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Determinantal Measures

If E is finite and H ⊆ `2(E) is a subspace, it defines the determinantal measure

∀T ⊆ E with |T | = dim H PH(T ) := det[PH ]T ,T ,

where the subscript T , T indicates the submatrix whose rows and columns belong to
T . This representation has a useful extension, namely,

∀D ⊆ E PH [D ⊆ T ] = det[PH ]D,D .

In case E is infinite and H is a closed subspace of `2(E), the determinantal probability
measure PH is defined via the requirement that this equation hold for all finite D ⊂ E.
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Matroids

Let E be a finite set, called the ground set, and let B be a nonempty collection of
subsets of E. We call the pair M := (E, B) a matroid with bases B if the following
exchange property is satisfied:

∀B, B′ ∈ B ∀e ∈ B \B′ ∃e′ ∈ B′ \B

(B \ {e}) ∪ {e′} ∈ B .

All bases have the same cardinality, called the rank of the matroid.

Example: If E is the set of edges of a finite connected graph and B is the set of
spanning trees of the graph, this is called a graphical matroid. Proof.

Example: If E is a finite subset of a vector space and B is the set of maximal linearly
independent subsets of E, this is called a vectorial matroid. Represent E by columns of

a matrix. Example: graphical. Use the incidence matrix.
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A spanning tree of a graph with the edges of the tree in red.
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e f g h k

x 1 0 0 −1 0
y −1 1 0 0 1
z 0 −1 1 0 0
w 0 0 −1 1 −1



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A representable matroid is one that is isomorphic to a vectorial matroid. A regular

matroid is one that is representable over every field. For example, graphical matroids
are regular.

The dual of a matroid M = (E, B) is the matroid M⊥ := (E, B′), where

B′ := {E \B ; B ∈ B} .
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Determinantal Probability Measures

(Random Matrix Theory 1950s–present, Macchi 1972–75,
Daley, Vere-Jones 1988, many papers since late 1990s; L. 2005)

For representable matroids only. The measure depends on the representation.

The usual way of representing a vectorial matroid M over R (or over C) of rank r

on a ground set E is by an (s × E)-matrix M whose columns are the vectors in Rs

representing M . The column space of M is r-dimensional, so the rank of M is r, and
the row space H ⊆ RE of M is r-dimensional. Suppose that the first r rows, say, of M

span H. For an r-subset B ⊆ E, let MB denote the (r × r)-matrix determined by the
first r rows of M and the columns of M indexed by those e belonging to B. Let M (r)

denote the matrix formed by the first r rows of M . Define

PH [B] := |det MB |2/ det(M (r)M
T
(r)) ,

where the superscript T denotes (conjugate) transpose. This depends only on H. row

ops and scale
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Simpler formula: Identify e ∈ E with 1{e} ∈ `2(E). Let PH be the orthogonal
projection onto H. Then

PH [B] = det[(PHe, e′)]e,e′∈B = det[(PHe, PHe′)]e,e′∈B .

Thus, for r-element subsets B ⊆ E, we have B ∈ B iff PHB is a basis for H.

One also obtains ∀A ⊆ E

PH [A ⊆ B] = det[(PHe, e′)]e,e′∈A . (†)

Example: For a graphical matroid, M is the vertex-edge incidence matrix (each edge
has a fixed arbitrary orientation). The row space is the space F spanned by the stars
or cuts. The measure PF is uniform measure on spanning trees. Equation (†) is called
the Transfer Current Theorem of Burton and Pemantle (1993).

Remark. For any given matroid M , there exists some real representation with a row
space H such that PH is uniform on B iff M is regular.
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Why is this a probability measure?

Suppose first that H is 1-dimensional (r = 1). Choose a unit vector v ∈ H. Then

PH [{e}] = |(v, e)|2 .

The general case arises from multivectors.

Recall that
(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det

[
(ui, vj)

]
i,j∈[1,k]

.

Also, vectors u1, . . . , uk ∈ `2(E) are linearly independent iff u1 ∧ · · · ∧ uk 6= 0.

If dim H = r, then
∧r

H is a 1-dimensional subspace of Ext
(
`2(E)

)
; denote by ξH a

unit multivector in this subspace.

9



Review of Exterior Algebra

Ek := choice of ordered k-subsets of E

∧k
`2(E) := `2

({
e1 ∧ · · · ∧ ek ; 〈e1, . . . , ek〉 ∈ Ek

})
=: multivectors of rank k .

k∧

i=1

eσ(i) = sgn(σ)
k∧

i=1

ei for any permutation σ of {1, 2, . . . , k}

k∧

i=1

∑

e∈E

ai(e)e =
∑

e1,...,ek∈E

k∏

j=1

aj(ej)
k∧

i=1

ei for any scalars ai(e) (i ∈ [1, k], e ∈ E).

Ext
(
`2(E)

)
:=

|E|⊕
k=1

∧k
`2(E), orthogonal summands

For H ⊆ `2(E), we identify Ext(H) with its inclusion in Ext
(
`2(E)

)
, that is,

∧k
H is

the linear span of
{v1 ∧ · · · ∧ vk ; v1, . . . , vk ∈ H} .
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Why PH is a probability measure:

PH [{e1, . . . , er}] =
∣∣(ξH ,

r∧

i=1

ei

)∣∣2 .

To prove this, we use:

Lemma. For any subspace H ⊆ `2(E), any k ≥ 1, and any u1, . . . , uk ∈ `2(E),

P∧kH(u1 ∧ · · · ∧ uk) = (PHu1) ∧ · · · ∧ (PHuk) .

Proof. Write

u1 ∧ · · · ∧ uk = (PHu1 + P⊥H u1) ∧ · · · ∧ (PHuk + P⊥H uk)

and expand the product. All terms but

PHu1 ∧ · · · ∧ PHuk

have a factor of P⊥H ui in them, making them orthogonal to
∧k

H.
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Proof that

PH [{e1, . . . , er}] =
∣∣(ξH ,

r∧

i=1

ei

)∣∣2 :

We have
∣∣(ξH ,

r∧

i=1

ei

)∣∣2 = ‖P∧rH(
∧

i

ei)‖2

=

(
P∧rH(

∧

i

ei), P∧rH(
∧

i

ei)

)

=

(
P∧rH(

∧

i

ei),
∧

i

ei

)

=

(∧

i

PHei,
∧

i

ei

)

= det[(PHei, ej)] .
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Completion of Calculation

Let the ith row of M be mi. For some constant c, we thus have

ξH = c
r∧

i=1

mi ,

whence
PH [B] = |(ξH ,

∧

e∈B

e)|2

= |c|2
∣∣∣det [(mi, e)]i≤r, e∈B

∣∣∣
2

= |c|2 | detMB |2 .

Now we calculate |c|2:
1 = ‖ξH‖2 = |c|2 ‖

r∧

i=1

mi‖2

= |c|2 det [(mi, mj)]i,j≤r

= |c|2 det(M (r)M
T
(r)) .
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Matrix-Tree Theorem

The Matrix-Tree Theorem. Let G be a finite connected graph and o ∈ V. Then
the number of spanning trees of G equals

det
[
(?x, ?y)

]
x6=o,y 6=o

.

Proof. In other words, we want to show that if u is the wedge product (in some order)
of the stars at all the vertices other than o, then (u, u) = ‖u‖2 is the number of
spanning trees. Any set of all the stars but one is a basis for F. Thus, u is a multiple
of ξF. Since F represents the graphic matroid, the only non-zero coefficients of u are
those in which choosing one edge in each ?x for x 6= o yields a spanning tree; moreover,
each spanning tree occurs exactly once since there is exactly one way to choose an edge
incident to each x 6= o to get a given spanning tree. This means that its coefficient is
±1.

This proof also shows that PF is uniform.
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Additional Probabilities: Recall that

PH [A ⊆ B] = det[(PHe, e′)]e,e′∈A =
(
PExt(H)θA, θA

)
,

where, for a finite subset A = {e1, . . . ek} ⊆ E, we write

θA :=
k∧

i=1

ei .

This is proved by proving an extension:

For any A1, A2 ⊆ E,

PH [A1 ⊆ B, A2 ∩B = ∅] =
(
PExt(H)θA1 ∧ PExt(H⊥)θA2 , θA1 ∧ θA2

)
.

(First prove when A1 ∪A2 = E, then sum over partitions.) Therefore

PH⊥
[B] = PH [E \B] .

Orthogonal subspaces thus correspond to dual matroids.
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Additional Property: Extend PH from B to the collection 2E of all subsets of E.

An eventA is called increasing if whenever A ∈ A and e ∈ E, we have also A∪{e} ∈ A.

Given two probability measures P1, P2 on 2E , we say that P1 is stochastically

dominated by P2 and write P1 4 P2 if

P1[A] ≤ P2[A] for all increasing A .

Theorem (L.). If H ′ ⊆ H ⊆ `2(E), then PH′ 4 PH .
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A monotone coupling of two probability measures P1, P2 on 2E is a probability mea-
sure µ on 2E × 2E whose coordinate projections give P1, P2 and which is concentrated
on the set {(A1, A2) ; A1 ⊆ A2}. That is,

∀A1 ⊆ E
∑

A2⊆E

µ(A1, A2) = P1[A1] ,

∀A2 ⊆ E
∑

A1⊆E

µ(A1, A2) = P2[A2] ,

∀A1, A2 ⊆ E µ(A1, A2) 6= 0 =⇒ A1 ⊆ A2 .

Strassen’s theorem (proved, say, by Max Flow-Min Cut Theorem) says that stochastic
domination is equivalent to existence of a monotone coupling.

Open Question: Find an explicit monotone coupling of PH′
and PH when H ′ ⊆ H.
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Extension to Infinite E

Let E = {e1, e2, . . .}. If H ⊂ `2(E) is finite-dimensional, then write Hk for the image
of the orthogonal projection of H onto the span of {e1, e2, . . . , ek}. Then the matrix
entries of PHk

converge to those of PH , whence we may define PH to be the weak*
limit of PHk .

If H ⊆ `2(E) is closed and infinite-dimensional, then let Hk be finite-dimensional
subspaces of H that are increasing with union dense in H. Again, the matrix entries
of PHk

converge to those of PH , whence we may define PH to be the weak* limit of
PHk .

Theorem (L.). Let E be finite or infinite and let H ⊆ H ′ be closed subspaces of
`2(E). Then PH 4 PH′

, with equality iff H = H ′.

This means that there is a probability measure on the set
{
(B, B′) ; B ⊆ B′} that

projects in the first coordinate to PH and in the second to PH′
.
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Trees, Forests, and Determinants

Let G = (V, E) be a finite graph. Choose one orientation for each edge e ∈ E. Let
F = B1(G) denote the subspace in `2(E) spanned by the stars (coboundaries) and let
♦ = Z1(G) denote the subspace spanned by the cycles. Then `2(E) = F⊕♦.

For an infinite graph, let F := B̄1
c (G) be the closure in `2(E) of the span of the stars.

For an infinite graph, Benjamini, Lyons, Peres, and Schramm (2001) showed that WUSF

is the determinantal measure corresponding to orthogonal projection on F, while FUSF

is the determinantal measure corresponding to ♦⊥.

Thus, WUSF 4 FUSF, with equality iff F = ♦⊥.
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Open Questions: Orthogonal Decomposition

Suppose that H = H1 ⊕ H2. Is there a disjoint coupling of PH1 with PH2 whose union
marginal is PH? I.e., is there a probability measure µ on 2E × 2E such that

∀A1 ⊆ E
∑

A2⊆E

µ(A1, A2) = PH1 [A1] ,

∀A2 ⊆ E
∑

A1⊆E

µ(A1, A2) = PH2 [A2] ,

∀A1, A2 ⊆ E µ(A1, A2) 6= 0 =⇒ A1 ∩A2 = ∅ ,

∀A ⊆ E
∑

A1∪A2=A

µ{(A1, A2)} = PH [A] ?

E.g., if H = `2(E), then “yes” since then PH1 and PH2 correspond to dual matroids
and complementary subsets. In general, there is some computer evidence.
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Open Questions: Group Representations

We can ask for even more. Suppose that E is a group. Then `2(E) is the group algebra.
Invariant subspaces H give subrepresentations of the regular representation and give
invariant probability measures PH . There is a canonical decomposition

`2(E) =
s⊕

i=1
Hi ,

where each Hi is an invariant subspace containing all isomorphic copies of a given
irreducible subrepresentation. Can we disjointly couple all measures PHi so that every
partial union has marginal equal to PH for H the corresponding partial sum? PHi

given

by characters

Consider the case E = Zn. All irreducible representations are 1-dimensional and there
are n of them: for each k ∈ Zn, we have the representation

j 7→ e2πikj/n .

Thus, a coupling as above would be a random permutation of Zn with special properties.
comp evid to n = 7.
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