Errata to

Determinantal Probability Measures

Publ. Math. Inst. Hautes Études Sci. 98 (2003), 167–212.

by RUSSELL LYONS

The last line of equation (5.4) should read

$$= \sum_{C \subseteq E'} \mathbf{P}^{H}[A_1 \cup C \subseteq \mathfrak{B}, (A_2 \cup (E' \setminus C)) \cap \mathfrak{B} = \varnothing]$$

where we define

$$E' := E \setminus (A_1 \cup A_2)$$

The last line of (5.5) should then read

$$= \sum_{C \subseteq E'} \left(\bigwedge_{e \in A_1 \cup C} P_H e \wedge \bigwedge_{e \in A_2 \cup (E' \setminus C)} P_H^{\perp} e, \ \theta_{A_1 \cup C} \wedge \theta_{A_2 \cup (E' \setminus C)} \right).$$

The proof of Theorem 7.2 uses (6.5), but the proof of (6.5) for E infinite was never explained. First, the second part of Proposition 6.3 is proved for infinite E in the same way that Theorem 7.1 is deduced from Theorem 6.2; then the first part of Proposition 6.3 is deduced by duality. Induction again shows (6.5) for infinite E as long as A and B are finite.

On p. 199, a sentence in the middle of the page is missing a few words. It should read: "Note that we allow A to be infinite; if $A = \bigcup_n A_n$ for an increasing sequence $\langle A_n \rangle$ of finite sets, then $\langle \mathbf{P}^Q(\cdot | A_n \subseteq \mathfrak{S}) \rangle$ is a stochastically decreasing sequence of probability measures by Theorem 6.5 and so its limit defines $\mathbf{P}^Q(\cdot | A \subseteq \mathfrak{S})$."

On p. 200, the last displayed equation should be

$$\mathbf{1}_{A \cap \{f\}}(e) + (-1)^{\mathbf{1}_A(e)} Q_{e,f}.$$

The last part of Theorem 8.1, which says that if Q_1 and Q_2 are commuting positive contractions and $Q_1 \leq Q_2$, then $\mathbf{P}^{Q_1} \preccurlyeq \mathbf{P}^{Q_2}$, has been extended by Borcea, Brändén, and Liggett (*J. Amer. Math. Soc.* **22** (2009), 521–567) to remove the hypothesis that Q_1 and Q_2 commute. (They have also proved a stronger property than stochastic domination.) In fact, the method we used can also be used to remove the hypothesis of commutativity. Clearly, it suffices that there exist projections P_1 and P_2 that are dilations of Q_1 and Q_2 such that $P_1 \leq P_2$. As pointed out to me by Hari Bercovici (August 2007), this follows from a more general result, Naĭmark's dilation theorem, which says the following: any measure whose values are positive operators, whose total mass is I, and is countably additive in the weak operator topology dilates to a spectral measure. The measure in our case is defined on a 3-point measure space, with one point having mass Q_1 , the second mass $Q_2 - Q_1$, and the third mass $I - Q_2$.

It was never explained how to deduce negative associations for a determinantal probability measure on an infinite ground set E from that (Theorem 6.5) for a finite E. This is achieved through (6.6): Given increasing bounded functions f_1, f_2 measurable with respect to the σ -fields generated by $A \subset E$ and $E \setminus A$, respectively, let $E_n \subset E$ be finite sets that are increasing to E. The conditional expectations $\mathbf{E}[f_1 | \mathcal{F}(A \cap E_n)]$ and $\mathbf{E}[f_2 | \mathcal{F}(E_n \setminus A)]$ are increasing functions to which (6.6) applies and which converge to f_1, f_2 in L^2 .

The last part of the proof of Theorem 7.2 has a more straightforward proof, not needing the event \mathcal{A}_3 : Suppose that \mathcal{A} is any event and \mathcal{F} is any σ -field. We claim that if $\mathbf{P}(\mathcal{A} \mid \mathcal{F})\mathbf{1}_{\mathcal{A}} = 0$ a.s., then $\mathbf{P}(\mathcal{A}) = 0$. Indeed, it follows that $0 = \mathbf{E}[\mathbf{P}(\mathcal{A} \mid \mathcal{F})\mathbf{1}_{\mathcal{A}}] =$ $\mathbf{E}[\mathbf{P}(\mathcal{A} \mid \mathcal{F})^2]$ by conditioning on \mathcal{F} , whence $\mathbf{P}(\mathcal{A} \mid \mathcal{F}) = 0$ a.s., and so $\mathbf{P}(\mathcal{A}) = 0$. Now apply this to $\mathcal{A} := \mathcal{A}_1 \cap \mathcal{A}_2 \subseteq \mathcal{A}_1, \ \mathcal{F} := \mathcal{F}(E \setminus \{e\})$ and $\mathbf{P} := \mathbf{P}^H$.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405-5701 rdlyons@indiana.edu http://mypage.iu.edu/~rdlyons/

29 May 2014