but our proof extends to other equations involving the
generator of a Feller process.)
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Theorem 7.1. Let i ∈ �0(R3). For C > 0 and G ∈ R3 , set

DC (G) B &Ci(G) = EG
[
i(�C)

]
.

Then (C, G) ↦→ DC (G) on (0,∞) × R3 satisfies
mDC

mC
=

1
2
ΔDC and lim

C↓0
H→G

DC (H) = i(G).

Proof. Recall Proposition 6.11:

∀ 5 ∈ � (!) ∀C > 0 &C 5 = 5 +
∫ C

0
! (&B 5 ) dB.

We do not necessarily have i ∈ � (!), but we do have &Yi ∈ � (!) for Y > 0. Thus,

∀C > Y > 0 DC = DY +
∫ C−Y

0
! (&BDY) dB = DY +

∫ C

Y

!DB dB.

Now, we can also write
!DB = &B−Y (!DY)

by Proposition 6.10 to see that B ↦→ !DB is continuous on [Y,∞). Thus,

∀C > Y > 0
mDC

mC
= !DC =

1
2
ΔDC .

The initial condition follows from the Feller property &Ci→ i as C ↓ 0. J

Exercise. Let - be a Markov process on a locally compact Polish space � with Feller semigroup
(&C)C and generator !. Let i ∈ �0(�). Show that if DC (G) := &Ci(G), then

mDC

mC
= !DC and lim

C↓0
H→G

DC (H) = i(G)

for C > 0 and G ∈ � .

7.2. Brownian Motion and Harmonic Functions

Definition 7.2. A domain of R3 is a non-empty, open, connected set. For a domain � ⊆ R3 , a
function D : � → R is harmonic on � if D ∈ �2(�) and ΔD = 0 on �.

Suppose �′ is a subdomain of � with �′ ⊆ �. Let
) B inf{C > 0 ; �C ∉ �′}.

By Itô’s formula, if D is harmonic on � and �0 ∈ �′, then D(�)) is a continuous local martingale
with

D(�C∧) ) = D(�0) +
∫ C∧)

0
∇D(�B) · d�B,

like a line integral. In fact, if �′ is bounded, then D is bounded on �′, so D(�)) is a true martingale.
Conversely, if D ∈ �2(�) and for all subdomains �′ ⊆ � with �′ ⊂ �, D(�)) is a continuous local
martingale, then by Itô’s formula, D is harmonic in �. We will weaken the hypothesis “D ∈ �2(�)”
with Lemma 7.5.
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Proposition 7.3. Let D be harmonic on a domain �. For a bounded subdomain �′ of � with
�′ ⊂ �, let

) B inf{C > 0 ; �C ∉ �′}.

Then
∀G ∈ �′ D(G) = EG

[
D(�) )

]
.

Proof. Because �′ is bounded, D(�)) is a bounded PG-continuous local martingale, so it is a true
martingale. Thus,

∀C > 0 D(G) = EG
[
D(�C∧) )

]
.

Since ) < ∞ PG-a.s., we may let C → ∞ and use the bounded convergence theorem to obtain the
desired formula. J

Rotational symmetry of Brownian motion shows that if �′ is a ball centered at G, then �) has
the uniform distribution on m�′. Let fG,A denote the uniform measure on the sphere of radius A
centered at G.

Proposition 7.4 (Mean-Value Property). If D is harmonic on a neighborhood of the closed ball of
radius A centered at G, then

D(G) =
∫

D(H) dfG,A (H). J

Exercise (due 4/26). Let D be harmonic on R3 and � be Brownian motion.
(1) Let C > 0. Show that

∀H ∈ R3 D(�)C is a true PH-martingale

if and only if

∀H ∈ R3

∫
R3

��D(G)��e−|G−H |2/2C dG < ∞.
(2) Find D on R2 such that for all H ∈ R2,

(
D(�B)

)
06B<1 is a true PH-martingale, but

(
D(�B)

)
06B61

is not a true PH-martingale.

Exercise (due 4/26). (1) Show that every bounded harmonic function on R2 is constant by using
Exercise 5.33(5).

(2) Show the same on R3 for 3 > 2. Hint: Let G ≠ H and let � be the hyperplane{
I ∈ R3 ; |I − G | = |I − H |

}
.

Let ) B inf{C > 0 ; �C ∈ �}. Show that

EG
[
D(�) )

]
= EH

[
D(�) )

]
.

(3) Let D be a nonconstant harmonic function on R3 (3 > 2). Show that

∀? > 1 sup
C>0

∫
R3

��D(CG)��?e−|G |2 dG = ∞.
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(4) (Extra credit) Does (3) hold for ? = 1?
(5) (Extra credit) Show that every positive harmonic function on R3 (3 > 1) is constant.

We say that a locally bounded, measurable function D on � satisfies the mean-value property
if the equation of Proposition 7.4 holds for all closed balls in �.

Lemma 7.5. If D satisfies the mean-value property on a domain �, then D is harmonic on �.

Thus, if D is locally bounded and measurable, and D(�)) is a continuous local martingale
for every exit time ) of a closed ball centered at the starting point and contained in �, then D is
harmonic.

Proof. It suffices to show that for all A0 > 0, if �′ B
{
G ∈ � ; |G − �c | > A0

}
, then D is harmonic

in �′.
We first show that D ∈ �∞(�′). Choose any ℎ : R+ → R+ that is �∞, has support in (0, A0),

and is not identically zero. For 0 < A < A0, multiply both sides of

D(G) =
∫

D(H) dfG,A (H) (G ∈ �′)

by A3−1ℎ(A) and integrate from A = 0 to A0. We get, for some constant 2 > 0, that

∀G ∈ �′ 2D(G) =
∫
|H |<A0

D(G + H)ℎ
(
|H |

)
dH =

∫
R3
D(G + H)ℎ

(
|H |

)
dH

if we set D to be 0 outside �. We can rewrite this as a convolution:

2D(G) =
∫
R3
D(I)ℎ

(
|I − G |

)
dI.

Since I ↦→ ℎ
(
|I |

)
∈ �∞(R3), we get D ∈ �∞(�′).

To show ΔD = 0 in �′, we may now apply Itô’s formula to D(�): Let

)G,A B inf
{
C > 0 ; |G − �C | = A

}
.

Then
∀G ∈ �′ ∀A ∈ (0, A0) EG

[
D(�C∧)G,A )

]
= D(G) + 1

2 EG
[∫ C∧)G,A

0
ΔD(�B) dB

]
.

Recall that EG [)G,A] < ∞ (in fact, EG [)G,A] = A2/3). Thus, we may let C →∞ and apply Lebesgue’s
dominated convergence theorem to get

EG
[
D(�)G,A )

]
= D(G) + 1

2 EG
[∫ )G,A

0
ΔD(�B) dB

]
.

The left-hand side equals D(G), therefore the second term on the right-hand side equals 0. Now, let
A ↓ 0 to get ΔD(G) = 0. J

Definition 7.6. Let � be a domain and 6 ∈ � (m�). We say that D : � → R solves the Dirichlet
problem in � with boundary condition 6 if D is harmonic in � and

∀H ∈ m� lim
�3G→H

D(G) = 6(H).
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Thus, if

D̃(G) B

D(G) if G ∈ �,

6(G) if G ∈ m�,

then D̃ ∈ � (�). If � is bounded, then D is bounded.

Exercise (due 4/26). Let � be a bounded domain, 6 ∈ �(m�), and

) B inf{C > 0 ; �C ∉ �}.

Define
{(G) B EG

[
6(�) )

]
for G ∈ �.

Show that { ∈ � (�).

Proposition 7.7. Keep the notation of the preceding exercise.
(i) If 6 ∈ � (m�) and D solves the Dirichlet problem in � with boundary condition 6, then D = {.
(ii) The function { is harmonic in � and

∀G ∈ � lim
C↑)

{(�C) = 6(�) ) PG-a.s.

Proof. (i) In Proposition 7.3, we saw this formula for subdomains �′ with �′ ⊆ �. Take an
increasing sequence �= ⊆ � with �= ⊆ � and

⋃
= �= = �. Apply continuity of sample paths and

of D̃.
(ii) The exercise shows { ∈ � (�), and obviously { is bounded. (Or: measurability follows

from the start of Theorem 6.16 and measurability of 6 and �) .) The mean-value property is a
consequence of the strong Markov property: If |G − �c | > A, then

{(G) = EG
[
EG

[
6(�) )

�� ℱ)G,A

] ]
= EG

[
{(�)G,A )

]
.

Here, we use the strong Markov property in the forms of both Theorem 6.17 and Theorem 2.20.
Thus, { is harmonic in �. The proof of the rest of (ii), which we won’t use, is in an appendix. J

These results do not say when the Dirichlet problem has a solution. In fact, it need not:

Exercise (due 4/26). Exercise 7.24, Exercise 7.25.

However, convex domains have a solution for all 6. In fact, it suffices that every point of m�
satisfy the exterior cone condition, where H ∈ m� satisfies this if there exists a non-empty open
cone C with apex H and there exists A > 0 such that C ∩

{
I ; |I − H | < A

}
⊆ �c. The idea is that if

G ∈ � is close to m�, then it is PG-likely that �C leaves � close to G.

Lemma 7.9. Let � be a domain that satisfies the exterior cone condition at some H ∈ m�. Let
) B inf{C > 0 ; �C ∉ �}. Then the PG-law of ) tends weakly to X0 as � 3 G → H.

Proof. Let BA B {I ∈ R3 ; |I | < A}. Let C be an open circular cone whose apex is 0 and whose
intersection with the unit sphere has normalized measure U > 0 such that H + (C ∩ BA) ⊆ �c for



122 Chapter 7. Brownian Motion and Partial Differential Equations

some A > 0. Then limC→0 P0 [�C ∈ C ∩ BA] = U. Blumenthal’s 0-1 law (Theorem 2.13) extends
to higher-dimensional Brownian motion with the same proof, whence P0 [)C∩BA = 0] = 1, where
)� B inf{C > 0 ; �C ∈ �}.

Let C′ ⊆ C be an open circular cone with apex 0 and opening U/2 and the same axis of
symmetry as C. Then P0 [)C′∩BA = 0] = 1 as well. Given [ > 0, there exists 0 > 0 such that
P0 [)C′0∩BA/2 6 [] > 1 − [, where C′0 B {I ∈ C′ ; |I | > 0} (because C′0 ↑ C′ as 0 ↓ 0). Choose
Y > 0 such that

|I | < Y =⇒ C′0 ∩ BA/2 ⊆ I + C ∩ BA .

Then for |H − G | < Y,

PG [) 6 [] > PG [)H+C∩BA 6 [] = P0 [)H−G+C∩BA 6 []
> P0 [)C′0∩BA/2 6 [] > 1 − [. J

Theorem 7.8. Let � be a bounded domain in R3 that satisfies the exterior cone condition at every
point of m�. Then for all 6 ∈ � (m�), the Dirichlet problem in � with boundary condition 6 has a
solution.

Proof. Let { be as in the exercise. By Proposition 7.7(ii), we need only show that

∀H ∈ m� lim
�3G→H

{(G) = 6(H).

In fact, we show this holds for each H where the exterior cone condition holds and where 6 is
continuous, regardless of other points on m�. The idea is that for G close to H, it is PG-likely that ) is
small (from Lemma 7.9) and thus that �) is close to H, whence that 6(�) ) is close to 6(H).

Let Y > 0. Choose X > 0 such that |6(I) − 6(H) | < Y/3 for |I − H | < X, I ∈ m�. Choose [ > 0
such that

2‖6‖ P0
[
sup
C6[
|�C | > X

2
]
< Y

3 .

By Lemma 7.9, we may choose U ∈ (0, X2 ) such that

2‖6‖ PG [) > [] < Y
3 for |G − H | < U, G ∈ �.

We obtain that for |G − H | < U, G ∈ �,

|{(G) − 6(H) | 6 EG
[
|6(�) ) − 6(H) |1[)6[]

]
+ EG

[
|6(�) ) − 6(H) |1[)>[]

]
6 EG

[
|6(�) ) − 6(H) |1[)6[]∩[supC6[ |�C−G |6X/2]

]
+ 2‖6‖ PG

[
sup
C6[
|�C − G | > X/2

]
+ 2‖6‖ PG [) > []

< Y
3 +

Y
3 +

Y
3 = Y. J

For 3 = 2, another sufficient condition for Lemma 7.9 is that H belongs to a nonconstant curve
contained in m�. To see this, make Brownian motion behave like in the following figure.
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H

H1

H2

G

Figure: Choose two points, H1 and H2, on the curve near H that are
separated by H. A Brownian motion started at G has a probability that
is bounded below over all G near H that it will create a curve (up to
some time) surrounding H and hitting m� only near H. For example,
consider the event that it stays within the union of the green rectangles,
moving successively from one of the 6 rectangles to the next until it is
guaranteed to cross itself.

7.3. Harmonic Functions in a Ball and the Poisson Kernel

The PG-law of �) ∈ m� is called the harmonic measure of � relative to G. When � is a
ball, this has a very simple expression: It has a density  (G, ·) with respect to normalized surface
measure, f. Note that the strong Markov property shows that  (G, H) is harmonic in G for each
H ∈ m�. Also, for I ∈ m�,

lim
�3G→I

 (G, ·)f = XI weakly.

This suggests some properties to look for when finding  .
For the rest of this section, let � = B1, the open unit ball in R3 , 3 > 2.

Definition 7.10. The Poisson kernel is the function  : B1 × mB1 → R+ defined by

 (G, H) B 1 − |G |2
|H − G |3

.

Lemma 7.11. For all H ∈ mB1,  (·, H) is harmonic on B1.

Proof. Clearly,  (·, H) ∈ �∞(B1). A direct calculation shows that

Δ (·, H) = 0

off mB1 (see an appendix to this chapter). J

There is a beautiful geometric representation of  (G, ·)f1 due to Malmheden in 1934, where
f1 B f0,1. Namely, given 6 ∈ � (mB1), for each line ! through G ∈ B1, let 5 (!) denote the value
at G ∈ ! of the linear function on ! whose values at ! ∩ mB1 are 6. Then the harmonic extension D
of 6 satisfies

D(G) =
∫

5 (!) d!,

where d! denotes a uniform direction for lines ! that pass through G.
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Equivalently, if � ∈ �(mB1) and �′ is its image on mB1 reflected in G, then the harmonic
measure of � equals f1(�′).

In R2, this is due to Schwarz. It is easy to prove in another form. Recall Euclid’s theorem that
if � is an arc, then f1(�) + f1(�′) = 2\, where \ is the angle at G of the chords giving � and �′:

�

�′

G

\

Therefore, f1(�′) = 2\ − f1(�). It is not hard to check that this is indeed the harmonic measure
of � from G by checking boundary values and by representing \ using the imaginary part of a
holomorphic function.

Lemma 7.13. We have
∀G ∈ B1

∫
mB1

 (G, H) df1(H) = 1,

where f1 B f0,1.

Proof. For G ∈ B1, write � (G) for the integral in the lemma. We claim that � satisfies the mean-value
property because  (·, H) does. Clearly, � is locally bounded and measurable. Now if 0 < A < 1− |G |,
then ∫

� (I) dfG,A (I) =
∬

 (I, H) df1(H) dfG,A (I)

=

∬
 (I, H) dfG,A (I) df1(H) =

∫
 (G, H) df1(H)

= � (G),

as desired. Also, � is rotationally symmetric because  is diagonally invariant under rotations and
f1 is invariant. Therefore,

1 = � (0) =
∫

� (G) df0,A (G) for 0 < A < 1

implies
� (G) = � (0) for |G | = A,

i.e., � ≡ 1. J

Theorem 7.14. If 6 ∈ � (mB1), then the solution to the Dirichlet problem in B1 with boundary
condition 6 is

D(G) B
∫
mB1

 (G, H)6(H) df1(H) (G ∈ B1).
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Proof. A Fubini argument as in the proof of Lemma 7.13 shows that D satisfies the mean-
value property, so is harmonic. It is clear that the probability measures  (G, ·)f1 ⇒ XI as
B1 3 G → I ∈ mB1. Therefore, D(G) → 6(I) as B1 3 G → I ∈ mB1. J

Corollary 7.15. The harmonic measure of B1 relative to G ∈ B1 is  (G, ·)f1. J

Exercise. Exercise 7.26.

7.4. Transience and Recurrence of Brownian Motion

Theorem 7.17. The following hold.
(i) For 3 = 2, Brownian motion is (neighborhood) recurrent, meaning that almost surely, for all

open* ⊆ R2, {C > 0 ; �C ∈ *} is unbounded.
(ii) For 3 > 3, Brownian motion is transient, meaning that almost surely, |�C | → ∞.

Proof. We saw (ii) in Exercise 5.33(7). We also saw in Exercise 5.33(5) that for G ≠ 0, PG [∀C >
0 �C ≠ 0] = 1, while from the same formula as there, for 3 = 2,

∀Y > 0 PG
[
∃C |�C | < Y

]
= 1.

Combining these two facts, we get that for every neighborhood* of 0, {C > 0 ; �C ∈ *} is unbounded
PG-a.s. The same holds for every ball with rational center and rational radius simultaneously almost
surely by a similar argument, whence (i) holds. J

7.5. Planar Brownian Motion and Holomorphic Functions

Let 3 = 2, identify R2 with C, and write �C = -C + i.C , where - and . are independent
real Brownian motions. We call � a complex Brownian motion. Let � ⊆ C be a domain and
Φ : � → C be analytic. Since ReΦ and ImΦ are harmonic,Φ(�)) is a continuous local martingale,
where ) is the exit time of �. Much more is true:

Theorem 7.18 (Lévy). Suppose C \ � is polar. Write

�C B

∫ C

0

��Φ′(�B)��2 dB (C > 0).

Then for each I ∈ �, there exists a complex Brownian motion Γ started from Φ(I) such that PI-a.s.,

∀C > 0 Φ(�C) = Γ�C .

That is, Φ(�) is a time-changed complex Brownian motion with clock �; this is called the
conformal invariance property. The case Φ(I) = 0I is the usual Brownian scaling for 0 ∈ R and is
rotation invariance for |0 | = 1. This shows why Theorem 7.18 is true on an infinitesimal level. If
C \ � is not polar, then a similar conclusion holds for the process Φ(�)) .
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Proof. LetΦ = 6 + iℎ, where 6 and ℎ are real harmonic. Write " B 6(�) and # B ℎ(�). By Itô’s
formula,

d" = 6G (�) d- + 6H (�) d., d# = ℎG (�) d- + ℎH (�) d.,

so " and # are continuous local martingales. The Cauchy–Riemann equations,

6G = ℎH, 6H = −ℎG ,

imply that 〈", #〉 = 0 and 〈", "〉 = 〈#, #〉 = �.
Recall Exercise 4.24, which shows that

[�∞ < ∞]
a.s.
= [ lim

C→∞
"C exists in R] a.s.= [ lim

C→∞
#C exists in R] .

By neighborhood recurrence of �, if Φ is not constant, then Φ(�C) does not have a finite limit as
C →∞, whence �∞ = ∞ almost surely. Of course, if Φ is constant, then � ≡ 0 and nothing more is
needed. Thus, in the nonconstant case, we may apply Proposition 5.15 to " − 6(I) and # − ℎ(I)
under PI to obtain independent real Brownian motions V and W started from 0 such that

"C − 6(I) = V�C and #C − ℎ(I) = W�C .

Thus, the result holds with Γ B Φ(I) + V + iW. J

In this proof, one could also write in complex notation dΦ(�) = Φ′(�) d�. More generally, if
-1, . . . , - ? are continuous semimartingales taking values in C and � : C? → C is analytic in each
variable, then Itô’s formula takes exactly the same form as in Theorem 5.10, where the bracket is
now complex valued and still bilinear, not sesquilinear. (Hartog’s theorem guarantees that such an �
has a multivariable power series expansion in a neighborhood of each point.) In applications of this,
note that for complex Brownian motion, we have 〈�, �〉 = 0. Bilinearity also guarantees that all
parts of Proposition 4.15 hold for complex-valued, continuous local martingales. Complex-valued,
continuous local martingales / that satisfy 〈/, /〉 = 0 are called conformal; they are time changes
of complex Brownian motion, as we can see by the second half of the proof of Lévy’s theorem.

Exercise. Determine all Φ such that in the preceding proof, " and # are independent.

Exercise. Exercise 7.27.

Exercise. Use the result of Exercise 7.27 to show that every nonconstant complex polynomial has a
root. Hint: note that

{
I ; |%(I) | 6 Y

}
is compact if % is a polynomial.

Exercise. Suppose that � is complex-valued and progressive and that � is complex Brownian
motion. Show that if |� |2 is locally integrable with respect to Lebesgue measure and / = � · �,
then there exists a complex Brownian motion Γ such that /C = Γ�C for C > 0, where �C B

∫ C

0 |�B |
2 dB

for C > 0. In particular, if |� | = 1, then / is a complex Brownian motion.

It is also interesting to look at Brownian motion in polar coordinates. This yields the
skew-product representation (or decomposition):
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Theorem 7.19. Fix I ∈ C \ {0} and choose any | ∈ C with I = e|. There exists a complex
Brownian motion V starting at | such that PI-a.s.,

∀C > 0 �C = exp{V�C },

where

�C B

∫ C

0

dB
|�B |2

.

The point is that Re V describes the radial motion of � while Im V describes the angular motion
of �.

Proof. This is intuitive from Theorem 7.18 by using

Φ(Z) B log Z .

Note Φ′(Z) = 1/Z . However, this Φ is multiple valued and would require an extension to Riemann
surfaces.

Instead, let us start with a complex Brownian motion Γ that starts from | and use Φ(Z) B eZ .
Then by Theorem 7.18, we have

eΓC = /�C ,

where / is a complex Brownian motion from I and

�C =

∫ C

0
|eΓB |2 dB =

∫ C

0
e2 ReΓB dB.

Let  • be the inverse function of �•: by calculus,

 B =

∫ B

0
exp{−2 ReΓ D } dD =

∫ B

0

dD
|/D |2

.

Then /B = eΓ B . This is what we want, except it is for / rather than for �. But the formula
�C = exp{V�C } together with the formula for � gives V as a deterministic function of �. When
applied to / , it gives Γ. Since � �

= / , it follows that V �

= Γ, as desired. J

Exercise. For which C > 0 is E[�1/2
C ] < ∞? Hint: is log|� | a true martingale?

Exercise. Exercise 7.29.

Exercise. Let � := (�C)C>0 be Brownian motion in the complex plane. Suppose that �0 = 1.
(1) Let )1 be the first time that � hits the imaginary axis, )2 be the first time after )1 that � hits

the real axis, )3 be the first time after )2 that � hits the imaginary axis, etc. Prove that for
each = > 1, the probability that |�)= | 6 1 is 1/2.

(2) More generally, let ℓ= be lines through 0 for = > 1 such that 1 ∉ ℓ1. Let )1 := inf{C > 0 ; �C ∈
ℓ1}, and recursively define )=+1 := inf{C > )= ; �C ∈ ℓ=+1} for = > 1. Prove that for each
= > 1, the probability that |�)= | 6 1 is 1/2.
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(3) (Extra credit) In the context of part (2), let U= be the smaller of the two angles between ℓ= and
ℓ=+1. Show that

∑∞
==1 U= = ∞ iff for all Y > 0, the probability that Y 6 |�)= | 6 1/Y tends to 0

as =→∞.
(4) (Extra credit) In the context of part (1), show that

lim
=→∞

P
[
exp

(
−X=
√
=
)
6 |�)= | 6 exp

(
X=
√
=
) ]
=

∫ 2X/c

−2X/c

e−D2/2
√

2c
dD

if X= > 0 tend to X ∈ [0,∞].

Exercise. Let � be a complex Brownian motion not starting from 0. Let �C be an argument of �C ,
so that �C = |�C | ei�C . Assume that � has been chosen to be continuous. Show how to reconstruct �
from �; more formally, show that � is adapted to ℱ�

• .

7.6. Asymptotic Laws of Planar Brownian Motion

Let � be complex Brownian motion. Our first result is not asymptotic. If �0 = 0 · i, 0 > 0, and
) B inf{C > 0 ; Im �C = 0}, what is the distribution of �)? By scaling, it is 0 times the distribution
when 0 = 1: the P0i-law of �) equals the Pi-law of 0 · �) .

Proposition. If �0 = i and ) B inf{C > 0 ; Im �C = 0}, then �) has the standard symmetric
Cauchy distribution,

Pi [�) 6 G] =
∫ G

−∞

dH
c(1 + H2)

=
1
2
+ 1
c

arctan(G).

Proof. The function

i(I) B i · 1 − I
1 + I

maps the unit disk to the upper half plane with i(0) = i and i(e2ciU) = tan(cU). Let

( B inf{C > 0 ; |�C | = 1}.

The Pi-law of �) equals the P0-law of �( pushed forward by i, in view of Theorem 7.18. Because
the P0-law of �( is the uniform measure, it follows that

Pi [�) 6 G] = P0
[
i(�() 6 G

]
= P0

[
arg �( ∈ (−c, 2cU]

]
,

where tan(cU) = G. This gives the result. J

Exercise. (1) Let �1 ⫫ �2 be standard Cauchy and 01, 02 > 0. Show that 01�1 + 02�2 has the
law of 01 + 02 times standard Cauchy.

(2) Let � be complex Brownian motion starting at 0. For B ≥ 0, write)B B inf{C > 0 ; Im �C = B}
and �B := Re �)B . Show that the process � has independent, stationary increments and that
�B has the law of B times standard Cauchy.
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Exercise. Let (�1, �2, . . . , �3+1) be Brownian motion in R3+1 starting at (0, 0, . . . , 0, 1). Let
) B inf{C > 0 ; �3+1C = 0}. Use Corollary 2.22 to show that (�1

)
, . . . , �3

)
) has density

G ↦→
Γ
(
3+1
2

)(
c(1 + |G |2)

) (3+1)/2
on R3 , where Γ(0) :=

∫ ∞
0 B0−1e−B dB is the usual Gamma function. This is called the standard

3-dimensional (multivariate) Cauchy distribution. Because of its connection to Brownian motion,
it follows that when 3′ < 3, every 3′-dimensional marginal of a standard 3-dimensional Cauchy
distribution is a standard 3′-dimensional Cauchy distribution. Use the fact that the characteristic
function of the standard 1-dimensional Cauchy distribution is b ↦→ e−|b | (b ∈ R) to deduce that the
characteristic function of the standard 3-dimensional Cauchy distribution is b ↦→ e−|b | (b ∈ R3).
Hint: For b1, . . . , b3 ∈ R, what is the law of

∑3
9=1 b 9�

9

)
?

Now we look at the winding of Brownian motion about 0 and its distance from 0 separately.
Let \C be a continuous process such that

�C

|�C |
= ei\C (�C ≠ 0, \0 ∈ (−c, c]).

If �C = eV�C as in Theorem 7.19, then \C = Im V�C . Because �C → ∞ almost surely and Im V is
recurrent, it follows that \ is recurrent as well. Winding happens both when |� | is small (when it is
fast) and when |� | is large (infinitely often—consider 1/�). How large is \C typically?

Theorem 7.20 (Spitzer). For all I ≠ 0

the PI-law of
\C

log
√
C
⇒ standard symmetric Cauchy distribution

as C →∞.

Proof. (David Williams) Write �C = I + VC , so that when �0 = I, we have V0 = 0. In particular, by
Brownian scaling, the PI-law of �1/X2 equals the law of I + X−1V1 when V0 = 0. Because the angle
does not change when we multiply the location by X, it follows that the conclusion is equivalent to:

lim
X↓0

PI-law of
\1/X2

log 1
X

= lim
X↓0

PXI-law of
\1

log 1
X

is standard Cauchy.
Fix (small) 0 > 0 such that P0

[
|�1 | > 0

]
is close to 1. Let ) B inf

{
C > 0 ; |�C | > 0

}
. Let U

satisfy the property that for all I with |I | = 0, PI
[
|\1 | > U

]
is small; then also for all X with X |I | < 0,

PXI
[
|\1 − \) | > U

]
is small, so we need concern ourselves only with the winding between times 0

and ) , rather than between 0 and 1, i.e., with \) .
Consider �C = eV�C ; the law of \) is the law of Im V�) , where �) is the time that Re V�) goes

from log
(
X |I |

)
to log 0. Thus, the law of \) is

��log X |I | − log 0
�� times standard Cauchy. Since we

are dividing \1 by log 1
X
, this gives the result. J

For the radial part, we know min
{
|�B | ; 0 6 B 6 C

}
→ 0 as C →∞; how fast?
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Proposition 7.22. For every I ≠ 0, we have

∀0 > 0 lim
C→∞

PI
[
min
06B6C

|�B | 6 C−0/2
]
=

1
1 + 0 .

Proof. Choose 1 > 0 so large that P0 [ 11 < max06B61 |�B | < 1] is close to 1. Then for fixed I,

PI
[√
C

1
< max

06B6C
|�B | < 1

√
C
]
= PI

[
)√C/1 < C < )1

√
C

]
is close to 1 uniformly in C for C sufficiently large. (Note that B is the time variable, not C.) Now,
minB6C |�B | 6 C−0/2 if and only if )C−0/2 6 C. For 2 > 0, we have (if C−0/2 6 |I | 6 2

√
C)

PI
[
)C−0/2 < )2

√
C

]
=

log(2
√
C) − log|I |

log(2
√
C) − log C−0/2

by Exercise 5.33(5) [or use optional stopping, Section 3.4, on log|� |]. As C →∞, this goes to 1
1+0 .

Use 2 = 1
1
and 2 = 1 to get the result:

PI
[
)C−0/2 6 C

]
> PI

[
)C−0/2 < )

√
C/1

]
− PI

[
C 6 )√C/1

]
and

PI
[
)C−0/2 6 C

]
6 PI

[
)C−0/2 < )1

√
C

]
+ PI

[
C > )1

√
C

]
. J

It is also interesting to know how quickly �C grows.

Lemma 7.21. For all I, the PI-law of �C

(log
√
C)2 converges to that of 1

/2 , where / is standard normal.

Le Gall uses this to prove the two preceding results; he also formulates it differently—in
particular, see Corollary 2.22.

Proof idea. We have

�C B inf
{
B ;

∫ B

0
e2 Re VD dD > C

}
;

this is  • = �−1
• in the proof of Theorem 7.19. For large B,

log
∫ B

0
e2 Re VD dD ≈ max

06D6B
2 Re VD,

so
�C ≈ inf

{
B ; Re VB > log

√
C
} �

=
(log
√
C)2

/2

by Corollary 2.22. J
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Appendix: The Poisson Kernel is Harmonic

We give the calculations for Lemma 7.11, which states that the Poisson kernel in R3 ,

 (G, H) :=
1 − |G |2
|H − G |3

,

is harmonic in G for G ≠ H and |H | = 1. I took this from https://math.stackexchange.com/q/
569481.

Recall the following from calculus, where D : R3 → R, i : R→ R, and F : R3 → R3:

∇
(
i(D)

)
= i′(D)∇D, (A1)

Δ(D) = div∇D, (A2)
div(D F) = ∇D · F + D div F, (A3)

Δ(D{) = D Δ{ + {ΔD + 2∇D · ∇{. (A4)

For fixed H, we have  (G, H) = D(G){(G), where D(G) := 1 − |G |2 and {(G) := |G − H |−3 . We
calculate that

∇D = −2G, and so ΔD = −23.

Using (A1), we get

∇{ = −3 |G − H |−3−1∇|G − H |

= −3 |G − H |−3−1 G − H
|G − H |

= −3 |G − H |−3−2(G − H).

Using (A2) and then (A3), we get

Δ{ = −3 div
(
|G − H |−3−2(G − H)

)
= −3 (−3 − 2) |G − H |−3−3 G − H

|G − H | · (G − H) − 3 |G − H |
−3−23

= 23 |G − H |−3−2.

Finally, combine the results using (A4) and the fact that |H | = 1:

|G − H |3+2Δ(D{) = (1 − |G |2)23 − 23 |G − H |2 + 43G · (G − H)
= 0.

https://math.stackexchange.com/q/569481
https://math.stackexchange.com/q/569481
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Appendix: Convergence of Harmonic Functions to Boundary Values

The following standard result (see, e.g., Doob’s 1984 book, Classical Potential Theory and Its
Probabilistic Counterpart, Theorem 2.IX.13, p. 651) is not as obvious as it looks:

Theorem A.1. Let � be a bounded domain in R3 and 6 be a bounded Borel function on m�. Let �
be Brownian motion in R3 and ) := inf{C > 0 ; �C ∉ �}. For G ∈ �, define

D(G) := EG
[
6(�) )

]
.

Then for all G ∈ �,
∀G ∈ � lim

C↑)
{(�C) = 6(�) ) PG-a.s.

This is part of Proposition 7.7.
We give two proofs, the first being essentially the standard one; thanks to Michael Damron for

conversations on this. The result can easily be extended to unbounded domains by defining 6(�∞)
to be a constant.

Our first proof uses the following standard result (a version of the “predictable stopping
theorem”):

Theorem A.2. Let (ℱC)C be a filtration. Let ) be a predictable stopping time, i.e., there are stopping
times )= < ) that increase to ) (such )= announce )). Suppose that ℱ) =

∨
=ℱ)= . Let " be a

uniformly integrable right-continuous martingale. Then " is left-continuous at time ) .

An example where the conclusion fails for a nonpredictable stopping time is given by continuous-
time simple random walk on {0,−1, 1} started at 0 and stopped at the time ) of its first jump.

Proof. Because " is right-continuous, the optional-stopping theorem gives ")= = E[") | ℱ)=].
By the convergence of closed martingales in discrete time, we may deduce that lim=→∞ ")= = ") .
For n > 0, let �n be the event that limC↑) |"C − ") | > n . For = > 1, define the stopping times

(= := )=+1 ∧ inf
{
C > )= ; |")= − "C | > n

}
.

Since )= 6 (= < ) , we have ℱ) =
∨
=ℱ(= . Since ((=)= announce ) , it follows that "(= → ") a.s.

Thus, ")= − "(= → 0 a.s., whence P(�n ) = 0. Because this holds for every n > 0, we obtain the
desired result. J

Proof of Theorem A.1. Let (ℱC) be the completed canonical filtration of �. Let "C := D(�C∧) ).
Clearly " is bounded and right-continuous. By the strong Markov property, " is a martingale. The
stopping times

)= := inf
{
C > 0 ; |�C − �c | 6 1/=

}
announce ) . Since ℱ) =

∨
=ℱ)= by continuity of �, we may apply Theorem A.2. J

Our second proof uses some auxiliary results.
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Theorem A.3. Let 3 ∈ N+. Let � be 3-dimensional Brownian motion. Let f ∈ �2(R3) with
bounded first and second derivatives. Suppose that - solves �G (f, 0), i.e., G ∈ R3 and - is an
adapted process with values in R3 such that

-C = G +
∫ C

0
f(-B) d�B (C > 0).

If f(G) ≠ 0, then
P
[
∀C > 0 f(-C) ≠ 0

]
= 1.

Proof. By Itô’s formula,

df2(-C) = 2f(-C)f′(-C) d-C +
(
f′(-C)2 + f(-C)f′′(-C)

)
d〈-C , -C〉

= 2f2(-C)f′(-C) d�C +
(
f′(-C)2 + f(-C)f′′(-C)

)
f2(-C)3 dC

= f2(-C) d"C

for a continuous semimartingale " with "0 = 0. It follows (say, by the exercise on page 104 near
the end of Section 8.1) that

f2(-) = f2(G)ℰ(") = f2(G) exp
{
" − 〈", "〉/2

}
is never 0 if f(G) ≠ 0. J

Theorem A.4. Let � be a bounded domain in R3 . Let � be Brownian motion in R3 and
) := inf{C > 0 ; �C ∉ �}. Let f ∈ �2(R3) be such that f(G) > 0 if G ∈ � and f(G) = 0 if G ∈ m�.
If G ∈ � and - solves �G (f, 0), then P[∀C > 0 -C ∈ �] = 1 and - is a time change of (�C)06C<)
(in law).
Proof. The first statement is immediate from Theorem A.3, while the second is proved just
as the conformal invariance of Brownian motion (Theorem 7.18) is proved, but simpler (use
Proposition 5.15). Note that - is a continuous boundedmartingale, so

∫ ∞
0 f2(-C) dC = 〈-, -〉∞ < ∞

a.s., whence -∞ ∈ m� a.s. J

Remark. A special case of Theorem A.4 is the following: Let � be the unit disk when 3 = 2 and
f(G) :=

(
1− |G |2

)
/2 for |G | 6 1. Then - is Brownian motion in the Poincaré model of the hyperbolic

plane. The law of - is the same as the law of i(-) for every Möbius transformation i of the unit
disk to itself. For Brownian motion - in the Poincaré model of 3-dimensional hyperbolic space,
there is a drift term: - solves �G (f, 1) with f(G) :=

(
1 − |G |2

)
/2 and 1(G) := (3/2 − 1)f(G)G for

|G | 6 1.

We are now ready to give a second proof of Theorem A.1.

Second proof of Theorem A.1. Let (ℱC) be the completed canonical filtration of �. Construct f as
in the statement of Theorem A.4 by, say, summing a countable collection of small bump functions.
Fix G ∈ �. Let - solve �G (f, 0). Then the path

(
D(�C)

)
06C<) is the same in law as the path(

D(-C)
)
06C<∞ but with a different parametrization. Also, - is a continuous Markov process. Let

-∞ := limC→∞ -C . By the strong Markov property, D(-C) = E
[
6(-∞)

�� ℱC

]
, whence the result

follows from the convergence of closed martingales (in continuous time). J

A generalization of Theorem A.3 is in the extra credit exercise on page 116 at the end of
Chapter 8. Our proof of Theorem A.3 is modelled on one we heard from Étienne Pardoux for 3 = 1.
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