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Notes on Chap. 5: More on Multiple Regression

§5.1. Introduction.

As in chapter 4, we have an n × p design matrix X of rank p and a response vector

Y ∈ R
n. OLS writes a relationship between X and Y as Y = Xβ̂ + e with e ⊥ X . A

model for this is Y = Xβ + ǫ.

In this chapter, we discuss another way that OLS is best. Then we weaken some

assumptions to discuss GLS, where “G” stands for “generalized”. The most important

parts come last, where we discuss statistical hypothesis testing. There will be t-statistics

again, as well as new ones called F -statistics. In the handout on t-distributions, we found

the distribution of t, provided that the samples came from a normal distribution. Likewise,

these t- and F -tests depend on stronger assumptions, namely, that error terms are IID

normal random variables.

§5.2. OLS is BLUE.

In chapter 4, we saw that OLS is best in giving the best possible approximation (of a

certain form) to the data; this was theorem 4.1. We also saw that OLS was good in that it

provided unbiased estimates of the parameters (with appropriate statistical assumptions

on the model). In this section, we show that (again with assumptions) OLS is best in its

class. What do we mean? First, we are talking about a property of β̂, the OLS estimate of

β. Second, we are going to say that β̂ is best among all estimators of β that are unbiased.

But actually, we are going to restrict our class of estimators a little more. Recall that

β̂ = QY , where Q := (X ′X)−1X ′. That is, supposing X is fixed (not random), β̂ is a

linear transformation of Y . The key aspect here is that it is linear in Y , not some more

complicated function of Y . (It is indeed a complicated function of X , but we are treating

X as fixed, like a constant.) Thus, β̂ is an LUE of β, where “LUE” stands for “linear

unbiased estimator”. We are going to prove it is best in the class of all LUEs, so we will

say it is BLUE, where “B” stands for “best”. But what do we mean by “best”?

This is a little complicated. After all, β̂ is a random vector. We want to capture the

idea that β̂ has the smallest variance in the entire class LUE. Of course, as a vector, β̂

does not have a variance. It does have a covariance matrix, but what would it mean to
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say it is smaller than another covariance matrix? This can indeed be done, but we will do

it another way that is more concrete.

Namely, we use β̂ to estimate things like β1, β2, β1 − β2, 3β4 +2β6, etc. All these are

linear combinations of coordinates of β. In general, a linear combination of coordinates of

β is a number of the form
∑p

i=1 ciβi = c′β, where c is a column vector [c1 · · · cp]
′. Since

we estimate β by β̂, we naturally estimate c′β by c′β̂. For example, we estimate β1 by β̂1;

this corresponds to using c = [1 0 · · · 0]′. Likewise, we estimate β1 −β2 by β̂1 − β̂2, which

corresponds to c = [1 −1 0 · · · 0]′. Not only is the estimate c′β̂ natural, but we will show

it is the best estimate of c′β in its class.

So fix some c ∈ R
p. We are going to focus on estimating c′β instead of estimating

β. Note that E(c′β̂) = c′E(β̂) = c′β, so c′β̂ is an unbiased estimate of c′β. Also, c′β̂ is a

linear estimator of c′β since

c′β̂ = c′QY . (N1)

Note that c′Q is a row vector, so c′β̂ is a linear combination of the coordinates of Y . That

is, c′Q gives the OLS estimator of c′β by multiplying Y on the left. In general, a linear

estimator has the form
∑n

i=1 diYi = d′Y for some column vector d ∈ R
n. (We replace

c′Q in (N1) by a general d′.) It would be unbiased if E(d′Y ) = c′β. Remember we are

thinking of c as fixed; we might be estimating β1, so we would say that d′Y is an unbiased

estimator of β1 if E(d′Y ) = β1.

Now c′β̂ is a random variable, not a random vector. So c′β̂ does have a variance. It

makes sense to ask whether Var(c′β̂) is smallest among all LUEs of c′β. It does! This is

why c′β̂ is called best. We state and prove this formally in the next theorem, called the

Gauss-Markov theorem.

Theorem 5.1. Suppose that X is fixed, E(ǫ) = 0n, and Cov(ǫ) = σ2In with σ2 > 0.

Consider any c ∈ R
p. Then for every d ∈ R

n that has the property that E(d′Y ) = c′β for

all β, we have that Var(c′β̂) ≤ Var(d′Y ) with equality iff d′ = c′Q. Here, Y = Xβ + ǫ and

d can depend on X but not on β.

Proof. First, what is Var(d′Y )? Since d′Xβ is constant, we have

Var(d′Y ) = Var
(
d′(Xβ + ǫ)

)
= Var(d′ǫ) = Cov(d′ǫ) = d′ Cov(ǫ)d = d′σ2Ind = σ2‖d‖2 .

(N2)

We used the fact that the covariance matrix of a random variable is the same as its variance,

in order to use what we know about random vectors and their covariance matrices.

We next look at what it means that d′Y is unbiased, i.e., that E(d′Y ) = c′β for all β.

Substitute Y = Xβ + ǫ here to get E(d′Y ) = d′Xβ + d′E(ǫ) = d′Xβ, so that d′Xβ = c′β.
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Remember that this holds for all β. It follows that

d′XQ = c′Q (N3)

because we can choose for β any column of Q; the matrix multiplication on each side in

(N3) works column by column on Q. Recall that H = XQ is the matrix of the orthogonal

projection PW , where W := col(X). In particular, H is symmetric, so taking the transpose

of both sides of (N3) gives Hd = Q′c, i.e., PW (d) = Q′c. This implies that ‖d‖ ≥ ‖Q′c‖
with equality iff d = Q′c iff d′ = c′Q.

Therefore, (N2) gives that Var(d′Y ) ≥ σ2‖Q′c‖2 = Var(c′QY ) = Var(c′β̂) with equal-

ity iff d′ = c′Q. That is, the minimum variance is indeed achieved uniquely at the OLS

estimator of c′β.

Optional exercise: Show that the assumption in theorem 5.1 that σ2 > 0 is not needed;

the conclusion is true even when σ = 0.

Optional exercise: The Gauss-Markov theorem is sometimes stated in a more elegant,

though weaker, form. To understand it, we must return to the question left unanswered

above, namely, how do we compare two covariance matrices? Recall that covariance ma-

trices are non-negative definite, and that such matrices are like non-negative real numbers.

We say that one number is larger than another if their difference is positive. Likewise, we

say that one matrix A is at least as large as another B if their difference is non-negative

definite, written A ≥ B if A − B ≥ 0. Recall that this means: for all vectors v, we have

v′(A−B)v ≥ 0. This inequality is the same as v′Av ≥ v′Bv. Prove the following: Suppose

that X is fixed, E(ǫ) = 0n, and Cov(ǫ) = σ2In with σ2 > 0. Then for every n× n matrix

M with the property that E(MY ) = β for all β, we have that Cov(β̂) ≤ Cov(MY ) with

equality iff M = Q. Here, Y = Xβ+ ǫ and M can depend on X but not on β. Hint: What

does c′MY estimate?
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§5.3. Generalized least squares.

Here we loosen the assumption on the covariance matrix of ǫ. This is natural when

we think that not all subjects have the same variability, or when we think there is some

dependence among the subject measurements. This is common in practice. A simple and

beautiful mathematical example is in exercise 5C1. (That example is a special case of

the heteroscedastic regression model , which is where G is an unknown diagonal matrix.) A

consequence of our changed assumptions will be that the OLS estimator will not be BLUE.

Our assumptions in this section will be that

E(ǫ | X) = 0n and Cov(ǫ | X) = G ,

where G is a positive definite n×n matrix. This is called the GLS regression model. Before,

we assumed that G = σ2In. Allowing G to be non-0 off the diagonal means that we allow

correlations among the ǫi; allowing G to be non-constant on the diagonal means that we

allow ǫi to have different variances. Recall that every covariance matrix is non-negative

definite. We are assuming a little more: it is positive definite. If G were not positive

definite, then there would be a linear relation among the ǫi, which would be strange.

Optional exercise: Show that if G is the covariance matrix of a random vector U and

G is not positive definite, then there exists some constant vector c 6= 0 and some real

number m such that c′U = m with probability 1. Hint: G has a non-0 null space.

Let β̂OLS denote the OLS estimator of β. Now theorem 4.2 tells us that

E(β̂OLS | X) = β ,

so still β̂OLS is unbiased. However, theorem 4.3 no longer applies since we changed our

assumption. Instead, the first line of calculation in the proof of theorem 4.3 gives us that

Cov(β̂OLS | X) = QCov(ǫ | X)Q′ = QGQ′ ; (N4)

recall that Q = (X ′X)−1X ′.

Although β̂OLS is still an LUE of β, the hypotheses of the Gauss-Markov theorem no

longer hold and it is generally the case that β̂OLS is not BLUE. That means that there is

a better LUE of β. Of course, we can still use β̂OLS; but what reasons are there for using
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a better LUE? First, one would like to get a smaller error in one’s estimate of anything.

Second, when we look at statistical hypothesis testing, as in FPP, the error is directly

related to the P -value, with a larger error leading to a larger P -value. Therefore, one

might not reject the null hypothesis when one should. This means that one might miss a

discovery, or that one might miss the opportunity to publish. Therefore, people often use

a different estimator than β̂OLS for the GLS model.

How do we get a better estimator? Recall from exercise 3D7 that there is a matrix

G−1/2. Take our model Y = Xβ + ǫ and multiply both sides by G−1/2. We get

G−1/2Y︸ ︷︷ ︸
new response

= G−1/2X︸ ︷︷ ︸
new design

β + G−1/2ǫ︸ ︷︷ ︸
new error

. (N5)

This looks complicated, but the calculations are easily done by MATLAB. However, we

need to check some assumptions. The parameter vector is still β. The new design matrix

has full rank because if c ∈ R
p has the property that G−1/2Xc = 0n, then (Xc)′G−1/2Xc =

0; because G−1/2 is positive definite (exercise 3D7), it follows that Xc = 0n by definition

of “positive definite”; because X has full rank, it follows that c = 0p; this means that the

new design matrix has full rank. The new error term has

E(G−1/2ǫ | X) = G−1/2E(ǫ | X) = G−1/20n = 0n

and

Cov(G−1/2ǫ | X) = G−1/2 Cov(ǫ | X)G−1/2 = G−1/2GG−1/2 = G−1/2G1/2G1/2G−1/2 = In .

Thus, the assumptions of theorem 4.4 and of theorem 5.1 hold with σ = 1 for the trans-

formed equation (N5).

That means the conclusions hold for the OLS estimator of (N5), which we will call

β̂GLS. In order to calculate β̂GLS, we apply the formula from LinAlg#3 to (N5):

β̂GLS :=
[
(G−1/2X)′(G−1/2X)

]−1
(G−1/2X)′G−1/2Y .

Let’s simplify this mess. We have (G−1/2X)′ = X ′G−1/2 and G−1/2G−1/2 = G−1. Thus,

we get

β̂GLS = (X ′G−1X)−1X ′G−1Y . (N6)

By theorem 4.2, we have

E(β̂GLS | X) = β (N7)
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and by theorem 4.3, we have

Cov(β̂GLS | X) = (X ′G−1X)−1 (N8)

since
[
(G−1/2X)′(G−1/2X)

]−1
= (X ′G−1X)−1 and since σ = 1 for (N5). Furthermore, if

X is fixed, then by theorem 5.1, β̂GLS is BLUE. (Note that β̂GLS is a LUE by (N6) and

(N7).)

Exercise: If X has an intercept, does the transformed model (N5) also have an inter-

cept?

Everything is looking good, even if messy. However, there’s a catch: usually we don’t

know G, just like in OLS we usually don’t know σ. That wasn’t much of a problem for

OLS. But it is a serious problem for GLS. After all, G is n× n, so not knowing G means

not knowing the n2 entries of G. Since G is symmetric, this really means not knowing

n(n − 1)/2 + n = n(n + 1)/2 numbers. At the same time, the data, X and Y , give us

only np + n = (n + 1)p numbers. We have p ≤ n, and the case p = n is not of interest.

If p > n/2, then we will have more data than unknowns, and maybe we could get some

sort of estimates. However, it is usually not the case that p > n/2, and even if it were the

case, we would have fewer than twice as many data points as numbers to estimate (not

even counting β), so we could not expect our estimates to be very accurate.

Consequently, we need to assume some constraints on G, i.e., to assume that many

entries are zero, or are equal to each other, or some other constraints to cut down the

number of unknowns. We will look at some examples in the next section. But once we

do impose constraints and once we find some way to estimate G by some matrix Ĝ, then

we simply substitute Ĝ for G in (N6) to get what is called a feasible GLS (or Aitken)

estimator, β̂FGLS:

β̂FGLS := (X ′Ĝ−1X)−1X ′Ĝ−1Y . (N9)

We would estimate the covariance of β̂FGLS by substituting Ĝ for G in (N8):

Ĉov(β̂FGLS | X) := (X ′Ĝ−1X)−1 . (N10)

The name “feasible” is used regardless of the method employed to get Ĝ. These might

be good estimates, or they might not be. There is no good general theory about them,

nor is there a general way to get FGLS estimates. These estimates are not linear since Ĝ

will depend on Y , and they are usually biased without further assumptions, though if the

bias is small, it may not be too important. None of the theorems we had about OLS and

GLS apply to FGLS. However, we can test how well FGLS does by simulation. (This is
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illustrated for exercise 5C1 below in these notes, as well as in chapter 8.) Also, in special

cases there is good theory about Ĝ; see the optional exercises below for some of that.

Consider a special case of GLS, where G is a diagonal matrix. That is the same as

saying that ǫi are uncorrelated given X , which is also equivalent to saying that Yi are

uncorrelated given X , since Xβ is constant given X and therefore Xβ does not affect

the correlations that are conditional on X . One says that the model is homoscedastic if

we have further that G is constant on the diagonal, i.e., we are back in the OLS model.

Otherwise, one says the model is heteroscedastic.

Optional exercise: Rederive the results of exercise 4.5.17 from (N4).

Optional exercise: Often, as in the next section, β̂FGLS is a function of the OLS

residuals, e = Y −Xβ̂OLS. Namely, there is some matrix function M(e) such that β̂FGLS =

M(e)Y . More precisely, there is a function M :Rn → R
n×n, i.e., for every vector v ∈ R

n,

there is an n × n matrix M(v), such that β̂FGLS = M(e)Y for all Y ∈ R
n, where e :=

Pcol(X)⊥Y . It will be convenient to write e as e(Y ) since e is determined by Y ; we are

regarding X as fixed. The property β̂FGLS = M(e)Y makes it looks like β̂FGLS is a linear

estimator, but it is not, since e depends on Y . When we write it more completely, we

have β̂FGLS = M
(
e(Y )

)
Y . Usually the function M satisfies M(v)X = Ip for all v ∈ R

n,

in other words, M(v)Xβ = β for all β and all v. These properties of β̂ are not statistical

properties. Now suppose that M has two more (non-statistical) properties: the range of

M is bounded in R
n×n and M(av) = M(v) for all non-0 real a and all v ∈ R

n. Note that

β̂GLS has all 4 properties: by (N6), we have that M(v) = (X ′G−1X)−1X ′G−1 does not

depend on v at all. The first example of the next section is similar. Regression with serial

correlation gives examples where M is not constant, but we will not discuss that type

of regression in this course. Prove that β̂FGLS has a finite second moment. (Technically,

we need to assume that M is measurable.) Prove that if in addition the law of ǫ equals

the law of −ǫ given X (e.g., ǫ is normal), then E(β̂FGLS | X) = β. Hints: The bias is

E
(
M(e(Y ))ǫ | X

)
. We have e(Y ) = e(ǫ) when Y = Xβ + ǫ. Finally, e(−ǫ) = −e(ǫ) for all

ǫ.
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§5.4. GLS examples.

The first example of GLS we consider is like OLS in that we know G up to an unknown

constant factor. That is, suppose G = λΓ, where Γ is a known positive definite matrix and

λ > 0 is unknown. In this case, (N6) becomes

β̂GLS = (X ′λ−1Γ−1X)−1X ′λ−1Γ−1Y = λ(X ′Γ−1X)−1X ′λ−1Γ−1Y

= (X ′Γ−1X)−1X ′Γ−1Y .

In particular, the unknown λ cancelled, and so we can compute β̂GLS even though G is

not completely known. Furthermore, β̂GLS is BLUE (for fixed X) and (N8) becomes

Cov(β̂GLS | X) = λ(X ′Γ−1X)−1 .

How do we estimate λ here? We use a modification of (N5), namely,

Γ−1/2Y︸ ︷︷ ︸
new response

= Γ−1/2X︸ ︷︷ ︸
new design

β + Γ−1/2ǫ︸ ︷︷ ︸
new error

. (N11)

That is, we regress Γ−1/2Y on Γ−1/2X , where we can apply OLS. The error term satisfies

Cov(Γ−1/2ǫ | X) = Γ−1/2GΓ−1/2 = Γ−1/2λΓΓ−1/2 = λ. That is, λ is like σ2 and thus has

the estimate ‖e‖2/(n− p), where e is the residual for the OLS estimate of (N11).

The name of β̂GLS in this case is the weighted least squares estimate. The reason for

the name comes from the special case where G is diagonal. As shown in exercise 5C2, the

diagonal of Γ enters as weights for minimizing a sum of squares. Note too that an even

more special case is where Γ = In; then we are back in OLS from the start.

This example was very good in that all the theory applied and we did not need to use

feasible GLS. The next example forces us to use FGLS, even though, like the first example,

it is a minor modification of the OLS assumptions and very little will be unknown about

G.

Suppose that the subjects come in pairs, or that each subject is measured twice.

Assume that given X , the response variables are uncorrelated from one pair to the next,

and that the covariances within each pair are the same. An economic example is in chapter

8. That is, we assume that

G =




K 02×2 · · · 02×2

02×2 K · · · 02×2

...
...

. . .
...

02×2 02×2 · · · K


 ,
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where K is an unknown 2 × 2 positive definite matrix. Here, G has the 2 × 2 block K

along the diagonal and 0 elsewhere. Since K is symmetric, its 4 entries contain 3 unknown

numbers, one of which is repeated; we need to estimate these from the data. How do we

estimate K? At this juncture, there is no established theory to guide us, but we can give

some heuristics.

First, let’s use OLS (on the untransformed equation) to get β̂OLS; because we are going

to make several passes and get successive estimates of β and of K, denote β̂OLS by β̂(0).

Now by definition, K11 = Var(ǫ1) = Var(ǫ3) = · · · = Var(ǫn−1) = E(ǫ21) = · · · = E(ǫ2n−1).

If we knew ǫ, we would estimate K11 therefore by

ǫ21 + ǫ23 + · · ·+ ǫ2n−1

n/2
=

2

n

n/2∑

j=1

ǫ22j−1 .

Of course, we can’t observe ǫ, but we can calculate the first set of residuals, e(0) :=

Y −Xβ̂(0). So we could use the estimate

K̂
(0)
11 :=

2

n

n/2∑

j=1

(
e
(0)
2j−1

)2
.

Note that this is what we would do if we paid attention only to the data in the odd-

numbered rows; according to our model, they satisfy the assumptions of OLS. In fact, we

would divide not by n/2, but by n/2 − p, but put that aside for the moment. We could

similarly use the estimate

K̂
(0)
22 :=

2

n

n/2∑

j=1

(
e
(0)
2j

)2
.

What about K12 = K21? This is where the dependencies between the odd and even rows

enter. Again, if we knew ǫ, we could estimate K12 = Cov(ǫ1, ǫ2) = Cov(ǫ3, ǫ4) = · · · =
Cov(ǫn−1, ǫn) = E(ǫ1ǫ2) = · · · = E(ǫn−1ǫn) by the sample mean product

2

n

n/2∑

j=1

ǫ2j−1ǫ2j ,

but since we don’t know ǫ, we can use instead the residuals:

K̂
(0)
12 := K̂

(0)
21 :=

2

n

n/2∑

j=1

e
(0)
2j−1e

(0)
2j .

Thus, with these three estimates, we get an estimate K̂(0) of K, and therefore of G, call it

Ĝ(0). If we substitute Ĝ(0) into our feasible GLS estimate (N9), we get a new estimate of
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β, call it β̂(1). This estimate β̂(1) is called one-step GLS; it is an FGLS estimate. It used

our estimate K̂(0) of K, so it is not GLS, but only FGLS. (One small point: if it happens

that K̂ is not invertible, then we can’t find the inverse of Ĝ. In that unlikely case, do

anything reasonable.)

Optional remark: We could also motivate K̂ as follows: Define the second moment

matrix of a random vector ζ as E(ζζ ′). When ζ has mean 0, this is equal to the covariance

matrix of ζ. Define a sample second moment matrix similarly for vector-valued data. In

the present case, K equals the second moment matrix of

[
ǫ1
ǫ2

]
, whereas K̂ equals the

sample second moment matrix of the data
([

e
(0)
1

e
(0)
2

]
, . . . ,

[
e
(0)
n−1

e
(0)
n

])
.

We could now repeat this procedure: Define new residuals e(1) := Y −Xβ̂(1), use them

in the same way as before to get a new estimate K̂(1) and thus Ĝ(1) and finally β̂(2). This

is called (surprise!) the two-step GLS estimate of β. One can keep going, as people usually

do, until the estimate stops changing much. The final estimate is then called iteratively

weighted least squares. However, not much is known about how well this works.

Now about the issue of the divisor, n/2 or n/2−p. First, notice that the divisor cancels

when we substitute our estimate of K (and thus of G) into (N9), just as λ cancelled in the

first example above. Thus, it won’t affect our estimates of β at all. It will matter at the

end, however, for estimating the covariance via (N10). Unfortunately, there is little theory

to guide us; see pp. 174–5 for some more discussion of this issue.

An optional example: In the equi-correlated GLS, we assume that all diagonal elements

of G are equal, and that all off-diagonal elements are also equal. Suppose that X is merely

1n. Then we are in the situation of exercise 4.5.17, with constant correlation r instead

of merely average correlation r. This might seem like an easy case. If we know r, then

it becomes a special case of our first example above, so there is no problem doing GLS.

However, if we do not know r, then it is impossible to estimate our error; that is, there is

no FGLS in this situation. Recall that this case includes when Yi are IID plus a systematic

random bias. We get only one unobserved sample of the bias, which makes it impossible

to know how large it is, never mind knowing how large it is typically.

10



Prof. Lyons M466: Introduction to Mathematical Statistics Spring 2013

A comment on exercise C1: I compared OLS, GLS, FGLS, and iterated FGLS by

simulation for the following situation. I took 50 data points; the first 20 were IID from

an exponential distribution of mean 1, whereas the last 30 were IID from an exponential

distribution of mean 2, with 1 subtracted from each of the last 30 to make their mean also

1. The variance of the first distribution is 1, while the variance of the second distribution

is 4. I took the straight average (OLS) and also the GLS and the FGLS estimates using

the method given in the answer at the back of the book. (To estimate the two variances for

FGLS, I divided by 19 and 29, rather than 20 and 30.) I also did two-step FGLS (2FGLS),

as well as computed the limiting value of iterative FGLS (∞FGLS), which is the root of a

cubic equation in this case. I computed all of these 10,000 times, which gave the following

results:

Method Mean rmse Mean ŜE SE

OLS 1.0005 0.234 0.231 0.237

GLS 0.9995 0.190 — 0.191

FGLS 0.9591 0.199 0.180 ?

2FGLS 0.9562 0.200 0.177 ?

∞FGLS 0.9561 0.201 0.177 ?

The first column reports the mean of the 10,000 simulations. How far off from the true

value of 1 were the estimates on average? The second column reports the r.m.s. error

(averaged over all 10,000 simulations). So indeed the GLS estimates are a little more

accurate than OLS and the FGLS estimates are also more accurate than OLS and less

accurate than GLS, but the FGLS estimates are definitely biased. Finally, iterated FGLS,

whether two-step or the limit, is slightly more biased than FGLS and has a slightly larger

error: iterating makes everything a little worse here. This shows how well these methods

did.

How well did these methods predict they were doing? This is reported in the third

column. The ŜE for OLS is computed from (12) of chapter 4, i.e., σ̂/
√
50; the mean of

the 10,000 such ŜEs is given in the third column. Likewise, the ŜE for FGLS and its

iterated variants is computed via (N10). There is no such thing for GLS, because in GLS,

we use the true values of the variances. For GLS, we can compute the actual SE instead

by using (N8); that is given in column 4. Similarly, the actual SE for OLS is computed

from (N4). We do not have a formula for the SE of FGLS. The fourth column is not very

important here. Comparing the second and third columns, we see that OLS predicts its

error correctly on average, while FGLS predicts, on average, that its error is smaller than

11
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it really is. Although iterated FGLS does worse than FGLS, it predicts it does even better.

12
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Optional remarks: We said above that the FGLS estimates were “definitely biased”.

How do we know that the mean of the 10,000 estimates (for FLGS without iteration, this

was 0.9591) is not within sampling error? Since we do not have a formula for the SE of

FGLS, we use the r.m.s. error instead. Dividing it by
√
10, 000 = 100 gives our estimated

SE of 0.000199 on 0.9591; we find that the mean differs from the true value, 1, by −21

estimated SEs: definitely biased.

Let’s consider the fourth column of the first row more carefully. (Warning: this is

going to get confusing.) Are the differences between it, 0.237, and the others, 0.234 and

0.231, within sampling error? One might expect that with 10,000 IID simulations, one

would have smaller differences that those we see here. In fact, however, neither column 2

nor column 3 give unbiased estimates of column 4. Recall that our formulas give unbiased

estimates not of SEs, but of variances. (This is natural, since variance is an expectation,

but SE, like SD, is not, and the definition of “unbiased” involves an expectation.) So

we should look instead at squares. In this case, we have that the mean squared error is

0.05474, the mean squared ŜE is 0.05589, and SE2 = 0.05600. These are the three numbers

to compare. We start by comparing the second to the third. The sd of the 10,000 ŜE
2
s is

0.0248; divide by
√
10, 000 = 100 to get the estimated SE on 0.05589 as 0.000248. So it

turns out that 0.05589 is −0.45 estimated SEs off of the true value, 0.05600: well within

sampling error. Similarly, the sd of the 10,000 squared errors is 0.0787, which means that

the estimated SE on 0.05474 is 0.000787. Thus, it turns out that the mean squared error

is −1.6 estimated SEs off of the true SE2: again well within sampling error.

For the third row, FGLS, we don’t have a formula for the SE, but we could use the

mean-squared error (i.e., the square of the r.m.s. error) to get an unbiased estimate of the

theoretical mean squared error. What is that? You often see the statement that

estimate = parameter + bias + sampling error.

The error of the estimate is thus partly due to bias and partly to sampling error. This is

made precise by the following equation:

MSE(T ) = bias(T )2 + SE(T )2 . (N12)

Here, T is an estimator of a parameter, θ. The bias of T is E(T )− θ and

MSE(T ) := E
[
(T − θ)2

]
.

One also defines

RMSE(T ) :=
√

MSE(T )

13
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to get this to be the right size and the right units. As usual, SE(T )2 = Var(T ) = E
[(
T −

E(T )
)2]

. In order to derive (N12), we use the abbreviation m := E(T ) to compute

MSE(T ) = E
[
(T − θ)2

]
= E

[(
(T −m) + (m− θ)

)2]

= E
[
(T −m)2

]
+ 2E[(T −m)(m− θ)] +E

[
(m− θ)2

]

= SE(T )2 + 0 + (m− θ)2 .

Now, for FGLS, we estimate the unknown MSE by the mse, 0.1992. Is the mean ŜE
2

(which turned out to be 0.0341, with an sd of 0.0146) within sampling error of this? A

similar calculation as the preceding ones shows that the difference is −38 estimated SEs:

not at all possible from sampling error. The ŜE
2
is definitely biased. (Note that ŜE is an

estimate of RMSE, as it does not involve an estimate of the mean, but, rather, is obtained

from a formula for an unbiased estimator.)

A comment on exercise C2: It is easier to deduce parts (b) and (c) from example 1,

where we noted that the estimates agree.

For exercise C3, you might prefer to build the design matrix row by row instead.

Concerning part (ii) of the answer, note first that the divisor (2 or 3) cancels in computing

β̂FGLS as long as we always use the same divisor, just as λ cancelled in example 1. For

SEs, however, it will not cancel. It is reasonable to use 2 instead of 3 because there are 3

observations for each ai; although there is a second unknown, b, there are 2400 observations

for it, so it is known quite precisely and we can regard p as 1 in n − p. (This is just a

heuristic.)

Optional lab: Replicate the above table by your own simulations. You may choose to

change “20” and “30”, as well as the distributions (instead of exponential).

Optional exercise: Suppose that β̂FGLS is given by the form β̂FGLS = M(e)Y , where

e is the OLS residual of Y , as in the optional exercise at the end of section 5.3 above.

Assume also that if M has the property that M(v)X = Ip for all v. Suppose we regard

this as one-step FGLS and denote it by β̂(1) := M
(
e(Y )

)
Y . Now iterate in the sense that

we define new (non-OLS) residuals e(1) := e(1)(Y ) := Y − Xβ̂(1), use them in the same

way as before to get a new estimate β̂(2) := M
(
e(1)(Y )

)
Y . Define the matrix function

M (2) by M (2)(v) := M
(
v −XM(v)v

)
.

14
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(a) Show that β̂(2) = M (2)
(
e(Y )

)
Y for all Y , so that the two-step FGLS estimator β̂(2)

also has the form of the previous optional exercise. Hint: Show that e(1)(Y ) = e(Y )−
XM

(
e(Y )

)
e(Y ) by showing β̂(1) = β̂OLS +M

(
e(Y )

)
e(Y ).

(b) Show that M (2) also has the property that M (2)(v)X = Ip for all v.

(c) Show the same two properties hold with each continued iteration, where we define

successively e(k)(Y ) := Y −Xβ̂(k), β̂(k+1) := M
(
e(k)(Y )

)
Y , and M (k+1)(v) := M

(
v−

XM (k)(v)v
)
.

(d) Show that if M(av) = M(v) for all scalars a and vectors v, then the same holds for

each function M (k).

(e) Show that if the range of M is bounded, then so is the range of each M (k).

(f) Prove that β̂(k) has a finite second moment. Prove that if in addition the law of ǫ

equals the law of −ǫ given X (e.g., ǫ is normal), then E(β̂(k) | X) = β.

Optional exercise: Consider a heteroscedastic regression model where the diagonal of

G is (σ2
1, . . . , σ

2
1, σ

2
2 , . . . , σ

2
2, . . . , σ

2
r , . . . , σ

2
r). Here, σ2

k occurs nk times, with n1+ · · ·nr = n.

Exercise 5C1 is an example with r = 2 and X = 1n. Exercise 5C3 is another example,

with each nk = 3 and r = 800. As in the solutions to these two exercises, suppose that we

estimate σ2
k by σ̂2

k := ‖ek‖2/nk for each k, where ek contains the corresponding coordinates

of the OLS residual vector e, so that e =



e1
...
er


. We then use all σ̂2

k to obtain β̂FGLS. Show

that β̂FGLS = M(e)Y for some matrix function M that satisfies all 4 properties in the

optional exercise at the end of the preceding section. Hint: If Ĝ−1 is large, divide by its

largest diagonal element in order to show the boundedness property.

§5.6. Normal theory.

In the next two sections, we make not only the usual OLS assumptions, but also that

the error terms are normal. More precisely, ǫ has a N(0n, σ
2In) distribution. The reason

is that we will derive statistics like the t-statistic in FPP, and their distribution requires

such assumptions. We will treat the n × p design matrix X as fixed, so the only other

assumption is that X has rank p < n.

The most common statistical hypothesis test is whether a coefficient in the regression,

say βk, is 0. The interest in such a test depends on the reason that the kth variable is in

the model to start with: One may be particularly interested in the “effect” of that variable
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on Y , or merely whether there is any effect at all after “controlling” for other variables,

i.e., whether βk = 0. Or the kth variable may be there only to “control” for a confounding

factor; in this case, one may want to know whether it is really necessary to include that

variable in the model. If βk = 0, then it can be omitted.

Thus, the null hypothesis of interest in this section is βk = 0; the alternative is βk 6= 0.

(Of course, another possibility is that the model is wrong.) We form the t-statistic

t :=
β̂k

ŜE(β̂k)
.

Here, ŜE(β̂k) is our estimate of SE(β̂k | X). Now Var(β̂k | X) is the (k, k)-element of

Cov(β̂ | X) = σ2(X ′X)−1 (according to theorem 4.3); we take its square root to get the

SE. However, since we don’t know σ, we need to estimate it. Thus, ŜE is σ̂ times the

square root of the (k, k)-element of (X ′X)−1. Recall from (N6) of the notes on chapter 4

the estimate σ̂ := ‖e‖/√n− p, where e = Y −Xβ̂ is the OLS residual vector.

Sometimes, as in FPP, we would test instead whether βk takes some other value, say,

b. Then we would use t := (β̂k − b)/ŜE(β̂k), just as in FPP where X = 1n, and the null

hypothesis would be that βk = b. The theory will be the same as when b = 0.

What is the distribution of t under the null hypothesis? We first need the following

theorem, which extends one that we proved in the handout on the t-distribution. Recall

that χ2
d is the distribution of the sum of d IID standard normal random variables. That

is, if Z ∼ N(0d, Id), then ‖Z‖2 ∼ χ2
d.

Theorem 5.2. Condition on X. If ǫ has distribution N(0n, σ
2In), then β̂ and e are

independent with distributions β̂ ∼ N
(
β, σ2(X ′X)−1

)
and ‖e‖2 ∼ σ2χ2

n−p.

Proof. We’ve already shown that the mean of β̂ is β (theorem 4.2) and the covariance

of β̂ is σ2(X ′X)−1 (theorem 4.3). Clearly Y ∼ N(Xβ, σ2In) has independent normal

coordinates, whence QY = β̂ has a normal distribution by definition—see the handout on

correlation and normal distributions. This shows that the distribution of β̂ is as claimed.

Let W := col(X), as usual. Since ǫ ∼ N(0n, σ
2In), the orthogonal projections

PW (ǫ) and PW⊥(ǫ) are independent normals; (N13)

in orthonormal coordinates of W and W⊥, they have means 0p and 0n−p and covariances

σ2Ip and σ2In−p. We proved this in the handout on the t-distribution. Now

PW (ǫ) = PW (Y −Xβ) = Xβ̂ −Xβ and PW⊥(ǫ) = e , (N14)
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as we saw in (N8) of the notes on chapter 4. As in the proof of theorem 4.4, write U for

the vector e in orthonormal coordinates of W⊥. We saw that U ∼ N(0n−p, σ
2In−p), so by

definition of χ2
n−p, we have ‖e‖2 = ‖U‖2 ∼ σ2χ2

n−p, as claimed. Finally, (N13) and (N14)

together imply that e is independent of Xβ̂ −Xβ, whence of Xβ̂ (since Xβ is constant)

and therefore of QXβ̂ = β̂.

Now recall that Student’s t-distribution with d degrees of freedom is the distribution

of Z/S, where Z and S are independent with Z ∼ N(0, 1) and S ∼ χd/
√
d.

Corollary. Condition on X. If ǫ has distribution N(0n, σ
2In) and βk = 0, then the

distribution of t := β̂k/ŜE(β̂k) is Student’s t-distribution with n− p degrees of freedom.

Proof. Let’s denote the square root of the (k, k)-element of (X ′X)−1 by a; it is not random.

Thus,

t =
β̂k

ŜE(β̂k)
=

β̂k
σ̂a

=
β̂k

‖e‖a/√n− p
.

By theorem 5.2, it follows from this that the numerator of t and the denominator of t are

independent, and β̂ ∼ N
(
β, σ2(X ′X)−1

)
. In particular, β̂k ∼ N(βk, σ

2a2). Since the null

hypothesis says that βk = 0, we get that

β̂k ∼ N(0, σ2a2) = σaN(0, 1) . (N15)

Theorem 5.2 again tells us that ‖e‖ ∼ σχn−p, so

ŜE(β̂k) ∼ σaχn−p/
√
n− p . (N16)

Putting together (N15) and (N16), we obtain

t =
β̂k

ŜE(β̂k)
∼ σaN(0, 1)

σaχn−p/
√
n− p

=
N(0, 1)

χn−p/
√
n− p

,

where the numerator and denominator are independent. This is precisely the t-distribution

with n− p degrees of freedom.

In fact, even without the null hypothesis that βk = 0, the statistic t := (β̂k −
βk)/ŜE(β̂k) has the same distribution, i.e., Student’s t-distribution with n − p degrees

of freedom. More generally, suppose we want to estimate some linear combination of

the coordinates of β, i.e., c′β for some fixed c 6= 0p. A similar proof shows that t :=

(c′β̂ − c′β)/ŜE(c′β̂) has Student’s t-distribution with n − p degrees of freedom. Here,

ŜE = σ̂
√

c′(X ′X)−1c since Cov(c′β̂ | X) = σ2c′(X ′X)−1c. For example, we might be
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interested in testing whether β1 = β2. We would use c = (1,−1, 0, 0, . . . , 0) and we would

compute t := (β̂1 − β̂2)/ŜE(β̂1 − β̂2) since our null hypothesis would be that c′β = 0.

Note that in the course of proving the corollary, we showed that our estimate β̂k is

independent of our estimate ŜE(β̂k) of its error. This is nice, because we could be quite

deceived if we thought our error was large when it was in fact small, and thought the error

was small when it was in fact large. These deceptive possibilities had not been ruled out

just by the fact that we have an unbiased estimate of σ2. (Of course, it would be even

nicer if our error were positively correlated with our estimate of our error.)

When is t so large that the null hypothesis should be rejected? This depends on

n − p. When n − p is large, then the distribution of t is close to the standard normal

distribution (we saw this in FPP, section 26.6), in which case the 5% significance level of

|t| is approximately 2. When n− p is large, the t-test is also referred to as the z-test, just

as in FPP. For small n− p, see p. A-105 in FPP for the significance levels.

If one tests two variables and rejects the null hypothesis (that their coefficient is

0) for each, then people say that those two variables have “independent effects” on Y .

Note, however, that this has nothing to do with either stochastic independence or linear

independence. The meaning will be explored more thoroughly in chapter 6.

All the above theory depended on the assumption that ǫ is normal. What if ǫ is not

normal? With small n, we saw already with p = 1 in the handout on the t-distribution

that the distribution of t changes in a way that is important for making hypothesis tests.

But what if n is large? When p = 1, we know that t is approximately normal; we used

this frequently in FPP. What is the story for p > 1? We assume that ǫi are IID with

mean 0 and finite variance (given X). The distribution of β̂ depends on X , but in most

cases, the sizes of the entries in each column of X are fairly similar, with none much

larger than all the rest, and then β̂ will be approximately normal by a multivariate central

limit theorem when n is large and p is fixed. This implies that also β̂k is approximately

normal. Thus, the non-normality of ǫ makes little difference when n is large. To see a little

why β̂ is approximately normal, recall that β̂ = (X ′X)−1X ′ǫ. Now the jth coordinate of

X ′ǫ equals
∑n

i=1 Xi,jǫi. This is therefore a sum of many independent random variables,

and thus approximately normal by a version of the CLT. A multivariate CLT shows that

the entire vector X ′ǫ is approximately normal. When we take a linear transformation

of it by multiplying by (X ′X)−1, it remains approximately normal. The upshot is that

(β̂k − βk)/SE(β̂k) ≈ N(0, 1). Since ŜE(β̂k)/SE(β̂k) ≈ 1, it follows that t ≈ N(0, 1).

When the errors are not assumed to be normal and one wants to know whether n is

large enough, or X is good enough, then one can simulate: takeX from the data, assign the

ǫi to be IID samples from other distributions of interest, and compute the corresponding
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t-statistics. Another approach is to simulate via bootstrapping, as in chapter 8.

A comment on exercise D2: 95% confidence that b lies in the interval 3.79± 2× 1.88

is far different than 95% confidence that b 6= 0: those are two quite different statements

about where b is. More importantly, the second doesn’t make any sense. To see why,

recall what confidence means. The statement that we are 95% confident that b lies in

3.79 ± 2 × 1.88 means that 95% of the time, given that the model is true, the procedure

we used will have the property that b lies in b̂ ± 2ŜE. Note: we do not assume the null

hypothesis that b = 0; instead, we are concerned here with estimating b. Confidence

intervals like this are for estimation, not for hypothesis testing. The reason that the event

b ∈ [b̂ − 2ŜE, b̂ + 2ŜE] has probability about 95% is stated after the corollary to theorem

5.2: the statistic t := (β̂k − βk)/ŜE(β̂k) has the Student t-distribution with n− p degrees

of freedom. The numbers that occur in the statement “we are 95% confident that b lies in

3.79±2×1.88” are (according to our model) observed values of random variables, namely,

3.79 is an observed value of b̂ and 1.88 is an observed value of ŜE(b̂). The property “b

lies in b̂ ± 2ŜE” is an event involving random variables and therefore it has a probability

(namely, approximately 95%). When we pass from random variables to observed values,

we pass from probability to confidence. On the other hand, the statement “b 6= 0” involves

no observed values of random variables at all. Therefore, it does not correspond to a

probability statement and we cannot attach a confidence to it. You may wish to review

FPP Sections 21.2,3. We can say that we reject the null b = 0 at the 5% significance level.

Note that we would also be able to say we reject the null at the 10% significance level;

we do not attach a precise P -value to such statements, but, of course, you can always say

what the P -value is and indeed that is often better than less precise statements.

Note on Lab 5: The book now tells you about a MATLAB shortcut, the backslash

operator. You can now use this (but not other statistics shortcuts). The book suggests

using

betahatSim = X\(X ∗ beta ∗ ones(1, 1000) ∗ sigma ∗ randn(32, 1000));

The math of X\Y is (X ′X)−1X ′Y , with which you are familiar. Why the backslash

notation? Note that if X were a scalar, then (X ′X)−1X ′ would equal 1/X , so we would

be dividing by X . More generally, X\Y = β̂, where Ŷ = Xβ̂, so in a sense we are dividing

Ŷ by X , where it makes sense since Ŷ is indeed X times something. While Y is not X

times something, X\Y gives the nearest multiple of X to Y , so it is the best inverse that

exists. A name for (X ′X)−1X ′ is a pseudoinverse of X . The second aspect of the above

MATLAB suggestion is to use 1000 columns. In thinking about why this works, remember
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that since the backslash operator is just multiplication by a matrix, this multiplication

works column by column.

The reason for the strange-looking suggestion ǫi ∼ σ × (χ2
5 − 5)/

√
10 is that this

distribution is somewhat similar to a normal distribution with mean 0 and SD σ: Recall

that χ2
5 is the distribution of the sum of 5 independent standard normal random variables.

Therefore, its mean is 5. To calculate the variance, write
∑5

i=1(U
2
i −1) for χ2

5−5, where Ui

are independent standard normal random variables. We then have that the variance equals∑5
i=1 E

(
(U2

i − 1)2
)
. When you do the algebra and use the fact that the 4th moment of Ui

equals 3, you get that the variance is 5× 2 = 10. [Factoid: the kth moment of a standard

normal random variable is 0 when k is odd (by symmetry) and is (k−1)!! := 1·3·5 · · · (k−1)

when k is even. You can prove this via integration by parts.] You could, of course, simulate

with whatever distribution you like.

The book also gives a discussion of some terminology related to hypothesis testing

(pp. 299–300). Consider testing a parameter, like a mean in FPP, at the 5% significance

level. If the null hypothesis is true, then by definition, the test statistic will translate to

a P -value that will be 5% or smaller 5% of the time. See p. 455 of FPP for a plot of

z-statistics; they could have been translated to P -values. Here, |z| = 1.96 translates to

P = 0.05. In this context, 5% is called the level or size of the test and 1.96 is called the

critical value. If the null hypothesis is true, but you reject it, then you make what is called

a type I error. If you are testing at the 5% level, then you will make a type I error 5% of

the time when the null is true. You don’t want to make such an error too often, which is

why we want the size of the test to be small.

What if the null is false? In general, we can’t make any quantitative statements,

since the alternative might not be quantitative (e.g., it might be that the model is entirely

false). However, if the alternative is a specific statistical model (such as simply changing

the parameter value we are estimating), then we may be able to make similar statements

about probabilities. Often, the alternative is a range of parameter values; clearly, then, the

probability of an event depends on the specific value and is not the same for all parameters

in the alternative. But whatever the alternative is, if it does correspond to a statistical

model, then there will be a probability of not rejecting the null when the null is false and

the alternative is true. This kind of error is called a type II error, and the probability

of not making a type II error is called the power of the test. Thus, with the preceding

example, the probability that |z| > 1.96, under the alternative, is the power. This is a

good thing, so we want the power to be large. The word “power” suggests the ability, or

power, to distinguish between the null and the alternative.
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The general framework is this: We have a parameter, θ (which might be a vector),

that we want to estimate. For each value of θ, there is a probability distribution in our

model, denoted Pθ. E.g., this gives the distribution of Y and β̂ if Y = Xβ + ǫ and θ = β

in linear regression. The null is usually a specific value of θ, but it might be a set of θ; e.g.,

your null might be that a mean is at most 0, rather than exactly 0. This makes things a

little more complicated. The alternative is usually a set of θ, but sometimes it is a specific

θ.

Let T be our test statistic (not our estimate of θ). If we test at level α (like 0.05),

then we choose a critical value k of T so that Pθ(T ≥ k) = α for θ in the null; actually,

there might not be such a k, especially when there is more than one θ in the null. So

instead, the critical value means the smallest value of k such that Pθ(T ≥ k) ≤ α for all

θ in the null. The probability Pθ(T ≥ k) for θ in the alternative is the power; it depends

on k and on θ.

When you collect data, you will compute an observed value of T , denoted Tobs. We

translate it to an observed significance level Pobs := Pθ(T ≥ Tobs). Just as an estimator of

θ is random before data collection and computation, so is Pobs. This was illustrated (again,

before translation from z to P ) on p. 455 of FPP. If the null hypothesis is a specific value

of θ, then usually Pθ(Pobs ≤ α) = α; this is true whenever T has a continuous distribution.

In other words, the chance is 5% that we obtain a P -value of at most 5% when the null is

true, the chance is 1% that we obtain a P -value of at most 1% when the null is true, etc.

Another way of saying that is that the distribution of Pobs is uniform on [0, 1] when the

null is true.

§5.7. The F -test.

In the preceding section, we discussed how to test whether one coefficient βk was

0. Sometimes people want to test at once whether several coefficients are 0. You might

imagine this is simple: just test one at a time via a t-test. But this is actually not the

same, because each of those t-tests does not assume the others are 0. Thus, you might not

reject on the basis of any of the individual t-tests, but maybe the data truly are unlikely if

all of the tested coefficients are 0 at once. (For details on how the new test relates to the

various t-tests, see the optional handout, “How F Relates to t”.) So we need a different

sort of test.

Before we say how to do that, let’s discuss why people might want such a test. Mainly,

it is to find out whether those coefficients belong in the model, or could be “safely” left out.

Sometimes, all the coefficients are tested at once, except for the intercept: the question
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then is whether one can distinguish statistically between the proposed model and just a

constant as a summary of Y . In all cases, remember that if the null hypothesis is rejected,

this means that taking the coefficients as 0 is hard to defend; it does not mean that the

model is correct and (some of) the coefficients are not 0. It only means that if the model

is correct, then (some of) the coefficients are not 0. Likewise, if the null hypothesis is not

rejected, it does not mean the model is correct, whatever the coefficients. Thus, it is not

truly “safe” to leave out coefficients which cannot be statistically distinguished from 0,

unless one has more information than simply a P -value.

Suppose that the number of coefficients we want to test is p0 ≤ p < n. For simplicity,

we will take them to be the last ones, βp−p0+1, . . . , βp. Suppose we put them together into

a vector β(test) ∈ R
p0 . We want to test the null hypothesis that β(test) = 0p0

. As usual, fix

X . We will again need to assume that ǫ ∼ N(0n, σ
2In). When we tested whether βk = 0,

we compared its estimate, β̂k, to SE(β̂k), or, more likely, to ŜE(β̂k). In other words,

β̂k/ŜE(β̂k) is a standardized quantity whose distribution can be calculated, whatever X

is. Now, however, we are testing a vector, β̂(test). How can we judge whether it is “too

large”?

This is a little subtle, so we will give two ways to think about it. The first way avoids

this question directly, but does not explain as much. For the null hypothesis, we have a

smaller design matrix, denoted X(s). This is formed from the first p−p0 columns of X . We

could fit it, getting a residual e(s). Suppose we compare e(s) to the original residual e by

comparing their lengths; e(s) should be larger because there is less of X used to fit Y . More

specifically, e(s) is gotten by orthogonally projecting onto a larger subspace,
(
colX(s)

)⊥

instead of (colX)⊥. Thus, form the statistic

F :=

(
‖e(s)‖2 − ‖e‖2

)
/p0

‖e‖2/(n− p)
.

We will be able to calculate its distribution; it depends only on p0 and n−p. We recognize

the denominator of F as σ̂2; we will show that the numerator also estimates σ2, but under

the null hypothesis.

Unfortunately, that probably looked rather ad hoc. In order to understand better why

we make that definition of F , we go back to the question: how do we test whether a random

vector is abnormally “large”? Now by theorem 5.2, we know that β̂ ∼ N
(
β, σ2(X ′X)−1

)
.

Since all the coefficients of β̂ are jointly normal, so are the coefficients of β̂(test). Write

Cov(β̂(test)) = σ2G(test). Here, G(test) is the p0 × p0 bottom right corner of (X ′X)−1, but

we won’t need that. When we standardize a random variable, we subtract its mean and

divide by its standard deviation. We can certainly subtract the mean β(test) from β̂(test),
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but how do we divide by its standard deviation? The idea is that the SD is the square root

of the variance; the analogue of variance for a random vector is covariance matrix; and

the analogue of division for a matrix is multiplying by its inverse. Thus, the standardized

β̂(test) is (
σ2G(test)

)−1/2(
β̂(test) − β(test)

)
. (N17)

Clearly, the mean after standardization is 0p0
, and because we applied a linear transfor-

mation, we still have a normal random vector. If the analogies hold, the covariance matrix

after standardization should be the analogue of 1, i.e., the identity matrix. And it is:

Cov
((

σ2G(test)
)−1/2(

β̂(test) − β(test)
))

=
(
σ2G(test)

)−1/2
Cov

(
β̂(test) − β(test)

)(
σ2G(test)

)−1/2

=
(
σ2G(test)

)−1/2
σ2G(test)

(
σ2G(test)

)−1/2

= Ip0
.

Therefore, (
σ2G(test)

)−1/2(
β̂(test) − β(test)

)
∼ N(0p0

, Ip0
) .

So a reasonable way to gauge the size of the standardized estimator (N17) would be to

compare its squared length to its expected squared length, which is p0, the trace of Ip0
.

(The expected squared length is just the sum of the variances of the coordinates of (N17).)

Thus, if we divide by one more thing, namely, p0, we get something that can be compared

to 1, just like (β̂k − βk)/SE(β̂k). There’s only one catch: we need to replace σ by its

estimate, σ̂. We will show that this final quantity,

∥∥∥
(
σ̂2G(test)

)−1/2(
β̂(test) − β(test)

)∥∥∥
2

/p0 (N18)

is the same as F when β(test) = 0p0
.

What is the distribution of F? When we compute the squared length of (N17), we get

the squared length of a normal random vector of dimension p0, so that has distribution

χ2
p0
. This becomes F only after replacing σ by σ̂, so we need to divide by σ̂2/σ2, which,

as we saw, has distribution χ2
n−p/(n − p). We will show that these two random variables

are independent, and this will give Fisher’s F -distribution with p0 degrees of freedom in

the numerator and n− p degrees of freedom in the denominator.

Theorem 5.3. Condition on X. Assume the null hypothesis Y = X(s)β(s) + ǫ, where ǫ

has distribution N(0n, σ
2In). Then the numerator and denominator

F :=

(
‖e(s)‖2 − ‖e‖2

)
/p0

‖e‖2/(n− p)
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are independent with ‖e(s)‖2 − ‖e‖2 ∼ σ2χ2
p0

and ‖e‖2 ∼ σ2χ2
n−p. Thus,

F ∼
χ2
p0
/p0

χ2
n−p/(n− p)

,

where the numerator and denominator are independent. Furthermore, regardless of as-

sumptions,

F =

(
‖Ŷ ‖2 − ‖Ŷ (s)‖2

)
/p0

‖e‖2/(n− p)
=

(
R2 − (R2)(s)

)
/p0

(1−R2)/(n− p)
,

where the superscript (s) always refers to quantities calculated with the small design matrix.

Optional proof. The smaller design matrix X(s) spans the smaller column space W (s)

inside of W . Now W (s) ⊆ W ⊆ R
n, with dimW (s) = p − p0 and dimW = p. Let’s take

an orthonormal basis (w1, . . . , wp−p0
) of W (s). Then extend it to an orthonormal basis

(w1, . . . , wp) of W . Finally, extend it once more to an orthonormal basis (w1, . . . , wn) of

R
n. It will be useful to call V the linear span of (wp−p0+1, . . . , wp), i.e., the span of the

basis vectors of W that aren’t in W (s). We have dimV = p0. Note that W⊥ is the span of

(wp+1, . . . , wn) and (W (s))⊥ is the span of (wp−p0+1, . . . , wn). Thus, (W
(s))⊥ = W⊥ ⊕ V .

Now e = PW⊥(Y ) ∈ W⊥ and e(s) = P(W (s))⊥(Y ) ∈ (W (s))⊥. Let’s write v := PV (Y ) ∈ V .

Then

e(s) = e+ v

is the orthogonal decomposition of e(s) with the first term in W⊥ and the second term in

V . In particular, the Pythagorean theorem gives

‖e(s)‖2 = ‖e‖2 + ‖v‖2 ,

so

‖e(s)‖2 − ‖e‖2 = ‖v‖2

and therefore

F =
‖v‖2/p0

‖e‖2/(n− p)
.

As we saw in the proof of theorem 5.2, the null hypothesis implies that e(s) ∼
N
(
0n−(p−p0), σ

2In−(p−p0)

)
if we write e(s) in orthonormal coordinates of

(
W (s)

)⊥
. This

implies (as in the proof of theorem 5.2 again) that e and v are independent normal ran-

dom vectors. If we write v in orthonormal coordinates of V , we have v ∼ N(0p0
, σ2Ip0

).
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This means that ‖v‖2 ∼ σ2χ2
p0
. Likewise, ‖e‖2 ∼ σ2χ2

n−p, so this proves the first part of

theorem 5.3.

To prove the remainder, recall that Y = Ŷ + e with e = PW⊥(Y ). Likewise, Y =

Ŷ (s) + e(s) with e(s) = P(W (s))⊥(Y ). Thus, the Pythagorean theorem again gives

‖Y ‖2 = ‖Ŷ ‖2 + ‖e‖2 and ‖Y ‖2 = ‖Ŷ (s)‖2 + ‖e(s)‖2 .

Setting the right-hand sides of these equations equal and rearranging a little, we obtain

‖Ŷ ‖2 − ‖Ŷ (s)‖2 = ‖e(s)‖2 − ‖e‖2 .

This shows the next alternative formula for F .

Finally, recall that 1 − R2 = ‖e‖2/‖Y ‖2 if there is no intercept, while 1 − R2 =

var(e)/var(Y ) if there is an intercept. In the latter case, since e has mean 0, we have that

var(e) = ‖e‖2. Thus, in both cases we can write ‖e‖2 = αY

(
1−R2

)
for the appropriate αY ,

either ‖Y ‖2 or var(Y ). Likewise, ‖e(s)‖2 = αY

(
1− (R2)(s)

)
for the same αY . Substituting

these in the definition of F , we find that all occurrences of αY cancel, and we obtain the

final formula for F .

Optional remark: We did not justify that (N18) is the same as F . To do so, let’s look

more closely at the random vector v = PV (Y ) = e(s) − e that entered in the proof. We

can also write v as v = Ŷ − Ŷ (s) = Xβ̂ −X(s)β̂(s). What is this? Both terms are linear

combinations of the columns of X . To see it more clearly, write the last p0 columns of

X as X(test). Also, write the first p − p0 coordinates of β̂ as the vector β̂(p−p0). The last

p0 coordinates of β̂ were called β̂(test). (In particular, β̂(p−p0) is not the same as β̂(s); the

former takes coordinates of β̂, whereas the latter computes an entirely new vector from

X(s).) Then Xβ̂ = X(s)β̂(p−p0) +X(test)β̂(test). Therefore,

v = X(s)(β̂(p−p0) − β̂(s)) +X(test)β̂(test) . (N19)

On the other hand, since v ∈ V , we have that v = PV (v), so when we take the orthogonal

projection of the right-hand side of (N19), we obtain v = PV

(
X(test)β̂(test)

)
since X(s) ⊥ V .

In the proof of the theorem, we saw that v ∼ N(0p0
, Ip0

). Since v is a linear transformation

of β̂(test), as is (N17), and both have the same standard normal distribution, they are equal

in norm. (In fact, one must be an orthogonal transformation of the other.) This proves

the desired relation, since F was obtained from v by dividing by σ̂2/σ2, just as (N18) was

obtained from (N17).
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When the F -test is used without specifying which coefficients are being tested, the

default is that all the coefficients are 0 except the intercept. Thus, it has p− 1 degrees of

freedom in the numerator and n − p in the denominator. Sometimes research papers do

not make clear the values of n and p, but they can be deduced when the papers say how

many degrees of freedom are used in reported statistical tests.

As in the preceding section, this theory depends on ǫ being standard normal. If not

and if n is not large, then the theory definitely breaks down. However, if p is fixed and

n is large, and X is fairly reasonable, then since β̂ is approximately normal, as discussed

in the preceding section, we will have that F has approximately the same distribution as

when ǫ is normal.

A comment on exercise 5E1: As the back of the book says, in this case F = t2. Here,

it is easy to see. This equation, F = t2, holds whenever p0 = 1, but it is harder to see

in general. It is proved in the handout, “How F Relates to t”, and can also be seen from

(N18). One more way to see it is to use exercise 3B17 and block-matrix inversion.

A comment on exercise 5E6: Because of this, “the” F -test and R2 are two ways of

measuring the same thing. If you have only one of them reported in a paper, you can

calculate the other.

Exercise: Let Z1 be a standard normal random variable. Let U be a random variable

independent of Z1 that takes the values ±1 with probability 1/2 each. Define Z2 := UZ1.

Is Z2 a standard normal random variable? What is the correlation between Z1 and Z2?

Are Z1 and Z2 independent? Are Z1 and Z2 jointly normal? Is Z1 + Z2 normal?

Exercise: Consider a model with n = 200 and p = 5. A researcher reports that adding

a new regressor (thus changing p from 5 to 6) increases R2 from 0.5 to 0.55. In this new

model with p = 6, what is t for this new regressor?

§5.8. Data snooping.

Data snooping was discussed in sec. 29.2 of FPP. It concerns testing many null hy-

potheses: even if all are true, eventually some of them will give statistically significant

results, leading to rejection of a (true) null hypothesis. This in turn is one of the causes

of publication bias: only rejections of null hypotheses get published by most journals.

Multiple linear regression leads to a new way data snooping can occur: start with

many possible regressors, test all of them individually, and keep only the ones that are

“significant”. Then call that your model, refit, and publish. How can we understand the

effect of this kind of data snooping?
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The simplest way is to simulate. Suppose that Y = Xβ + ǫ with β = 050, ǫ ∼
N(0100, I100), andX a 100×50 matrix, all of whose entries are IID N(0, 1) random variables,

independent of ǫ. Thus, Y = ǫ. All assumptions of OLS hold, nothing is related to anything

else. We will run a t-test on each of the 50 columns ofX and keep those that pass at the 10%

significance level. So each one, by definition, has a 10% chance of being kept. Therefore,

the expected number kept is 10% of 50, i.e., 5. Now refit with only the columns that are

kept and compute the new t-statistic of each kept column. Freedman did this simulation

1000 times. Sometimes by chance, no columns were kept: this happened 19 times. Among

all the others, a total of 5213 columns were kept and their t-statistics are shown in the

histogram on p. 79 of SM. Most of them are larger than 2 in absolute value: they are

supposedly “statistically significant”.

Freedman mentions that R2 in the original regression of Y on all of X will be typically

about 0.5; why is that? The definition is that R2 := 1−‖e‖2/‖Y ‖2. Here, ‖Y ‖2 ∼ χ2
100 has

mean 100. Now e is the orthogonal projection of ǫ onto col(X)⊥, which is a 50-dimensional

subspace. Therefore ‖e‖2 ∼ χ2
50 has mean 50. Therefore R2 is about 1− 50/100 = 0.5.

Exercise: In this simulation example, suppose X were a fixed 100× 50 data matrix of

full rank. Keep ǫ ∼ N(0100, I100). Would the expected number of columns kept by t-tests

at the 10% level still be 5? Would R2 still be about 0.5?

A comment on 5F1: We know that Cov(β̂ | X) = σ2(X ′X)−1. Therefore, unless all

the columns of X are pairwise orthogonal, the coordinates of β̂ are dependent. But even if

the columns are orthogonal, although the coordinates of β̂ are independent (because they

are jointly normal and uncorrelated), the corresponding t-statistics are dependent because

each one involves dividing by the same (random) σ̂2. If we divided by σ2 instead, which

we could in this simulation, then orthogonal columns would give that the distribution of

the number of columns kept is binomial.

§5.9. Discussion questions.

In 1, the random variables Xi are observable.

For 6, you can also see that Julia would get a slope of about 0 by symmetry: the

dependence of Yi on Xi is unchanged when Xi changes sign. To be a heroine, she should

(and would) include an intercept in the regression. A scatter plot would show a non-linear

pattern; however, if the SD of δi were larger, say, at least 2, then it would be hard to spot

if the values of |Xi| were not too large, say, at most 2: see the link on Oncourse. It might

be even harder with more variables.
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§5.10. End notes.

Since the assumptions behind OLS, t-tests and F -tests often seem unrealistic in prac-

tice, another type of test related to an informal null hypothesis is of interest. For large

n (and with other good properties of the data), these other tests give results that are

essentially the same. These are permutation tests. They go back to Wald and Wolfowitz,

“Statistical tests based on permutations of the observations”, Ann. Math. Stat. 15 (1944),

358–372 and are extended by Freedman and Lane, “A nonstochastic interpretation of re-

ported significance levels”, J. Bus. Econ. Stat. 1, 4 (1983), 292–298. For example, suppose

we regress Y on X and Z, where Z has p0 columns. We are thinking that Z does not

belong, so X would be the small design matrix and [X Z] would be the full design matrix.

The informal null hypothesis is that given X , there is no further relationship between Y

and Z. The test goes as follows: Regress Y on X , getting Y = Xβ̂ + e. Now suppose

that π is a permutation of 1, 2, . . . , n and that eπ is the result of applying this permutation

to the coordinates of e. Define Y π := Xβ̂ + eπ . Next, compute F for Y π regressed on

X and Z, corresponding to testing whether Z belongs; call the result Fπ. If we choose

π at random many times, we can compute such an Fπ each time and get an empirical

distribution of the resulting values of Fπ. The more times we simulate, the closer this

empirical distribution will be to the theoretical distribution of Fπ, called the permutation

distribution of Fπ. You can simulate permutations in MATLAB with the command rand-

intrlv. The theorem (with some conditions on the data omitted here) is that as n → ∞,

this permutation distribution is close to the F distribution with p0 degrees of freedom in

the numerator and n− p in the denominator, where p is the number of columns of [X Z],

i.e., the permutation distribution is close to χ2
p0
/p0. But even without such a theorem, we

can simply see how F compares without any permutation to an empirical distribution of

Fπ for many permutations π; this gives an idea of whether indeed the relationship of Y

to Z given X is “accidental” or not. No assumptions are made on any statistical model

about where the data arose.

§5.∞. ANOVA.

In FPP, we saw how to compare two sample means, e.g., to test whether the underlying

population means are the same. Sometimes one wants to test whether several different

means are all the same: this is like extending the t-test to an F -test. It is the first example

of ANOVA, which stands for “analysis of variance”. In general, ANOVA considers special

cases of multiple linear regression where all columns are dummy variables, i.e., have only
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1s and 0s in them. The questions of interest are usually ones like the F -test we looked at

in section 7.

One-factor ANOVA, or the one-way layout, is concerned with the following model.

Suppose that n subjects come in I groups, with ni subjects in the ith group for 1 ≤ i ≤ I.

Thus, n =
∑I

i=1 ni. Often all ni are equal. The model is

Yi,j = ai + ǫi,j (N20)

for 1 ≤ i ≤ I and 1 ≤ j ≤ ni, with ǫi,j being independent IID normal random variables

with mean 0, independent of assignment of subject to group. Thus, the response variables

of subjects in the ith group have mean ai. How do we test the null hypothesis that all ai

are equal? For example, the ith group may represent the result of the ith treatment; do

all treatments have the same mean effect?

We put this into the OLS framework by writing Y = Xβ + ǫ, where Y is a vector of

all responses Yi,j, likewise for ǫ, β = [a1 a2 · · · aI ]
′, and X is an n × I matrix of 1s and

0s. The row of X corresponding to (i, j) has a 1 only in the ith column. Clearly X ′X is a

diagonal matrix with ni in the ith place. The estimate of ai is simply the sample mean of

the ith group. But it is not immediately clear how to do an appropriate F -test. One way

to do so would be to rewrite the equations in terms of an overall mean, a, and deviations

from that mean, ai − a, thereby introducing a column of 1s:

Yi,j = a+ (ai − a) + ǫi,j .

However, we could not then keep all I columns of X we have already, since the sum of

the existing columns of X is 1n. (In the above equation, this is reflected in the parameter

constraint that
∑I

i=1(ai − a) = 0.) We would have to eliminate one of the columns. This

works, but it is nicer to do it another way.

Note that the F -test did not depend very much onX andX(s): it depended exclusively

on their column spaces, W and W (s). Furthermore, in the present instance, we want to

compare the full model (N20) to another model,

Y = a1n + ǫ . (N21)

Thus, we simply ignore the fact that X does not have 1n as a column, because 1n ∈ W .

Defining W (s) as the span of 1n, we can simply compute F using these two models and

make our test. It does not matter that the columns of X(s) are not a subset of the columns

of X ; what matters is that W (s) is a subspace of W . We say that the model (N21) is

nested in (N20) because the former column space lies inside the latter column space.
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One normally sees the numerator and denominator of F written out with various

terms named “SSx”, which stands for “sum of squares” of x, with various possibilities for

x. This is because ‖e‖2 is indeed a sum of squares, and ‖e(s)‖2 − ‖e‖2 can also be written

as a sum of squares, as in the proof of theorem 5.3. These take special forms in the case

of ANOVA.

The next more complicated form of ANOVA is two factor, or two-way layout. Here,

there are two different types of treatments. (Of course, there can be more than two, but

the math is not much different.) One question is whether all treatments of the first type,

say, have the same mean effect, so that the only differences in responses are due to the

second treatment (and randomness). Another question is whether the mean effects of the

two types of treatments are simply additive, or whether there is an interaction between

the treatments. The notation for this model uses two subscripts, one for each of the two

types of factors, and a third subscript for the individual. Thus, the full model for both

preceding questions is

Yi,j,k = ai,j + ǫi,j,k (N22)

for 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ k ≤ ni,j . The total number of subjects is n :=∑I
i=1

∑J
j=1 ni,j . The assumptions are that ǫi,j,k are IID normal random variables with

mean 0, independent of assignment of subject to group. If we want to test that ai,j

depends only on j, then we are considering the smaller model

Yi,j,k = aj + ǫi,j,k (N23)

with the same assumptions as above. To see that this is indeed a smaller (nested) model,

note that the column space of any linear regression model Y = Xβ + ǫ consists of the

columns Y that have the form Xβ, i.e., those Y that satisfy the model equation with

ǫ = 0n and arbitrary β. Now it is clear that if Y can be written with Yi,j,k = aj , then

we can also write Y as Yi,,j,k = ai,j for some numbers ai,j: we simply take ai,j := aj for

all i. Thus, the second model is indeed smaller and we can make a corresponding F -test.

The other question, whether the mean effects of the two types of treatments are simply

additive, is slightly more complicated. Now, the model is

Yi,j,k = ai + bj + ǫi,j,k (N24)

with the same assumptions as above. However, this does not specify ai and bj uniquely:

we could add a constant to all ai as long as we subtract the same constant from all bj.

The problem is that not all columns are linearly independent the way we have written it.

We need to leave out one column; any one will do. But for the purpose of seeing that the
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column space of (N24) is contained within that of the full model (N22), we may keep all

the columns. (We could require, say, that
∑

j bj = 0 if we wished.) Similar reasoning as

before shows that (N24) is indeed a smaller model than the full model (N22), so we can

again make an F -test.

Finally, another model is called analysis of covariance, or ANCOVA. This is the same

as ANOVA except that in addition to the dummy variables, there are one or more covariates

on the right-hand side that are not dummy variables.

If we want to relax the condition that all errors have the same variance, but instead

allow them to depend on the group, then we use (feasible) GLS.
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