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Abstract. Shalom and Tao showed that a polynomial upper bound on the size of a single, large
enough ball in a Cayley graph implies that the underlying group has a nilpotent subgroup with index
and degree of polynomial growth both bounded effectively. The third and fourth authors proved
the optimal bound on the degree of polynomial growth of this subgroup, at the expense of making
some other parts of the result ineffective. In the present paper we prove the optimal bound on the
degree of polynomial growth without making any losses elsewhere. As a consequence, we show that
there exist explicit positive numbers εd such that in any group with growth at least a polynomial of
degree d, the growth is at least εdn

d. We indicate some applications in probability; in particular, we
show that the gap at 1 for the critical probability for Bernoulli site percolation on a Cayley graph,
recently proven to exist by Panagiotis and Severo, is at least exp

{
− exp

{
17 exp{100 · 8100}

}}
.
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1. Introduction

We investigate the growth of finitely generated groups. Given a group G that is generated by
a finite subset X, we let sn(G) = sn(G,X) be the number of elements of G that can be expressed
as a product of at most n elements from X ∪X−1. If for some n we have sn(G) 6 2n, then G is
finite. Indeed, if G is infinite, then for all n > 1, there exists an element s of length 2n, which we
may write as s = uv where u and v each have length n. Then u 6= v−1, so that sn(G)− sn−1(G) > 2
and sn(G) > 2n+ 1. This inequality is best possible, as both Z and (Z/2Z) ∗ (Z/2Z) (with their
standard generators) have sn(G) = 2n+ 1 for all n.
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Wilkie and van den Dries [37] showed that if G is infinite and the inequality sn(G) < (n+1)(n+2)/2
holds for some n, then G is virtually cyclic, and (hence) has linear growth. In fact, they showed
that if sn(G) − sn−1(G) 6 n for some n > 1, then G has a cyclic subgroup of index at most(
sn(G) − sn−1(G)

)4
/2. The bound on the index was improved by Imrich and Seifter [15] to

sn(G)− sn−1(G), which is sharp.
Results of this type are known for higher rates of growth. If there exist numbers C and d such

that sn(G) 6 Cnd for all n, then G is said to be of polynomial growth. In that case, the growth
degree deg(G) of G is the infimum of the numbers d for which another number C can be found such
that the inequality above is satisfied. This degree is independent of the generator system X, and can

be characterized equivalently by deg(G) := lim sup log sn(G)
logn . If G does not have polynomial growth,

then, given any numbers C and d, the inequality sn(G) > Cnd holds for infinitely many n. In other
words, the upper limit above is infinite.

If G is nilpotent of class cl(G) = c with lower central series G = γ1(G) B γ2(G) B · · · B γc(G) B
γc+1(G) = {1}, then, as Bass [1] and Guivarc’h [12] showed, the growth degree can be expressed
as r :=

∑c
i=1 ir(i), where r(i) is the torsion-free rank of γi(G)/γi+1(G), i.e., the number of infinite

factors in the decomposition of this quotient as a direct sum of cyclic groups. The Hirsch length
h(G) of G is defined to be

∑c
i=1 r(i); obviously h(G) 6 r 6 h(G) · c. A virtually nilpotent group

has the same growth degree as its nilpotent, finite-index subgroups. The above formula shows that
the degree is an integer. Given a group G with a finite-index, nilpotent subgroup, H, we define the
Hirsch length h(G) of G to be h(H).

A celebrated theorem of Gromov [11] established a conjecture of Milnor that a finitely generated
group G has polynomial growth (if and) only if G is virtually nilpotent. Building on work of Kleiner
[16], Shalom and Tao [26] subsequently gave a finitary version of this statement, showing that a
polynomial upper bound on the size of just a single ball (of large enough radius) implies that a
group is virtually nilpotent. Their result gives effective bounds on both the index and the degree of
polynomial growth of the nilpotent subgroup, and on how large the radius needs to be in order for
the theorem to hold. In relatively recent work, the third and fourth authors made the bound on
the degree of polynomial growth optimal at the expense of some effectiveness elsewhere. The main
aim of the present work is to obtain the optimal bound on the degree of polynomial growth without
sacrificing effectiveness elsewhere. We also present some applications to probability.

Shalom and Tao’s refinement of Gromov’s theorem is the following.

Theorem 1.1 (Shalom–Tao [26, Theorem 1.8]). There exists an absolute constant C such that if
G is a group with finite generating set X, and if sn(G,X) 6 nd for some d > 1 and some integer
n > exp(exp(CdC)), then G has a nilpotent subgroup of index On,d(1) and Hirsch length and class

at most Cd, whence deg(G) 6 C2d.

Here and elsewhere, we adopt the notational convention that if X is a real quantity and z1, . . . , zk
are parameters, then Oz1,...,zk(X) denotes a quantity that is at most a constant multiple of X, with
the constant depending only on the parameters z1, . . . , zk.

Theorem 1.1 says that a polynomial upper bound on the size of a single, large enough ball is
enough to imply that a group is virtually nilpotent, and to give some quantitative control over the
complexity of the virtual nilpotency. A bound on C can be computed explicitly from the proof;
the authors assert that one such bound should be 100. The bound On,d(1) on the index could in
principle be made effective, but the authors instead use an ineffective compactness argument, saying
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that the corresponding effective argument would be ‘substantially longer’ and result in a bound of
Ackermann type in d.

Remark. In his original paper, Gromov applied a compactness argument together with his own
theorem to obtain a similar conclusion to Theorem 1.1 [11, §8]. This yields ineffective bounds and
requires the stronger hypothesis that |sn(G)| 6 nd for some d > 1 and all n = 2, . . . , n0, for some
n0 = n0(d).

Given the polynomial of degree d appearing in the hypothesis of Theorem 1.1, it is natural to
wonder whether deg(G) should also be at most d. This amounts to asking whether a group can grow
like a polynomial of degree d at small scales and then accelerate to grow like a polynomial of higher
degree at large scales. It turns out that if one considers instead a ‘relative’ condition of the form
|sn(G)| 6 Cnd|s1(G)|, then this can indeed occur (see [30, Example 1.11] for details). However, the
third and fourth authors showed that this does not occur in the context of Theorem 1.1 by proving
the following result, which verified a conjecture of Benjamini. We write N for the set of strictly
positive integers.

Theorem 1.2 ([31, Theorem 1.11]). For every d ∈ N, there exists εd > 0 such that if G is a
group with finite generating set X and if sn(G,X) < εdn

d for some n ∈ N, then sm(G,X) 6
Od
(
(m/n)d−1sn(G,X)

)
for every integer m > n.

Theorem 1.2 relies on Breuillard, Green, and Tao’s structure theorem for approximate groups [4],
and as such does not give an effective computation of εd. The bound Od

(
(m/n)d−1sn(G,X)

)
is also

ineffective in the original reference for Theorem 1.2, but in forthcoming work, the third and fourth
authors will give an improved proof of Theorem 1.2 that results in an effective bound.

As an immediate consequence of Theorems 1.1 and 1.2, we obtain the optimal bound on deg(G)
in the Shalom–Tao theorem, as follows.

Corollary 1.3. For every d ∈ N, there exists εd > 0 such that if G is a group with finite generating
set X, and if sn(G,X) < εdn

d for some n ∈ N, then G has a nilpotent subgroup of index On,d(1),
and deg(G) 6 d− 1.

Note that, although the hypothesis sn(G,X) < εdn
d in this result might at first glance appear

rather stronger than the hypothesis sn(G,X) 6 nd of Theorem 1.1, provided n > 1/εd+1, the latter
bound implies the former with d+ 1 in place of d.

It appears to be beyond the reach of current methods to give an explicit value of εd in Theorem 1.2.
Nonetheless, in the present work we obtain Corollary 1.3 directly and elementarily from Theorem 1.1,
bypassing the Breuillard–Green–Tao theorem completely and making εd effective in Corollary 1.3
without any losses elsewhere. This leads in turn to effective constants εd in the following trivial
consequence of Corollary 1.3.

Corollary 1.4. Let d ∈ N, and suppose that G is a group satisfying deg(G) > d and X is a finite
generating set for G. Then sn(G,X) > εdnd for every n ∈ N, where εd > 0 is the constant given by
Corollary 1.3.

This has particular relevance to the study of probability on groups, where lower bounds on growth
have numerous applications.

Main new results. Our first main result deals with groups of growth exactly d, and for that reason
it does not rely on the Shalom–Tao theorem.
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Theorem 1.5. Let d ∈ N, and suppose G is a virtually nilpotent group with polynomial growth of
degree d. Let X be a finite generating set for G. Then

sn(G,X) >
nd

2d(d+2)g
(
h(G)

)d > nd

2d(d+2)g(d)d

for every n ∈ N, where g(k) is the maximum order of a finite subgroup of GLk(Z).

An upper bound for g(k) was given already by Minkowski [21] in 1887. One such bound is

(1.1) g(k) 6 (2k)!

(see equation (16) on p. 175 of [22]). See also [10] and the remarks about g(k) on pp. 88–89 of [20].
Combining Theorem 1.1 with Theorem 1.5, we deduce an effective version of Corollary 1.3, as

follows.

Theorem 1.6. We may take

(1.2) εd = min

{
1

23C4dg(Cd)C2d ,
1

exp(d exp(CdC))

}
in Corollary 1.3, and hence also in Corollary 1.4. Moreover, this yields the same bound on the index
of the nilpotent subgroup as Theorem 1.1.

The second term in the expression of εd is directly related to the lower bound on n in the
Shalom–Tao theorem. We observe that the second term is asymptotically smaller than the first one
(after taking logs of the reciprocals twice, the first one becomes ' d, while the second one becomes
' dC).

Remark 1.7. Define mingr(d) := inf{sn(G,X)n−d}, where the infimum is taken over all n ∈ N
and all virtually nilpotent groups G with polynomial growth of degree d and generating sets X.
Obviously mingr(1) = 2. We do not know the values of mingr(d) for other d. Theorem 1.5 gives a
lower bound on mingr(d). For an upper bound, note that when Zd is generated by d elements, we
have mingr(d) 6 limn→∞ sn(Zd)/nd = 2d/d!: up to terms of order nd−1, sn(G) is the volume of a
hyperoctahedron, which, in turn, is 2d times the volume of its intersection with the nonnegative

orthant. We can do better, however: For d > 2, consider the affine Coxeter group B̃d, which has
growth degree d and so-called exponents 1, 3, . . . , 2d− 1; see [3, Appendix A1]. By a formula of Bott
(see [3, Theorem 7.1.10] or [27, Theorem 3.8]), we have for the Coxeter generators,∑

n>0

sn(B̃d)z
n =

1

(1− z)d+1

d∏
k=1

1− z2k

1− z2k−1

for |z| < 1. By [24, Proposition 51] and [28, Lemma 3.2], we have for every group G of polynomial
growth degree d that

lim
n→∞

sn(G)n−d =
1

d!
lim
z↑1

(1− z)d+1
∑
n>0

sn(G)zn,

whence

mingr(d) 6 lim
n→∞

sn(B̃d)n
−d =

1

d!

(2d)!!

(2d− 1)!!
.

Note, in particular, that (2d)!!/(2d− 1)!! ∼
√
πd as d→∞. In fact, there are a few other Coxeter

groups that give still better bounds: mingr(2) 6 limn→∞ sn(G̃2)n−2 = (12/5)/2!, mingr(6) 6
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limn→∞ sn(Ẽ6)n−6 = (324/77)/6!, mingr(7) 6 limn→∞ sn(Ẽ7)n−7 = (9216/2431)/7!, and mingr(8) 6
limn→∞ sn(Ẽ8)n−8 = (99532800/30808063)/8!; again, see [3, Appendix A1] for the definitions and
exponents of these groups.

Remark. The situation for groups of exponential growth is known to be quite different from the
situation for groups of polynomial growth described by Corollary 1.4. On the one hand, some classes
of groups are known to have uniformly exponential growth over all generating sets, in the sense
that there is a constant c > 1 depending only on the group such that the ball of radius n with
respect to an arbitrary generating set has at least cn elements; indeed, the same c > 1 sometimes
exists even for an entire class of groups. On the other hand, it is known that there are groups of
exponential growth whose rate of growth on the exponential scale is arbitrarily small for certain
sets of generators. See, e.g., [5] for results and history of exponential growth. There is much less
knowledge for groups of intermediate growth: it is not even known whether there are such groups
whose balls of radius n have asymptotically fewer than ec

√
n elements.

Vertex-transitive graphs. Trofimov [35, Theorem 2] famously extended Gromov’s theorem to
vertex-transitive graphs of polynomial growth, showing that any such graph has a quotient that
looks roughly like a virtually nilpotent Cayley graph in a certain precise sense. Woess [38, Theorem
1] subsequently gave a simple proof of this result using the theory of topological groups. Inspired
by Woess’s proof, and applying a version of the Breuillard–Green–Tao theorem for locally compact
groups due to Carolino [6], the third and fourth authors of the present work gave a finitary version
of Trofimov’s theorem that allowed them to extend Theorem 1.2 to vertex-transitive graphs [32,
Corollary 1.5].

Unfortunately, we are not aware of an effective result for locally compact groups that could be
used to bypass Carolino’s result in the same way that we use Shalom and Tao’s result to bypass the
Breuillard–Green–Tao theorem in our proof of Corollary 1.3. Nonetheless, using Trofimov’s result
we can at least obtain the following generalisation of Theorem 1.5, in which we write sn(Γ) for the
number of vertices inside a ball of radius n in a vertex-transitive graph Γ.

Corollary 1.8. Let d ∈ N, and suppose Γ is a vertex-transitive graph with polynomial growth of
degree exactly d. Then

sn(Γ) >
nd

2d(d+2)g(d)d+1

for every n ∈ N.

See also Corollary 6.2 for a partially effective version of Corollary 1.8 valid in a vertex-transitive
graph of growth degree at least d.

Minimal polynomial-growth constants and probability. Results such as Corollary 1.4 can
be used to give universal bounds on various quantities in probability. For example, given a vertex-
transitive graph Γ with vertex set V , edge set E, and valency ∆, define lazy simple random walk on
Γ to be the Markov chain whose transition probabilities from y ∈ V to z ∈ V are

p(y, z) =


1/(2∆) if {y, z} ∈ E,

1/2 if y = z,

0 otherwise.
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Write pt(y, z) for the t-step transition probabilities. A special case of [17, Corollary 6.6] states that
if c, d > 0 are such that sn(Γ) > cnd for all n ∈ N, then for all y, z ∈ V and t ∈ N, we have

pt(y, z) 6 pt(y, y) 6
8d(d+5)/2∆d/2

ced/2
t−d/2.

Combining this with our results yields several corollaries, such as the following.

Corollary 1.9. Let d ∈ N, and suppose that Γ is a Cayley graph of a group having growth degree at
least d or is a vertex-transitive graph with polynomial growth of degree exactly d. Then for every
y, z ∈ G and t > 1 we have

pt(y, z) 6 pt(y, y) 6
8d(d+5)/2∆d/2

εded/2
t−d/2,

where ∆ is the valency and εd > 0 is the constant given by (1.2) in the case of a Cayley graph and

is 1/
(
2d(d+2)g(d)d+1

)
otherwise.

Corollary 1.9 in turn leads to bounds on various other quantities. For example, Panagiotis and
Severo [23] recently showed that there exists a gap at 1 for the critical probability pc for Bernoulli
site (and hence bond [18, Proposition 7.10]) percolation on a Cayley graph, in the sense that there
exists ε > 0 such that either pc 6 1− ε or pc = 1 for every Cayley graph. Using Corollary 1.9 in
their argument instead of their bound [23, (3.4)] on pt(x, y) allows one to give an explicit value for ε,
as follows.

Corollary 1.10. Let Γ be a Cayley graph. Then the critical probability pc(Γ) for Bernoulli site
percolation on Γ satisfies either

pc(Γ) < 1− exp
{
− exp

{
17 exp{100 · 8100}

}}
=: p0

or pc(Γ) = 1. Furthermore, the probability that the identity element belongs to an infinite cluster at
value p0 satisfies

Pp0 [o↔∞] > exp
{
−9 exp{100 · 8100}

}
.

The same inequalities hold for Bernoulli bond percolation.

See Appendix A for more details. The Cayley graph with the largest value known of pc less than
1 is apparently that of the presentation 〈a, b | a3, b2, (ab)6〉, which is the 3-12 lattice; there, we have

pc =
√

1− 2 sin(π/18) = 0.8079+ for site percolation ([29, p. 278] gives a simple reduction to site
percolation on the Kagomé lattice, which is the line graph of the hexagonal lattice, whence site
percolation on the former is equivalent to bond percolation on the latter, whose critical probability
was rigorously determined by [36]).

The third and fourth authors [33] have shown that there is a gap at 0 for escape probabilities of
random walks on vertex-transitive graphs, in the sense that there exists an absolute constant c > 0
such that simple random walk on an arbitrary vertex-transitive graph is either recurrent or has
escape probability at least c. This constant c is independent of the valency but is not explicit. The
results of the present paper allow us, in the special case of Cayley graphs, to replace this non-explicit
constant c with an explicit function of the valency ∆. The most immediate such bound follows from
noting that the escape probability is equal to 1/

∑
t>0 pt(x, x), and that a transient Cayley graph

has growth degree at least 3; Corollary 1.9 then immediately yields a lower bound on the escape
probability of the form K∆−3/2 for a transient Cayley graph, where K is an explicitly computable
absolute constant. We can do even better, however, if we pass via an isoperimetric inequality. By an
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isoperimetric inequality in a group G with finite generating set X, we mean a lower bound on the
size of the vertex boundary ∂A of a finite set A ⊆ G, defined as ∂A = A(X ∪X−1) \A. It follows
from a well-known result of Coulhon and Saloff-Coste [7], with bounds as given by [18, Theorem
6.29], that for each positive integer d, we have

|∂A| > |A|
2d(2|A|/εd)1/de

for an arbitrary, non-empty, finite subset A of a group G satisfying deg(G) > d, where εd is the
quantity appearing in Corollaries 1.3 and 1.4. In particular, this implies the explicit d-dimensional
isoperimetric inequality

(1.3) |∂A| >
ε

1/d
d

8
|A|

d−1
d

for any such A and G. Inserting (1.3) into the argument of [33], one can improve the lower bound

K∆−3/2 on the escape probability described above to J∆−2/3, where J is an explicitly computable
absolute constant. Indeed, this leads to a lower bound on the escape probability of the form Jd∆

−2/d

for any group G satisfying deg(G) > d, where Jd is an explicit function of d.
For one final example of an application of our results, [19, Proposition 2.8] shows that for every

transitive graph, E[Ki] 6
∑∞

t=0(t+ 1)pt(x, x)/2, where i > 0 and Ki is the number of times t such
that the loop-erasure of the (nonlazy) simple random walk path up to time t has exactly i edges
(although pt(x, x) still refers here to the lazy simple random walk). In the case of a Cayley graph of

growth degree at least 5, it follows from Corollary 1.9 that E[Ki] 6 5131∆5/2/ε5. An interesting
question is whether the dependence on the valency is necessary for bounding E[Ki].

2. Background on nilpotent groups

In this section we present some standard definitions and results from the theory of nilpotent
groups. Recall that the set of elements of finite order in a nilpotent group G is a subgroup T , called
the torsion subgroup. If G is generated by a finite set X, then T is finite, and the quotient G/T is
torsion-free [25, 5.2.7] with sn(G,X) > sn(G/T,XT ). In this case, the growth of G is trivially of
the same degree as the growth of G/T , meaning that in many of our arguments we may assume
without loss of generality that any nilpotent groups are torsion-free.

Given elements g and h of a group G, we denote by [g, h] the commutator g−1h−1gh of g and h.
More generally, given elements x1, . . . , xk of a group G, we define the simple commutator [x1, . . . , xk]
of weight k recursively by [x1] = x1 and [x1, . . . , xk] = [[x1, . . . , xk−1], xk]. By definition, γk(G) is
the subgroup of G generated by the simple commutators of weight k in elements of G.

Write λ(k) for the length of the simple commutator of weight k as an unreduced word in the
elements x±1

i ; thus, for example, λ(3) = 10 because [x1, x2, x3] = x−1
2 x−1

1 x2x1x
−1
3 x−1

1 x−1
2 x1x2x3. It

is clear that λ(k + 1) = 2λ(k) + 2, whence λ(k) = 3 · 2k−1 − 2. We will use only the following
consequence:

(2.1) λ(k) 6 2k−1k.

Lemma 2.1 ([13, Theorem 10.2.3] or [34, Proposition 5.2.6]). Let G be a group with generating
set X and let k ∈ N. Then γk(G)/γk+1(G) is generated by the image in G/γk+1(G) of the set
{[x1, . . . , xk] : x1, . . . , xk ∈ X}.
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Lemma 2.2 ([34, Lemma 5.5.3 & Proposition 5.2.7]). Let G be a group, let g ∈ G, and let k ∈ N.
Then the map

γk(G) → γk+1(G)/γk+2(G)

x 7→ [x, g]γk+2(G)

is a homomorphism, the kernel of which contains γk+1(G).

Lemma 2.3. Let c ∈ N, and let G be a torsion-free nilpotent group of class c. For each i = 1, . . . , c,
write r(i) for the torsion-free rank of γi(G)/γi+1(G). Then r(i) > 1 for 1 6 i 6 c, and if G is not
cyclic, then r(1) > 2.

Proof. Suppose that r(k) = 0 for some k ∈ {1, . . . , c}, and let k be the maximum such. If k = c, then
γc(G) is finite, hence trivial, contrary to the definition of c. If k < c, then all simple commutators of
weight k have finite order modulo γk+1. Lemma 2.2 therefore implies that all simple commutators
of weight k + 1 have finite order modulo γk+2. This implies that r(k + 1) = 0, contradicting the
maximality of k. This establishes our claim that r(i) > 1 for 1 6 i 6 c.

Now suppose that r(1) = 1. Then we can choose a generating set X for G such that only one
of the xi has infinite order modulo γ2(G) (indeed, X generates G if and only if the image of X
in G/γ2(G) generates G/γ2(G) [13, Corollary 10.3.3]). Lemma 2.2 therefore implies that every
commutator [x, y] with x, y ∈ G has finite order in γ2(G)/γ3(G), so that r(2) = 0. By the first part
of the lemma, this implies that c = 1, so that G is free abelian of rank 1, i.e., infinite cyclic. �

Corollary 2.4. Let d > 2 be an integer and suppose G is a torsion-free nilpotent group with growth
degree d. Then c = cl(G) satisfies c(c+ 1) 6 2d− 2.

Proof. Lemma 2.3 implies that d > 1 +
∑c

i=1 i = 1 + c(c+ 1)/2. �

Lemma 2.5 ([34, Lemma 5.5.2]). Let G be a group and let k ∈ N. Then the map

Gk → γk(G)
(x1, . . . , xk) 7→ [x1, . . . , xk]

is a homomorphism in each variable modulo γk+1(G).

3. Minimal polynomial-growth constants for virtually nilpotent groups

We start by considering the special case of a group that is actually nilpotent, rather than merely
virtually nilpotent.

Proposition 3.1. Let d ∈ N, and suppose G is a nilpotent group with polynomial growth of degree
d. Let X be a finite generating set for G. Then

sn(G,X) >
nd

2d2

for every n ∈ N.

The proof of Proposition 3.1 is by induction on d, and we carry out the induction step by examining
a certain quotient of G with lower growth degree. We will use the following technical lemma that
allows us to compare the growth of G to the growth of this quotient. Recall that Bn(G,X) denotes
the ball of radius n with respect to X centered at the identity element in G.

Lemma 3.2. Let G be a group with finite generating set X, and suppose H E G is a normal
subgroup. Then for every m,n > 0, we have sm+n(G,X) > sm(G/H,XH/H) · |Bn(G,X) ∩H|.
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Proof. The ball of radius m in G contains a set A of cardinality sm(G/H,XH/H) with each element
belonging to a distinct coset of H. The products ax with a ∈ A and x ∈ Bn(G,X) ∩H are then
distinct elements of the ball of radius m+ n. �

In the expression n/2cc2 below and others like this, we write x/yz to mean x/(yz).

Proof of Proposition 3.1. On passing to the quotient of G by its torsion subgroup, we may assume

that G is torsion-free. If n < 2d, then nd < 2d
2
, whence sn(G,X) > 1 > nd/2d

2
and the proposition

is satisfied. We may therefore assume that n > 2d.
If G is abelian, then every generating set contains d independent elements that generate a free

abelian subgroup H of rank d, hence sn(G) > sn(H) > nd/d!: To see this lower bound, consider

only the part of the ball with all coordinates strictly positive. For integers xi > 0 with
∑d

i=1 xi 6 n,

let Cx be the unit cube
∏d
i=1(xi − 1, xi], where x = (x1, . . . , xd). These cubes are disjoint. Suppose

z = (z1, . . . , zd) is a real point in the pyramid where zi > 0 for all i and
∑d

i=1 zi 6 n− d. Then z

lies in the cube Cw, where w := (dz1e, . . . , dzde). Clearly
∑d

i=1dzie 6 n. Therefore, the number of

such x is at least the volume of this pyramid, which is (n − d)d/d! > (n/2)d/d!. Considering all
elements of the ball of radius n with no coordinates equal to 0 gives the claimed lower bound, nd/d!.

Since d! < 2d
2
, the proposition holds when G is abelian.

We now prove the proposition by induction on d. The base case, d = 1, follows because the only
torsion-free such group is the infinite cyclic group, which is abelian.

We now assume that G is nonabelian.
Write c = cl(G). Because G is nonabelian, c > 2, so that c+ 2 log2 c 6 1 + c(c+ 1)/2 6 d in light

of Corollary 2.4, whence 2d > 2cc2.
By Lemma 2.1, there exist elements x1, . . . , xc ∈ X such that [x1, . . . , xc] 6= 1. Set H :=

〈[x1, . . . , xc]〉. Given n ∈ N, we claim first that

(3.1) |Bbn/2c(G,X) ∩H| > nc

2c(c+1)c2c
.

Given L ∈ N, for every integer k = 1, . . . , Lc there exist m 6 c and integers `11, . . . , `1c, . . . ,
`m1, . . . , `mc ∈ [1, L] such that k =

∑m
i=1

∏c
j=1 `ij , as we can see by writing k in base L. Lemma 2.5

therefore implies that for every such k we have

[x1, . . . , xc]
k = [x`111 , . . . , x`1cc ] · · · [x`m1

1 , . . . , x`mc
c ] ∈ Bcλ(c)L(G,X) ∩H,

so that |Bcλ(c)L(G,X) ∩H| > Lc. Setting L := bn/2cc2c and noting that cλ(c)L 6 n/2 by (2.1), we

deduce that |Bbn/2c(G,X) ∩H| > bn/2cc2cc. Since n > 2d > 2cc2, we have bn/2cc2c > n/2c+1c2, so
this proves (3.1) as claimed.

The degree of polynomial growth of G/H is d− c < d, so by induction we may assume that

sdn/2e(G/H,XH/H) >
(n/2)d−c

2(d−c)2 =
nd−c

2(d−c)2+d−c .

Combining this with (3.1) and Lemma 3.2, we deduce that

sn(G,X) >
nd

2(d−c)2+d−c+c(c+1)c2c
=

nd

2(d−c)2+d+c2+2c log2 c
.

It remains to show that (d− c)2 + d+ c2 + 2c log2 c 6 d
2, in other words, that

2c(c+ log2 c) 6 (2c− 1)d.
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Now

1 +
1

c− 1
6 2 log2 c

because c > 2. Multiply both sides by c−1, add 2c log2 c−c+2c2 to both sides, factor the right-hand
side, and use the inequality c+ 2 log2 c 6 d established above to get the desired result. �

We now move on to the proof of the more general Theorem 1.5, writing g(k) from now on for
the maximum order of a finite subgroup of GLk(Z), as in that theorem. It is not too difficult to
deduce from Proposition 3.1 a version of Theorem 1.5 in which the lower bound on sn(G,X) has
some dependence on the index of a nilpotent subgroup. The key to removing this dependence is the
following result, which is essentially [20, Theorem 9.8].

Proposition 3.3. Suppose that G is a finitely generated virtually nilpotent group. Then there exist
normal subgroups H,N E G with H 6 N finite and [G : N ] 6 g

(
h(G)

)
such that N/H is torsion-free

nilpotent.

Proof. This is almost given by [20, Theorem 9.8], which says that there exist normal subgroups
H0, N E G with H0 6 N finite and [G : N ] 6 g

(
deg(G)

)
such that N/H0 is nilpotent. The stronger

bound [G : N ] 6 g
(
h(G)

)
claimed here can be read directly out of the proof of [20, Theorem 9.8],

but N/H0 may still not necessarily be torsion-free. Nonetheless, being of finite index in G, the
subgroup N is also finitely generated [25, 1.6.11], so the torsion subgroup of N/H0 is finite. This
subgroup is characteristic in N/H0, and hence normal in G/H0, so its pullback H to N is finite and
normal in G and satisfies the proposition. �

Proof of Theorem 1.5. Write j := g
(
h(G)

)
. Since sn(G,X) > 1, the theorem is trivial for n 6 2j,

so we may assume from now on that n > 2j. Let H and N be the normal subgroups given
by Proposition 3.3. It suffices to prove the result for G/H, so we may assume that H = {1}
and hence that N is a normal nilpotent subgroup of index at most j in G. The ball of radius
j − 1 in G contains a complete set A of coset representatives for N [34, Lemma 11.2.1]. The set
Y := {axb−1 : a, b ∈ A, x ∈ X ∪X−1, axb−1 ∈ N} is then a generating set for N (see the proof of
[25, 1.6.11] or of [13, Lemma 7.2.2]) and is contained in the ball of radius 2j − 1 in G. We therefore
have

sn(G,X) > sbn/2jc(N,Y ) >
bn/2jcd

2d2

by Proposition 3.1. The fact that n > 2j implies in particular that bn/2jc > n/4j, giving the desired
bound. �

4. Detailed statement and proof of the main theorem

Our main result is as follows.

Theorem 4.1. Let C be the constant appearing in Theorem 1.1, and let d ∈ N. Suppose G is a
group with finite generating set X and that

sn(G,X) <
nd

23C4dg(Cd)C2d

for some positive integer n > exp(exp(CdC)). Then G has a nilpotent subgroup of index On,d(1),
and deg(G) 6 d− 1, where the bound on the index is the same as the bound on the index given by
Theorem 1.1.
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Proof. Theorem 1.1 implies that G has a nilpotent subgroup of index On,d(1), Hirsch length at most

Cd, and growth degree q 6 C2d. Theorem 1.5 then implies that

sm(G,X) >
mq

23C4dg(Cd)C2d

for every m ∈ N. Applying this with m = n shows that q < d. �

Proof of Theorem 1.6. The hypothesis of Corollary 1.3 is not satisfied for any n < exp(exp(CdC)) if
εd is as stated, so Theorem 4.1 applies in every non-vacuous instance of the hypothesis. �

5. Stronger bounds for nilpotent groups

If G is assumed a priori to be nilpotent, then we can improve the bounds of Corollary 1.4 quite
substantially. Given d ∈ N, write

f(d) :=
1

2d2

(the constant appearing in Proposition 3.1).

Proposition 5.1. Let d ∈ N, and suppose that G is a finitely generated nilpotent group of growth
degree at least d and X is a finite generating set for G. Then sn(G,X) > f(b7d/4c)nd for all n ∈ N.

Proof. We prove the proposition by induction on deg(G). We may assume as usual that G is torsion-
free. We write c for the class of G. For the induction step we assume that deg(G) > d+ c and that
the proposition has been proven for all groups of growth degree smaller than deg(G). In that case, let
x ∈ γc(G) be a non-identity element so thatN = 〈x〉 is a central subgroup and deg(G/N) = deg(G)−c.
The induction hypothesis then implies that sn(G,X) > sn(G/N,XN) > f(b7d/4c)nd, as claimed.

It remains to prove the base cases of the induction, in which d 6 deg(G) < d+ c. These are easy
to treat on a case-by-case basis. If d = 1, then G is infinite, so sn(G,X) > n and the proposition
holds. We may therefore assume that d > 2, so that r(1) > 2 by Lemma 2.3 and the class c of G
satisfies

(5.1) c <
√

2 deg(G)− 2

by Corollary 2.4. If d = 2, then G possesses a free abelian quotient of rank 2 because r(1) > 2, so the
proposition holds by Proposition 3.1. The proposition holds similarly if d = 3 and r(1) = 3. If d = 3
and r(1) = 2, then c > 2, so that r(2) > 1 by Lemma 2.3. This implies that deg(G/γ3(G)) > 4,
and hence that sn(G,X) > sn(G/γ3(G), Xγ3(G)) > f(4)n4 by Proposition 3.1, and the proposition
holds.

We may therefore assume that d > 4. We claim in this case that deg(G) 6 7d/4, which by
Proposition 3.1 is sufficient to prove the proposition. If deg(G) 6 7, then this claim is immediate. If
deg(G) = 8 or 9, then (5.1) shows that c 6 3, and hence that deg(G) < 7d/4 as claimed. Finally, if
deg(G) > 10, then (5.1) implies that c < 3 deg(G)/7, again giving deg(G) < 7d/4. �

A similar proof establishes the following version of the above result.

Proposition 5.2. Given a number α > 1, there exists an (explicitly computable) number K = K(α)
such that if G is a finitely generated nilpotent group of growth degree at least d > K and X is a
finite generating set for G, then sn(G) > f(bαdc)nd for all n > 1.
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Proof. Choose K = K(α) > 1 such that if r > K, then r −
√

2r − 2 > r/α. Let G be a finitely
generated nilpotent group of class c ∈ N and growth degree at least d > K, and let X be a finite
generating set for G. We may assume as usual that G is torsion-free. By the inductive argument of
Proposition 5.1, we need only consider the base cases in which deg(G) < d+ c. Since d > 1, (5.1)

gives d > deg(G)−
√

2 deg(G)− 2 > deg(G)/α and the claim holds by Proposition 3.1. �

6. Vertex-transitive graphs

In this section we prove Corollary 1.8. We first provide some brief background on vertex-transitive
graphs. For convenience we provide references to the third and fourth authors’ paper [32], although
most of what we describe is classical. See [32] for more detailed background, including further
references.

Let Γ = (V,E) be a vertex-transitive graph. Given a subgroup G 6 Aut (Γ) and a vertex x ∈ V ,
we write G(x) for the orbit of x under G, and Gx for the stabiliser of x in G. Note that if G acts
transitively on V , then its vertex stabilisers are all conjugate to one another; in particular, they all
have the same cardinality.

Given a subgroup H 6 Aut (Γ), we define the quotient graph Γ/H to have vertex set {H(x) : x ∈
V }, with H(x) and H(y) connected by an edge if and only if there exist x0 ∈ H(x) and y0 ∈ H(y)
that are connected by an edge in Γ. Note in this case that sn(Γ/H) 6 sn(Γ) for all n ∈ N. If G is
another subgroup of Aut (Γ), we say that the quotient graph Γ/H is invariant under the action of G
on Γ if for every g ∈ G and x ∈ V , there exists y ∈ V such that gH(x) = H(y). If H is normalised
by G, then Γ/H is invariant under the action of G, and the action of G on Γ descends to an action
of G on the vertex-transitive graph Γ/H [32, Lemmas 3.1 & 3.2]. When Γ/H is invariant under G,
we write GΓ/H for the image of G in Aut (Γ/H) induced by this action; thus GΓ/H is the quotient
of G by the normal subgroup {g ∈ G : gH(x) = H(x) for every x ∈ Γ}.

The automorphism group Aut (Γ) of the vertex-transitive graph Γ is a topological group with the
topology of pointwise convergence, which is metrisable [32, §4]. A subset U ⊆ Aut (Γ) is relatively
compact if and only if has a finite orbit, if and only if all its orbits are finite [32, Lemma 4.7].

The following result allows us to study the growth of a vertex-transitive graph in terms of the
growth of a closed transitive group of automorphisms.

Lemma 6.1 ([32, Lemma 4.8]). Let k ∈ N. Suppose Γ is a connected, locally finite vertex-transitive
graph and G 6 Aut (Γ) is a closed transitive subgroup acting with vertex stabilisers of order k. Then
there exists a finite generating set X for G such that sn(G,X) = k · sn(Γ) for all n ∈ N.

Proof of Corollary 1.8. Let G be a closed transitive subgroup of Aut (Γ) (for example Aut (Γ) itself).
Since Γ has polynomial growth, Trofimov’s theorem as presented in [32, Theorem 2.1] shows that
there is a compact normal subgroup H0CG such that GΓ/H0

is virtually nilpotent and acts on Γ/H0

with finite vertex stabilisers. Since orbits under H0 are finite, Γ/H0 has the same growth degree as Γ,
so it suffices to prove the corollary for Γ/H0. We may therefore assume that H0 is trivial, and hence
that G itself is virtually nilpotent of growth degree d and acts on Γ with finite vertex stabilisers.

Proposition 3.3 implies that there exist normal subgroups H,N C G, with H 6 N finite and
[G : N ] 6 g(d), such that N/H is torsion-free nilpotent of growth degree d. Write π : G → GΓ/H

for the quotient homomorphism. It is shown in [32, Lemma 3.5] that if x is a vertex of Γ, then
the stabiliser (GΓ/H)H(x) is precisely π(Gx). In particular, (GΓ/H)H(x) is a homomorphic image of
Gx/(Gx ∩H), so that

|(GΓ/H)H(x)| 6 [Gx : Gx ∩H].
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Since N/H is torsion-free and Gx is finite, it must be the case that Gx ∩ N ⊆ H, and hence in
particular that Gx ∩ N ⊆ Gx ∩H. This shows that Gx/(Gx ∩H) is isomorphic to a quotient of
Gx/(Gx ∩N), which is itself isomorphic to a subgroup of G/N , and so we may conclude that

[Gx : Gx ∩H] 6 [G : N ] 6 g(d).

It therefore follows from Theorem 1.5 and Lemma 6.1 that

sn(Γ) > sn(Γ/H) >
1

|(GΓ/H)H(x)|
· nd

2d(d+2)g(d)d
>

nd

2d(d+2)g(d)d+1
,

as required. �

By combining the third and fourth authors’ result [32, Corollary 1.5] and Corollary 1.8, one can
obtain the following partially effective statement.

Corollary 6.2. Let d ∈ N, and suppose Γ is a vertex-transitive graph with degree of growth at least
d. Then there exists n0 = n0(d) ∈ N such that

sn(Γ) >
nd

2d(d+2)g(d)d+1

for every integer n > n0.

Proof. By [32, Corollary 1.5], there exists n0 = n0(d) such that if sn(Γ) 6 nd for some n > n0, then
deg(Γ) 6 d. If no such n exists, then there is nothing to prove. Else, we can apply Corollary 1.8. �

The value of n0 = n0(d) ∈ N provided by the proof remains ineffective.

Appendix A. Universal gap in percolation

Here we sketch the details of how to explicitly bound the quantities in the proofs of Panagiotis
and Severo [23] to derive Corollary 1.10. We will not optimize our calculations; rather, we will
aim for conciseness in the final result. It suffices to prove the inequalities for site percolation [18,
Proposition 7.10].

Before we consider the arguments of Panagiotis and Severo, we first consider a result that they
quote from elsewhere, namely, [14, Theorem 3.20]. The next few paragraphs are intended to be read
in conjunction with [14]; all notation and terminology is as in that paper, and theorem references
are also to that paper.

The proof of Theorem 3.20 shows that if Γ is a Cayley graph of a group that is not virtually
cyclic but contains a nilpotent subgroup of index at most n ∈ N, then there is a Cayley graph
G1 := (V1, E1) := Cay(H0, H ∩ S2n−1

0 ) of valency at most (8n− 4)2n−1, as well as a Cayley graph
G2 := (V2, E2) := Cay(Γ0, S0) of valency at most 8n− 4 that is a subgraph of Γ, such that

PG2,bond

1−(1−p1/C)C
[o↔∞] > PG1,bond

p [o↔∞] > PZ2,bond
p [o↔∞]

for all p ∈ [0, 1]. Here, C is the constant given by applying Lemma 2.10 with φ equal to the
(2n− 1, 1)-rough embedding G1 → G2 induced by the inclusion map H0 → Γ0 appearing in the proof
of Theorem 3.20, and Z2 has its usual Cayley graph. We will show in the next paragraph that we
may take C equal to U := 2(8n− 3)3n−2 in this case, so that

PG2,bond

1−(1−p1/U )U
[o↔∞] > PZ2,bond

p [o↔∞]
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for all p ∈ [0, 1]. It follows from [18, Proposition 7.11] that

PG2,site

1−(1−p1/U )(8n−4)U [o↔∞] >
(
1− (1− p1/U )(8n−4)U

)
PG2,bond

1−(1−p1/U )U
[o↔∞].

Since G2 is a subgraph of Γ, we may combine the previous two displays to conclude that

PΓ,site

1−(1−p1/U )(8n−4)U [o↔∞] >
(
1− (1− p1/U )(8n−4)U

)
PZ2,bond
p [o↔∞]

for all p ∈ [0, 1], and hence

(A.1) PΓ,site

1−(1−p1/U )(8n−4)U [o↔∞] >
(
1− (1− p1/U )(8n−4)U

)(
2− 1

p

)
for all p ∈ [1

2 , 1] by [9, Theorem 1.1].
To see that we may indeed take C = U , and hence verify (A.1), we need to bound two quantities

by U . First, given an edge e1 ∈ E1, we need to show that |Φ(e1)| 6 U in the notation of the proof
of Lemma 2.10. To see this, note that if x and y are the endpoints of e1, then a shortest path
connecting φ(x) and φ(y) has length at most 2n, so every edge in such a path has at least one
endpoint at distance at most n− 1 from either φ(x) or φ(y). There are at most 2(8n− 3)n−1 vertices
at distance at most n− 1 from either φ(x) or φ(y), so there are at most 2(8n− 3)n such edges, and
so |Φ(e1)| 6 2(8n − 3)n 6 U as required. Second, given an edge e2 ∈ E2, we need to show that
|{e1 ∈ E1 : e2 ∈ Φ(e1)}| 6 U . To see this, note that if e2 ∈ Φ(e1) for some e1 ∈ E1, and if u and v
are the endpoints of e2 and x and y are the endpoints of e1, then at least one of φ(x) and φ(y) must
be within distance n− 1 of either u or v. There are at most 2(8n− 3)n−1 vertices at distance at most
n − 1 from either u or v, so since φ is injective, there are at most 2(8n − 3)n−1(8n − 4)2n−1 < U
possibilities for e1, as required.

The remainder of this appendix is intended to be read in conjunction with [23], and we adopt the
notation of that paper except in two explicitly noted cases in the next sentence.

Replace their (3.4) by our Corollary 1.9, which we will write as pn(x, y) 6 γk(D/n)k/2 with

γk := 8k(k+5)/2ε−1
k e−k/2; here only we use our notation εk, in which we will use (our) C = 100.

Although [23] uses a nonlazy simple random walk, they apply such a bound only to bound the Green
function, and adding laziness simply multiplies the Green function by 2, which means that we will
end up with slightly larger bounds than necessary. This gives their (3.5) with C ′′ = γk if we choose
k = 2r + 2.

In their Lemma 3.5, we have cn = (4n)−n because tn = 1/(4nn!) > (4n)−n for n > 2.
The proof of Theorem 3.3 is broken into several cases. For the first case, we choose the same

D0 = 2r
2+5/cr2+2 as they do and get that for D < D0 and dimension at least 2r, the inequality

(A.2) pn(x, y) 6 C/Dnr

holds for all n > 1 when C = γ2rD
r+1
0 . In the remaining cases, D > D0 and the dimension is at

least 2r + 2. For the second case, we have (A.2) for all n > Dr and C = γ2r+2. For the third case,

they note that pn(x, y) 6 1/Dr2+1 for n > 1 +
∫ 4Dr2+1

1
16 du

u/
(

16(r2+2)
)2 = 1 + 163(r2 + 2)2 log

(
4Dr2+1

)
,

so we may set t := 163(r2 + 2)3 to get (A.2) with C = 1 when t logD 6 n < Dr. For the fourth
case, we have (A.2) with C = 3r when 1 6 n 6 3. For the fifth (last) case, we have (A.2) when
4 6 n < t logD and C > max36D<D0 6(t logD)r/D. Now use

(A.3) max
u>0

ue−u/r = r/e
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to see that we may take C = 6(tr/e)r. Comparing all these cases shows that in their Theorem 3.3,
we may take C1(r) = γ2r+2 and d(r) = 2r + 2.

We next turn to the proof of their Theorem 3.1. We have just seen that d0 = d(3) = 8. They
take ε := e−M where M is the bound in their (3.6) of the sum t∞ := log 2 + C0

∑∞
n=1 sn with

sn := (16D)Ln−1
∫∞
λn
ρn(λ) dλ. We may take any C0 > 16/a with a := P[φ1

x 6 λ1] > 1/250, whence

we may take C0 = 4000. For n = 1, we have sn < 1 because g1(x, x) = 1 and L1 = 1. Now let n > 2.

With C1 = C1(3) = γ8, we have gn(x, x) =
∑Ln+1

k=Ln+1 pk(x, x) 6 C1
D

∑Ln+1

k=Ln+1
1
k3

< C1
2DL2

n
. Thus,∫∞

λn
ρn(λ) dλ = P[N > λn/

√
gn(x, x) ] <

√
C1/4Dπ · (n − 1)2/Ln · exp

{
−DL2

n/C1(n − 1)4
}

(this

uses the tail bound P[N > α] < (
√

2πα)−1e−α
2/2). Use (A.3) to get D exp

{
−DLn/C1(n− 1)4

}
6

(n− 1)4C1/eLn, and thus sn 6 vn
√
C1/108π (n−1)2

Ln
, where vu :=

(
16(u−1)4C1

eLu

)Lu

and Lu := 2u+1 − 3

for real u > 1. Calculus shows that log vn 6 Lu∗ , where u∗ maximizes vu over all u > 1 (indeed,

the critical point u∗ occurs where 0 = 2u+1 log 2 · log 16(u−1)4C1

eLu
+ Lu

(
4

u−1 −
2u+1 log 2
2u+1−3

)
, whence

log 16(u∗−1)4C1

eLu∗
=
(
1 − 3/2u∗+1

)(
1/(1 − 3/2u∗+1

)
− 4/(u∗ − 1)

)
< 1). Furthermore, we find that

u∗ < 2 log2C1 (indeed, letting ũ := 2 log2C1, we have Lũ = 2C2
1 − 3, and hence 16(ũ−1)4C1

eLũ
=

16(2 log2 C1−1)4C1

e(2C2
1−3)

< 1; looking again at the derivative of log vu, we conclude that u 7→ log vu is

decreasing at ũ, whence u∗ < ũ). It follows that Lu∗ < 2C2
1 − 3 < 2C2

1 , which yields vn < e2C2
1 .

Because
∑∞

n=2(n− 1)2/
√

108πLn < 1, we find that we may take any M > log 2 +C0

(
1 +
√
C1e2C2

1
)
.

This gives that M := exp
{

17 exp
{

10 · 8100
}}

works.
Finally, in the proof of their Theorem 1.1, we see that for dimensions at least d0 = d(3) = 8, we can

use ε0 = ε = e−M , while for smaller dimensions, we can use ε0 = ε
(
g(8)

)
, where ε(n) is the quantity

coming from Theorem 2.3 and we used [2, Theorem 1] and our Proposition 3.3. Our (1.1) implies that

ε
(
g(8)

)
> ε(16!), while our (A.1) implies that ε(n) can be taken to be (1− (1/2)1/U )(8n−4)U , where

recall that U = 2(8n− 4)3n−2. The inequality eu > 1 + u, valid for all real u, implies in particular

that 1− e−u > u/(1 +u) for all u > −1; applying this, we then see that ε(n) >
(
(2U)−1 log 2

)(8n−4)U
.

Therefore, ε(16!) > ε, whence ε0 = ε can be used for all groups.
Now we turn to the second assertion of Corollary 1.10. The proof of [23, Theorem 1.1] shows

that P1−ε0 [o ↔ ∞] > P[o
ϕ>−1←−−→ ∞] when the dimension is at least d0. By [8, Proposition 2.1],

we have that P[o
ϕ>−1←−−→ ∞] > 1 − exp{D/g(o, o)}; that reference is in terms of a particular bond

percolation, but it is easy to see that it also bounds the probability for site percolation for the
superlevel set of ϕ. Now g(o, o) =

∑∞
n=1 gn(o, o). Our explicit bounds above show therefore that

g(o, o) < 1 + C1
2D

∑∞
n=2 L

−2
n < C1/25D. Using the value above for C1 implies that

Pp0 [o↔∞] > 1− exp
{
−D2 exp

{
−9 exp{100 · 8100}

}}
> exp

{
−9 exp{100 · 8100}

}
for dimension at least d0. For dimension less than d0, we may again apply our (A.1) with n = 16!;
taking p = 2/3, for example, yields

PΓ,site

1−(1−(2/3)1/U )(8n−4)U [o↔∞] >
1

2

(
1− (1− (2/3)1/U )(8n−4)U

)
>

1

3
.

Since (1− (2/3)1/U )(8n−4)U > ((2U)−1 log 3
2)(8n−4)U > ε by essentially the same computation as in

the previous paragraph, this completes the proof.
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Institut de Mathématiques de Jussieu-Paris Rive Gauche, France
Email address: tessera@phare.normalesup.org

School of Mathematics, University of Bristol, United Kingdom
Email address: m.tointon@bristol.ac.uk


	1. Introduction
	2. Background on nilpotent groups
	3. Minimal polynomial-growth constants for virtually nilpotent groups
	4. Detailed statement and proof of the main theorem
	5. Stronger bounds for nilpotent groups
	6. Vertex-transitive graphs
	Appendix A. Universal gap in percolation
	Acknowledgements
	References

