
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 91, Number 2, June 1984

ERRATUM TO "MEASURE-THEORETIC QUANTIFIERS
AND HAAR MEASURE"

RUSSELL LYONS

Dr. Henry Schaerf has kindly pointed out the following gap in the application of

Proposition 1 of [1] to the main example of a measurable predicate, "st £ £"', where

E is a Borel subset of a topological group G. Namely, this predicate is measurable

with respect to the Borel subsets B(G x G) of G x G, but not necessarily with

respect to B(G) x B(G), the smallest tr-algebra containing {E x F:E, F G B(G)}.

Hence Proposition 1 does not apply. (An example where B{XxX) ^ B(X) x B(X)

for a topological space (though, admittedly, not for a group) is given in [2, p. 222,

(17-17)].) Since this mistake is clearly easy to make (see also [4]) and yet the

needed form of Fubini's theorem is difficult to find, it seems worthwhile to make a

careful correction.

The easiest rectifying assumption to make is that all groups in [1] satisfy the

second axiom of countability. It is then easy to show that B(GxG) = B(G) x B(G)

and a standard form of the Fubini-Tonelli theorem [3] applies.

Another way to rectify [1] is to assume that all spaces are locally compact Haus-

dorff and that all measures on them are complete and regular (as well as a-finite).

Here, we are using the following

DEFINITION [2, p. 109], If X is a locally compact Hausdorff space, M a cr-algebra

in X, and p a positive measure on M, then p is called regular if the following

conditions hold:

(i) M contains all open sets;

(ii) pF < oo if F is compact;

(iii) if G is open, pG = sup{pF: F C 67, F compact};

(iv) if A G M, pA = M{pG: Ac G, G open}.
A complex measure p is regular if \p\ is.

We call a function / on a positive measure space (X, M,p) p-summable if / is

M-measurable and jx \f\dp < oo. From [2, Theorems 17.12 and 17.13 on p. 215,

Theorem 17.8 on p. 212, and pp. 199-200], we have the following form of

THE FUBINI-TONELLI THEOREM. Let Xt (i = 1,2) be locally compact Haus-

dorff spaces and X — X\ x X2 with the product topology. Let pi be positive complete

regular a-finite measures on X¿ for i = 1,2. Then there exists a unique complete

regular a-finite measure v on X such that:

(i) /// is a v-summable function on X, then \/ey[p2\ f(x,y) îS pi-summable

as a function of x; /„ f(x,y)dpi(x), which is defined a.e. [/Z2L is P2-

summable; likewise with the roles of pi and P2 reversed; and

Received by the editors July 26, 1983.

1980 Mathematics Subject Classification. Primary 43A05.

Key words and phrases. Fubini's theorem, Borel sets.
©1984 American Mathematical Society

0002-9939/84 $1.00 + $.25 per page

329



330 RUSSELL LYONS

/   fdv= /     ( /    f(x,y)dpx(x)\ dp2{y)
,  -, Jx Jx2 \JXi /

=        (       f{x,y)dp2{y)) dpx(x).
JXi  \Jx2 /

(ii) // / is a nonnegative u-measurable function on X, then Vey[/i2] f{x, y) is

pi-measurable as a function of x; fx f(x,y)dpi(x), which is defined as

an extended real number a.e. [p2], is P2-measurable; likewise with the roles

of pi and p2 reversed; and (*) holds in the extended reals.

This form of the Fubini-Tonelli theorem gives a new form of Proposition 1 of [1]

which, with the above assumption of having complete regular measures on locally

compact groups, validates the other results of [1].

Finally, we note a typographical error in the statement of Proposition 1 of [1]:

"Ve[fi]n should be "Vez[/i]". Also, "left" should be "right" in lines 3 and 5 of p. 69

of[l].
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