Errata to

Upper bounds for the spectral function on homogeneous spaces via volume growth

Rev. Mat. Iberoam. **35**, no. 6 (2019), 1835–1858.

by Chris Judge and Russell Lyons

On p. 1839, we allowed complex-valued functions on M and thus needed to complexify TM. We left g to be bilinear, not sesquilinear, which means that on p. 1840, we should have defined |X| to be $\sqrt{g(X, \bar{X})}$. However, there was no need for complex-valued functions.

On p. 1846, we should have used $-\Delta_x$ in the heat equation, because we used the geometers' (and probabilists') sign convention to define Δ .

The proof of Theorem 4.9 omitted a discussion of curve length in \mathcal{H} and how it relates to $\nabla_x F_x^{\lambda}$. Here is one way to proceed.

First, a C^1 map $\alpha: I \to \mathcal{H}$ for an interval $I \subseteq \mathbb{R}$ is a function with a norm-derivative α' that is norm continuous. The length of the resulting curve is defined to be $\int_I \|\alpha'(t)\| dt$.

Now let $\gamma: I \to M$ be a smooth curve on a compact interval, I. Fix $\lambda > 0$. Consider the curve $\alpha: t \mapsto F_{\gamma(t)}^{\lambda}$ in \mathcal{H} . Thus, $\alpha(t): y \mapsto e_{\lambda}(\gamma(t), y)$ for $y \in M$. Define the smooth, symmetric function $\eta: I \times I \to \mathbb{R}$ by $\eta(s, t) := e_{\lambda}(\gamma(s), \gamma(t))$. We claim that

$$\frac{\alpha(s) - \alpha(t_0)}{s - t_0} - \frac{\alpha(t) - \alpha(t_0)}{t - t_0}$$

has small norm when $|s - t_0| + |t - t_0|$ is small (uniformly in I^3). If we compute the square norm and use the fact that e_{λ} is the projection kernel for \mathcal{H}_{λ} , then we obtain the value

$$\frac{\eta(s,s) + \eta(t_0,t_0) - 2\eta(s,t_0)}{(s-t_0)^2} + \frac{\eta(t,t) + \eta(t_0,t_0) - 2\eta(t,t_0)}{(t-t_0)^2} - 2\frac{\eta(s,t) + \eta(t_0,t_0) - \eta(s,t_0) - \eta(t,t_0)}{(s-t_0)(t-t_0)}$$

Expanding η in a Taylor series about t_0 , we see that it suffices to check that the square norm is 0 when η is replaced by a symmetric polynomial of degree at most 2. In fact, it suffices to check the cases where $\eta(u, v)$ is replaced by a constant; by $(u - t_0) + (v - t_0)$; by $(u - t_0) \cdot (v - t_0)$; or by $(u - t_0)^2 + (v - t_0)^2$. Each is straightforward.

It follows that $\frac{\alpha(s)-\alpha(t_0)}{s-t_0}$ converges in norm as $s \to t_0$. Therefore, the norm limit α' equals its weak limit, which is the function $y \mapsto \gamma'(t_0) F_y^{\lambda} = g(\nabla F_y^{\lambda}(\gamma(t_0)), \gamma'(t_0))$. Finally, to show that α' is continuous, it suffices to show that

$$\frac{\alpha(s) - \alpha(t_0)}{s - t_0} - \frac{\alpha(s) - \alpha(t_1)}{s - t_1}$$

has small norm when $|s - t_0| + |s - t_1|$ is small. But this is the same as what we first showed.

This gives that the length of α is at most the length of γ times

$$\sup_{t_0 \in I} \left\| g(\nabla F^{\lambda}_{\bullet}(\gamma(t_0)), \gamma'(t_0)) / |\gamma'(t_0)| \right\| \le \sup_{x \in M} \left\| |\nabla_x F^{\lambda}_x| \right\|$$

by the Cauchy–Schwarz inequality.

DEPARTMENT OF MATHEMATICS, 831 E. 3rd St., Indiana University, Bloomington, IN 47405-7106 rdlyons@iu.edu https://rdlyons.pages.iu.edu

29 May 2025