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CYCLE DENSITY IN INFINITE RAMANUJAN GRAPHS1

BY RUSSELL LYONS AND YUVAL PERES

Indiana University and Microsoft Corporation

We introduce a technique using nonbacktracking random walk for es-
timating the spectral radius of simple random walk. This technique relates
the density of nontrivial cycles in simple random walk to that in nonback-
tracking random walk. We apply this to infinite Ramanujan graphs, which are
regular graphs whose spectral radius equals that of the tree of the same de-
gree. Kesten showed that the only infinite Ramanujan graphs that are Cayley
graphs are trees. This result was extended to unimodular random rooted reg-
ular graphs by Abért, Glasner and Virág. We show that an analogous result
holds for all regular graphs: the frequency of times spent by simple random
walk in a nontrivial cycle is a.s. 0 on every infinite Ramanujan graph. We also
give quantitative versions of that result, which we apply to answer another
question of Abért, Glasner and Virág, showing that on an infinite Ramanujan
graph, the probability that simple random walk encounters a short cycle tends
to 0 a.s. as the time tends to infinity.

1. Introduction. A path in a multigraph is called nonbacktracking if no edge
is immediately followed by its reversal. Note that a loop is its own reversal.
Nonbacktracking random walks are almost as natural as ordinary random walks,
though more difficult to analyze in most situations. Moreover, they can be more
useful than ordinary random walks when random walks are used to search for
something, as they explore more quickly, not wasting time immediately backtrack-
ing; see Alon et al. (2007). Our aim, however, is to use them to analyze the spectral
radius of ordinary random walks on regular graphs.

The spectral radius of a (connected, locally finite) multigraph G is defined to be
ρ(G) := lim supn→∞ pn(o, o)1/n for a vertex o ∈ G, where pn(x, y) is the n-step
transition probability for simple random walk on G from x to y. It is well known
that ρ(G) does not depend on the choice of o.

If G = Td is a regular tree of degree d , then ρ(G) = 2
√

d − 1/d . Regular trees
are Cayley graphs of groups. In general, when G is a Cayley graph of a group,
Kesten (1959b) proved that ρ(G) > ρ(Td) when G has degree d and G �= Td .
Kesten (1959a) also proved that for Cayley graphs, ρ(G) = 1 iff G is amenable.

If G is a d-regular multigraph, then its universal cover is Td , whence ρ(Td) ≤
ρ(G) ≤ 1. Using the method of proof due to Cheeger (1970), various researchers
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related 1 − ρ(G) to the expansion (or isoperimetric) constant of infinite graphs G,
showing that again, G is amenable iff ρ(G) = 1; see Dodziuk (1984), Dodziuk and
Kendall (1986), Varopoulos (1985), Ancona (1988), Gerl (1988), Biggs, Mohar
and Shawe-Taylor (1988) and Kaimanovich (1992).

It appears considerably more difficult to understand the other inequality for
ρ(G): when is ρ(G) = ρ(Td)? This question will be our focus.

For finite graphs, the spectral radius is 1. Of interest instead is the second largest
eigenvalue, λ2, of the transition matrix. An inequality of Alon and Boppana [see
Alon (1986) and Nilli (1991)] says that if 〈Gn;n ≥ 1〉 is a family of d-regular
graphs whose size tends to infinity, then lim infn→∞ λ2(Gn) ≥ ρ(Td). Regular
graphs G such that all eigenvalues have absolute value either 1 or at most ρ(Td)

were baptized Ramanujan graphs by Lubotzky, Phillips and Sarnak (1988), who,
with Margulis (1988), were the first to exhibit explicit such families. Moreover,
their examples had better expansion properties than the random graphs that had
been constructed earlier. See Murty (2003) and Li (2007) for surveys of finite Ra-
manujan graphs.

Abért, Glasner and Virág (2015) studied the density of short cycles in Ramanu-
jan graphs. One of their tools was graph limits, which led them to define and study
infinite Ramanujan graphs, which are d-regular infinite graphs whose spectral ra-
dius equals ρ(Td). Now limits of finite graphs, taken in the appropriate sense, are
probability measures on rooted graphs; the probability measures that arise have
a property called unimodularity. Theorem 5 of Abért, Glasner and Virág (2015)
shows that every unimodular random rooted infinite regular graph that is a.s. Ra-
manujan is a.s. a tree. Unimodularity is a kind of stochastic homogeneity that,
among other things, ensures that simple random walk visits short cycles with pos-
itive frequency when they exist.

Abért, Glasner and Virág (2015) asked whether the hypothesis of unimodularity
could be weakened to something called stationarity. We answer this affirmatively
in a very strong sense, using no extra hypotheses on the graph and including cycles
of all lengths at once. To state our result, call a cycle nontrivial if it is not purely
a backtracking cycle, that is, if when backtracks are erased iteratively from the
cycle, some edge remains. For example, a single loop is a nontrivial 1-edge cycle,
but a loop followed by the same loop is a trivial 2-edge cycle. Let X = 〈Xn;n ≥ 1〉
be simple random walk on G, where Xn are directed edges and the tail of X1 is
any fixed vertex. Call n a nontrivial cycle time of X if there exist 1 ≤ s ≤ n ≤ t

such that (Xs,Xs+1, . . . ,Xt) is a nontrivial cycle.

THEOREM 1.1. If G is an infinite Ramanujan graph of degree at least 3, then
a.s. the density of nontrivial cycle times of X in [1, n] tends to 0 as n → ∞.

Now fix L ≥ 1. Let qn be the probability that simple random walk at time n

lies on a nontrivial cycle of length at most L. Then the preceding theorem implies
that lim infn→∞ qn = 0. In their Problem 10, Abért, Glasner and Virág (2015) ask
whether limn→∞ qn = 0. We answer it affirmatively.
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THEOREM 1.2. Let G be an infinite Ramanujan graph and L ≥ 1. Then
limn→∞ qn = 0.

In broad outline, our technique to prove these results is the following: First,
we prove that when simple random walk on G has many nontrivial cycle times,
then so does nonbacktracking random walk. Second, we deduce that under these
circumstances, we may transform nonbacktracking paths to nonbacktracking cy-
cles with controlled length and find that there are many nonbacktracking cycles.
The exponential growth rate of the number of nonbacktracking cycles is called the
cogrowth of G. Finally, we use the cogrowth formula relating cogrowth to spectral
radius to conclude that G is not Ramanujan.

Thus, of central importance to us is the notion of cogrowth. We state the es-
sentials here. Let the number of nonbacktracking cycles of length n starting from
some fixed o ∈ V(G) be bn(o). Let

cogr(G) := lim sup
n→∞

bn(o)1/n

be the exponential growth rate of the number of nonbacktracking cycles contain-
ing o. This number is called the cogrowth of G. The reason for this name is that if
we consider a universal covering map ϕ :T → G, then the cogrowth of G equals
the exponential growth rate of ϕ−1(o) inside T since ϕ induces a bijection between
simple paths in T and nonbacktracking paths in G. By using this covering map,
one can see that cogr(G) does not depend on o. Note, too, that if P is a finite
path in G that lifts to a path in T from vertex x to vertex y, then erasing back-
tracks from P iteratively yields ϕ[P ′], where P ′ is the shortest path in T from x

to y.
Let G be a connected graph. It is not hard to check the following: If G has

no simple nonloop cycle and at most one loop, then cogr(G) = 0. If G has
one simple cycle and no loop or no simple nonloop cycle and two loops, then
cogr(G) = 1. In all other cases, that is, when the fundamental group of G is not
virtually abelian, cogr(G) > 1.

The central result about cogrowth is the following formula (1.2), due to
Grigorchuk (1980) for Cayley graphs and extended by Northshield (1992) to all
regular graphs.

THEOREM 1.3 (Cogrowth formula). If G is a d-regular connected multi-
graph, then

cogr(G) >
√

d − 1 iff ρ(G) >
2
√

d − 1

d
,(1.1)

in which case

dρ(G) = d − 1

cogr(G)
+ cogr(G).(1.2)

If (1.1) fails, then ρ(G) = 2
√

d − 1/d and cogr(G) ≤ √
d − 1.
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See Lyons and Peres (2015), Section 6.3, for a proof.
Our use of Theorem 1.3 will be mainly via (1.1), rather than (1.2). In order to

use (1.1), we shall prove the following result on density of nontrivial cycle times:

THEOREM 1.4. Suppose that G is a graph all of whose degrees are at least 3.
If with positive probability the limsup density of nontrivial cycle times of simple
random walk in [1, n] is positive as n → ∞, then the same holds for nonback-
tracking random walk.

Here, nonbacktracking random walk is the random walk that at every time n,
chooses uniformly among all possible edges that are not the reversal of the
nth edge. In terms of the universal cover ϕ :T → G, if simple random walk
X = 〈Xn;n ≥ 1〉 is lifted to a random walk, call it X̂, on T , then X̂ is simple
random walk on T . Backtracking on G is the same as backtracking on T . Since
all degrees of T are at least 3, X̂ is transient and so there is a unique simple path
P in T with the same starting point as X̂ and having infinite intersection with X̂.
The law of ϕ[P] is that of nonbacktracking random walk on G.

As it may be of separate interest, we note in passing the following basic elemen-
tary bound on the number of nonbacktracking cycles. Write S(x) := {n;bn(x) �=
0}. If a nonbacktracking cycle is a loop or has the property that its last edge is
different from the reverse of its first edge, then call the cycle fully nonbacktracking
(usually called “cyclically reduced” in the case of a Cayley graph). Let the number
of fully nonbacktracking cycles of length n starting from x be b∗

n(x).

PROPOSITION 1.5. Let G be a graph with cogr(G) ≥ 1. For each x ∈ V(G),
we have that limS(x)n→∞ bn(x)1/n exists and there is a constant cx such that
bn(x) ≤ cx cogr(G)n for all n ≥ 1. Furthermore, if x belongs to a simple cycle of
length L, then cx ≤ 2 + 2Lcogr(G)L−2. If G is d-regular, then G is Ramanujan
iff for all vertices x and all n ≥ 1, we have b∗

n(x) ≤ 2(d − 1)n/2.

We shall illustrate our technique first by giving a short proof of Kesten’s theo-
rem (extended to transitive multigraphs). We then prove a version of Theorems 1.1
and 1.4 with a stronger hypothesis on the density of nontrivial cycle times, a hy-
pothesis that holds for stationary random rooted graphs, for example. The proof of
the full Theorems 1.1 and 1.4 requires a large number of technical lemmas, which
makes the basic idea harder to see. The final section proves Theorem 1.2.

All our graphs are undirected connected infinite multigraphs. However, each
edge comes with two orientations, except loops, which come with only one orien-
tation. An edge e is oriented from its tail e− to its head e+. These endpoints are
the same when e is a loop. A vertex may have many loops and two vertices may
be joined by many edges. If e is an oriented edge, then its reversal is the same
unoriented edge with the opposite orientation, denoted −e. This is equal to e iff e

is a loop.
We shall have no need of unimodularity or stationarity, so we do not define those

terms.
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2. Kesten’s theorem. It is easiest to understand the basic ideas behind our
proofs in the case of transitive multigraphs. Kesten (1959b) proved the following
result and various extensions for Cayley graphs.

THEOREM 2.1. If d ≥ 3 and G is a d-regular transitive multigraph that is not
a tree, then ρ(G) > ρ(Td).

PROOF. Let L be the length of the shortest cycle in G (which is 1 if there is
a loop). Consider a nonbacktracking random walk 〈Yn;n ≥ 1〉, where each edge
Yn+1 is chosen uniformly among the edges incident to the head Y+

n of Yn, other
than the reversal of Yn. We are going to handle loops differently than other cycles,
so it will be convenient to let

L′ :=
{

L, if L > 1,
3, if L = 1.

Let An be the event that Yn+1, . . . , Yn+L′ is a nonbacktracking cycle. Write b :=
d − 1. For n ≥ 1,

P(An|Y1, . . . , Yn) ≥ 1

dbL′−1

since if L > 1, then there is a way to traverse a simple cycle starting at Y+
n and

not using the reversal of Yn, while if L = 1, then the walk can first choose an edge
other than the reversal of Yn, then traverse a loop, and then return by the reversal of
Yn+1. Let Zk := 1AkL′ − P(AkL′ |Y1, . . . , YkL′). Then 〈Zk;k ≥ 1〉 are uncorrelated,
whence by the Strong Law of Large Numbers for uncorrelated random variables,
we have

lim
n→∞

1

n

n−1∑
k=0

Zk = 0 a.s.,

which implies that

lim inf
n→∞

1

n

n−1∑
k=0

1AkL′ ≥ 1

dbL′−1
a.s.

Therefore, if we choose ε < 1/(dbL′−1), then in nL′ steps, at least εn events AkL′
will occur for 0 ≤ k < n with probability tending to 1 as n → ∞.

Consider the following transformation of a path P = (Y1, . . . , YnL′) to a “re-
duced” path P ′: For each k such that AkL′ occurs, remove the edges Yk+1, . . . ,

Yk+L′ . Next, combine P and P ′ to form a nonbacktracking cycle P ′′ by appending
to P a nonbacktracking cycle of length L′ that does not begin with the reversal of
YnL′ , and then by returning to the tail of Y1 by P ′ in reverse order. Note that the
map P �→ P ′′ is 1–1.
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When at least εn events AkL′ occur, the length of P ′′ is at most (2n + 1 −
εn)L′. The number of nonbacktracking paths Y1, . . . , Yn equals dbn−1, whence∑

k≤(2n+1−εn)L′ bk(G) ≥ dbnL′−1/2 for large n. This gives that cogr(G) >
√

b,
which implies the result by Theorem 1.3. �

An alternative way of handling loops in the above proof is to use the following:
Consider a random walk on a graph with spectral radius ρ. Suppose that we intro-
duce a delay so that each step goes nowhere with probability pdelay, and otherwise
chooses a neighbor with the same distribution as before. Then the new spectral
radius equals pdelay + (1 − pdelay)ρ. Hence, if there is a loop at each vertex and G

is d-regular, then ρ(G) ≥ 1/(d − 1) + (d − 2)ρ(Td)/(d − 1) > ρ(Td).
For a simple extension of this proof, let G be a d-regular multigraph. Sup-

pose that there are some L,M < ∞ such that for every vertex x ∈ V(G), there
is a simple cycle of length at most L that is at distance at most M from x. Then
ρ(G) > ρ(Td). Theorem 3 of Abért, Glasner and Virág (2015) gives a quantitative
strengthening of this result.

3. Expected frequency. In the case of transitive multigraphs that are not
trees, it is clear that simple random walk a.s. has many nontrivial cycle times.
The most difficult part of our extension to general regular graphs is to show how
this property is inherited by nonbacktracking random walk. This actually does not
depend on regularity and is an interesting fact in itself.

Before we prove the general case, which has many complications, it may be
helpful to the reader to see how to prove Theorem 1.1 with a stronger assumption
on the density of nontrivial cycle times.

Recall that a cycle is nontrivial if it is not purely a backtracking cycle, that is,
when backtracks are erased iteratively from the cycle, some edge remains. We call
such cycles NT-cycles.

THEOREM 3.1. Suppose that G is a graph all of whose degrees lie in some
interval [3,D]. If the limsup expected frequency that simple random walk tra-
verses some nontrivial cycle of length at most L is positive, then the same is true
for nonbacktracking random walk. Hence, if G is also d-regular, then ρ(G) >

2
√

d − 1/d .

PROOF. We may assume that simple cycles of length exactly L are traversed
with positive expected frequency. Let X = 〈Xn;n ≥ 1〉 be simple random walk on
G and X̂ = 〈X̂n〉 be its lift to the universal cover T of G.

Now consider X. It contains purely backtracking excursions that are erased
when we iteratively erase all backtracking. Let the lengths of the successive ex-
cursions be M1,M2, . . . , where Mi ≥ 0. Define

�(n) := n +
n∑

k=1

Mk.(3.1)



CYCLE DENSITY IN INFINITE RAMANUJAN GRAPHS 3343

Then the edges that remain after erasing all backtracking are 〈X�(n);n ≥ 1〉. If we
write Yn := X�(n), then Y := 〈Yn〉 =: NB(X) is the nonbacktracking path created
from X. Let im� be the image of �. Thus, t ∈ im� iff the edge Xt is not erased
from X when erasing all backtracking.

Consider a time t such that Xt completes a traversal of a simple cycle of
length L. Because all degrees of T are at least 3, the probability (given the past)
that X̂ will never cross the edge −X̂t after time t is at least 1/2. In such a case,
the cycle just traversed will not be erased (even in part) by the future. However,
erasing backtracks from X1, . . . ,Xt may erase (at least in part) this cycle.

Let Trav(Y ) be the set of times n such that Yn completes a traversal of a cycle
and let Trav(X) be the set of times t that Xt completes a traversal of a simple
cycle of length L.

We divide the rest of the proof into two cases, depending on whether L > 1 or
not.

First, suppose that L > 1. Define a map ψ :Z+ → Trav(Y ) ∪ {∞} as follows:

ψ(t) :=
{

�−1(t) + L, if t ∈ im� ∩ Trav(X) and �−1(t) + L ∈ Trav(Y ),
∞, otherwise.

For t ∈ Trav(X), the probability (given the past) that the steps Xt+1, . . . ,

Xt+L traverse the same cycle Xt−L+1,Xt−L+2, . . . ,Xt of length L (in only L

steps and in the same direction) and then (on the tree) X̂t+L+1, X̂t+L+2, . . . never
crosses the edge −X̂t is at least 1/(2DL); similarly, for traversing the cycle in
the opposite direction. In at least one of these two cases, some part of the cy-
cle Xt+1, . . . ,Xt+L will be left after erasing all backtracks in X, in which case
ψ(t) ∈ Trav(Y ). Therefore, P[ψ(t) ∈ Trav(Y )|t ∈ Trav(X)] ≥ 1/(2DL), that
is, P[ψ(t) ∈ Trav(Y )] ≥ P[t ∈ Trav(X)]/(2DL). Hence,∑

s≤t

P
[
ψ(s) ∈ Trav(Y )

] ≥ ∑
s≤t

P
[
s ∈ Trav(X)

]
/
(
2DL)

.

Note that ψ(t1) = ψ(t2) ∈ Trav(Y ) implies that t1 = t2. Since ψ(s) ≤ s + L, it
follows that ∑

k≤t+L

1[k∈Trav(Y )] ≥ ∑
s≤t

1[ψ(s)∈Trav(Y )],

whence

lim sup
n→∞

n−1
∑
k≤n

P
[
k ∈ Trav(Y )

]
≥ lim sup

t→∞
t−1

∑
s≤t

P
[
s ∈ Trav(X)

]
/
(
2DL)

= lim sup
t→∞

t−1E
[∑

s≤t

1[s∈Trav(X)]
]/(

2DL)
> 0
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by assumption. Now the method of proof of Theorem 2.1 applies when G is regu-
lar.

Finally, suppose that L = 1. This means that t ∈ Trav(X) iff Xt is a loop, and
similarly for Trav(Y ). Define a map ψ :Z+ → Z

+ ∪ {∞} as follows:

ψ(t) :=
⎧⎨⎩�−1(t), if t ∈ im� ∩ Trav(X),

�−1(t + 1), if t ∈ Trav(X) \ im� and t + 1 ∈ im� ∩ Trav(X),
∞, otherwise.

Consider t ∈ Trav(X). If erasing backtracks from X1, . . . ,Xt does not erase Xt ,
then the probability (given the past) that (on the tree) X̂t+1, X̂t+2, . . . never crosses
the edge −X̂t is at least 1/2, in which case t ∈ im�. On the other hand, if eras-
ing backtracks from X1, . . . ,Xt does erase Xt , then the probability (given the
past) that Xt+1 is a loop and (on the tree) X̂t+2, X̂t+3, . . . never crosses the edge
−X̂t+1 is at least 1/(2D), in which case t /∈ im� and t + 1 ∈ im� ∩ Trav(X).
In each of these two cases, ψ(t) ∈ Trav(Y ). Therefore, P[ψ(t) ∈ Trav(Y )|t ∈
Trav(X)] ≥ 1/(2D), that is, P[ψ(t) ∈ Trav(Y )] ≥ P[t ∈ Trav(X)]/(2D). Now
the rest of the proof goes through as when L > 1, with the small change that in-
stead of injectivity, we have that |ψ−1(n)| ≤ 2 for n ∈ Trav(Y ). �

4. Proofs of Theorems 1.1 and 1.4. Here, we remove from Theorem 3.1 the
upper bound on the degrees in G that was assumed and we weaken the assumption
on the nature of nontrivial cycle frequency.

Consider a finite path P = 〈et ;1 ≤ t ≤ n〉. Say that a time t is a cycle time of P
if there exist 1 ≤ s ≤ t ≤ u ≤ n such that (es, es+1, . . . , eu) is a cycle. If the cycle
is required to be an NT-cycle, then we will call t an NT-cycle time, and likewise
for other types of cycles. Call a cycle fully nontrivial if it is a loop or is nontrivial
and its first edge is not the reverse of its last edge. Such cycles will be called FNT-
cycles. For a finite or infinite path P , we denote by P�n its initial segment of n

edges.
We state a slightly different version of Theorems 1.1 and 1.4 here. At the end of

the section, we shall deduce the theorems as originally stated in Section 1.

THEOREM 4.1. Suppose that G is a graph all of whose degrees are at least 3.
Let X = 〈Xt ; t ≥ 1〉 be simple random walk on G. If with positive probability the
limsup frequency of NT-cycle times of X�n is positive as n → ∞ (i.e., the expected
limsup frequency is positive), then the same is true for nonbacktracking random
walk. If G is also d-regular, then ρ(G) > 2

√
d − 1/d .

For n ∈ Z
+, α > 0, and a path P of length > n, let Cn(α,P) be the indicator

that the number of NT-cycle times of P�n is >αn. We shall prove the following
finitistic version of Theorem 4.1, which will be useful to us later.
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THEOREM 4.2. There exist ζ, γ > 0 with the following property. Suppose that
G is a graph all of whose degrees are at least 3. Then for all n and α,

E
[
Cn(α,X)

(
1 − Cn

(
α̂,NB(X)

))]
< 3e−ζn,

where

α̂ := γα/ log2(10,368/α).

There exists ζ ′ > 0 such that if G is also d-regular, cogr(G) > 1, and

E
[
Cn(α,X)

]
>

cone−ζ ′n

cogr(G) − 1
,

where co is as in Proposition 1.5, then ρ(G) > 2
√

d − 1/d . If G is d-regular and

lim sup
n→∞

[
ECn(α,X)

]1/n = 1,

then

ρ(G) >

√
d − 1

d

(
(d − 1)α̂/24 + (d − 1)−α̂/24)

.

We shall use the following obvious fact.

LEMMA 4.3. If (e1, . . . , ek) and (f1, . . . , fm) are paths without backtrack-
ing, the head of ek equals the tail of f1, and ek is not the reverse of f1, then
(e1, . . . , ek, f1, . . . , fm) is a path without backtracking.

We shall apply the following well-known lemma to intervals with integer end-
points.

LEMMA 4.4 (Vitali covering). Let I be a finite collection of subintervals of R.
Write ‖I‖ for the sum of the lengths of the intervals in I . Then there exists a sub-
collection J of I consisting of pairwise disjoint intervals such that ‖J‖ ≥ ‖I‖/3.

This lemma is immediate from choosing iteratively the largest interval disjoint
from previously chosen intervals.

The following is a simple modification of a standard bound on large deviations.

LEMMA 4.5. Suppose that c > 0. There exist ε ∈ (0,1) and β > 0 such that
whenever Z1, . . . ,Zn are random variables satisfying the inequalities
P [Zk > z|Z1, . . . ,Zk−1] ≤ e−cz for all z > 0, we have

P

[
εn∑

k=1

Zk ≥ n

]
≤ e−βn.
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PROOF. Write St := ∑�t�
j=1 Zj . Given λ := c/2 and k ∈ [1, n], we have

E
[
eλZk |Z1, . . . ,Zk−1

] =
∫ ∞

0
P

[
eλZk > z|Z1, . . . ,Zk−1

]
dz

≤ 1 +
∫ ∞

1
z−c/λ dz = 2,

whence

E
[
eλSk |Z1, . . . ,Zk−1

] ≤ 2eλSk−1 .

By induction, therefore, we have that E[eλSk ] ≤ 2k . It follows by Markov’s in-
equality that

P

[
εn∑

k=1

Zk ≥ n

]
= P

[
eλSεn ≥ eλn] ≤ 2εne−λn.

Thus, if we choose ε := min{1/4, c/(4 log 2)} and β := c/4, the desired bound
holds. �

Several lemmas now follow that will be used to handle various possible behav-
iors of simple random walk on G.

LEMMA 4.6. Suppose that G is a graph all of whose degrees are at least 3. Let
X record the oriented edges taken by simple random walk on G. Let �(n) index
the nth edge of X that remains in NB(X), so that NB(X) = 〈X�(n)〉: see (3.1).
Write �(0) := 0. Then there exists t0 < ∞ such that for all n and all t > t0, we
have

P
[
�(n + 1) − �(n) > t

]
< (8/9)t/2.

In addition, there exists r such that for every n and λ,

P
[
�(n) > (r + λ)n

]
< (8/9)λn/4.

More generally, for all L > 0, there exists rL ≤ 362(8/9)L/4 such that

P
[ ∑

k<n

(
�(k + 1) − �(k)

)
1[�(k+1)−�(k)>L] > (rL + λ)n

]
< (8/9)λn/4.

PROOF. Let X̂ be the lift of X to T . Then � also indexes the edges that remain
in NB(X̂). Since the distance of NB(X̂) from X̂−

1 increases by 1 at each step, the
times �(n + 1) − �(n) are dominated by the times between escapes for random
walk on N that has probability 2/3 to move right and 1/3 to move left, reflecting
at 0. These in turn are dominated by the time to the first escape for random walk S
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on Z with the same bias. Such an escape can happen only at an odd time, t . The
chance of an escape at time exactly t is

P
[
St−1 = 0, St = 1,∀t ′ > t St ′ > 0

]
=

(
t − 1

(t − 1)/2

)(
2

3

)(t−1)/2(
1

3

)(t−1)/2(
2

3

)(
1

2

)

∼ c
(
√

8/9)t√
t

for some constant c. This proves the first inequality.
Now �(n) = ∑

k<n(�(k + 1) − �(k)) and these summands are dominated by
the corresponding inter-escape times for the biased random walk on Z. The lat-
ter are i.i.d. with some distribution ν (which we bounded in the last paragraph),
whence if we choose a := (8/9)1/4 ∈ (

√
8/9,1) and put b := ∑

j≥1 a−j ν(j) ∈
(1,∞), we obtain that for all n, we have E[a−�(n)] ≤ bn. By Markov’s inequality,
this implies that

P
[
�(n) > (c + λ)n

] ≤ a(c+λ)nbn,

so if we choose c = r with arb = 1, then we obtain the second inequality.
The third inequality follows similarly: let Bk := (�(k + 1) − �(k)) ×

1[�(k+1)−�(k)>L]. Put bL := ν[1,L] + ∑
j>L a−j ν(j) ∈ (1,1 + 36aL). Then

E[a−∑n−1
k=0 Bk ] ≤ bn

L for all n. By Markov’s inequality, this implies that

P

[
n−1∑
k=0

Bk > (cL + λ)n

]
≤ a(cL+λ)nbn

L,

so if we choose cL = rL with arLbL = 1, then we obtain the third inequality. We
have the estimate rL ≤ 362aL. �

It follows that

P
[
�

(
n/(r + λ)

)
> n

]
< aλn.

That is, except for exponentially small probability, there are at least n/(r + λ)

nonbacktracking edges by time n. Similarly, except for exponentially small proba-
bility, there are at most (rL+λ)n edges by time n that are in intervals of length > L

that have no escapes.
The following is clear.

LEMMA 4.7. With notation as in Lemma 4.6, if s ≤ �(n) ≤ t satisfy X−
s =

X+
t , then n is a cycle time of NB(X)�t .

We call a time t an escape time for X̂ if −X̂t+1 /∈ NB(X̂1, . . . , X̂t ) and −X̂t+1 /∈
{X̂s; s > t + 1}. We let Esc(X̂) be the set of escape times for X̂. Then Esc(X̂) =
im(� − 1).
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LEMMA 4.8. Suppose that 〈τk;1 ≤ k < K〉 is a strictly increasing sequence
of stopping times for X, where K is random, possibly ∞. Then there exist η, δ > 0
such that for all n > 0,

P
[
K > n,

∣∣{k ≤ n; τk ∈ Esc(X̂)
}∣∣ < ηn

]
< e−δn.

PROOF. Define random variables σj , λj recursively. First, we describe in
words what they are. Start by setting λ1 := 1 and by examining what happens
after time τ1. If X̂ escapes, define σ1 := 1, λ2 := 2, and look at time τ2. If
not, then look at the first time τj that occurs after the first time ≥ t + 1 we
know that X̂ has not escaped, that is, t + 1 if −X̂t+1 ∈ NB(X̂1, . . . , X̂t ) or else
min{s > t + 1;−X̂t+1 = X̂s}, and define σ1 := τj − τ1, λ2 := j . Now repeat from
time τλ1 to define σ2 and λ3, etc.

The precise definitions are as follows. Suppose that K > n (otherwise we do not
define these random variables). Define Aj to be the event that one of the following
holds:

−X̂τj+1 ∈ NB(X̂1, . . . , X̂τj
) or τj ∈ Esc(X̂).

Write λ1 := 1. To recurse, suppose that λk has been defined. Let

λk+1 :=
{

λk + 1, if Aλk
,

min
{
j ;−X̂τλk

+1 ∈ {X̂s; τλk
+ 1 < s < τj }}, otherwise

and

σk :=
{

1, if Aλk
,

τλk+1 − τλk
, otherwise.

Let J := max{j ;λj ≤ n}. This is the number of times we have looked for es-
capes up to the nth stopping time. Each stopping time until the nth is covered
by one of the intervals [τ1, τλ2), . . . , [τλJ

, τλJ+1), which have lengths σ1, . . . , σJ .
Therefore, we have that

J∑
j=1

σj ≥ n.

We claim that this forces J to be large with high probability:

P[J ≤ εn] ≤ e−γ n(4.1)

for some ε, γ > 0. Indeed, we claim that for each k ≤ εn,

P

[
k∑

j=1

σj ≥ n

]
≤ e−βn,

where ε and β are given by Lemma 4.5 with c (in that lemma) to be determined.
This would imply that

P[J ≤ εn] ≤ εne−βn.
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Now τλk+1 − τλk
≥ λk+1 − λk . Thus, it suffices to show that there is some c > 0

for which

P[λk+1 − λk ≥ z|σ1, . . . , σk−1] ≤ e−cz

for all z > 1. Now the event λk+1 − λk ≥ z > 1 implies the event B that −X̂t /∈
NB(X̂1, . . . , X̂τλk

) for all t ∈ (τλk
, τλk

+ z) and that −X̂t = X̂τλk
for some t ≥

τλk
+ z. Because the distance from X̂t to X̂τλk

has a probability at least 2/3 to
get larger at all times, this is exponentially unlikely in z. What we need, however,
is that this is exponentially unlikely even under the given conditioning. For every
event A in the σ -field on which we are conditioning, we always have that A ⊇
[τλk

∈ Esc(X̂)]. Furthermore, P[τλk
∈ Esc(X̂)] ≥ 1/2. Hence, P(B|A) ≤ 2P(B),

so that the bound on the unconditional probability of B also gives an exponential
bound on the conditional probability of B . Thus, we have proved (4.1).

Define Ek := [τλk
∈ Esc(X̂)]. We claim that

P
(
Ek|σ(E1, . . . ,Ek−1)

) ≥ 1/2.(4.2)

Indeed, let Zt be the distance of X̂+
t to X̂−

1 . Note that t ∈ Esc(X̂) iff Zs > Zt for
all s > t . Write Ft(j) for the event that Zs > j for all s > t . We claim that

P
(
Ek|σ(E1, . . . ,Ek−1, X̂1, . . . , X̂λk

, λ1, . . . , λk)
) ≥ 1/2,

which is stronger than (4.2). By choice of λ1, . . . , λk , we have that for every event
E ∈ σ(E1, . . . ,Ek−1, X̂1, . . . , X̂λk

, λ1, . . . , λk),

P(Ek|E) = P
(
Ft(jm)|Ft(j1), . . . ,Ft (jm−1)

)
for some j1, . . . , jm−1 < jm and some t , where m ≥ 1. Since Ft(ji) ⊇ Ft(jm) and
P(Ft (jm)) ≥ 1/2, the claim follows.

Therefore, by (4.2), we may couple the events Ek to Bernoulli trials with prob-
ability 1/2 each so that the kth successful trial implies Ek . This shows that there
exists δ > 0 such that

P
[
J > εn,

∣∣{k ≤ J ;Ek}
∣∣ < εn/3

]
< e−δn.

Hence,

P
[
K = ∞,

∣∣{j ≤ n; τj ∈ Esc(X̂)
}∣∣ < εn/3

]
< e−δn.

Thus, we may choose η := ε/3. �

Call a cycle of > L edges an L+-cycle. Define I (n,L) to be the set of times
t ∈ [1, n] for which there exist 1 ≤ s ≤ t ≤ u ≤ n such that (Xs,Xs+1, . . . ,Xu) is
a nontrivial L+-cycle.

LEMMA 4.9. If n,L ≥ 1 and β ∈ (0,1), then

E
[
1[|I (n,L)|≥βn]

(
1 − Cn

(
β/(2L),NB(X)

))]
< (8/9)βn/16.
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PROOF. Let Long be the event [|I (n,L)| ≥ βn]. Let J be the union of in-
tervals in [1, n] that have length > L and are disjoint from Esc(X). Let Bad
be the event that |J | > βn/2. By Lemma 4.6, we have P(Bad) < (8/9)βn/16

(use λ := β/4 there). On the event Long \ Bad, the set I (n,L) contains at least
βn/2 times that are within distance L/2 of an escape. Therefore, on the event
Long \ Bad, there are at least βn/(2L) escapes in nontrivial cycles, whence
NB(X)�n has ≥βn/(2L) NT-cycle times. �

Let I◦(n,L) be the (random) set of times t ∈ [1, n] \ I (n,L) such that Xt is a
loop.

LEMMA 4.10. There exist η, δ > 0 such that if n,L ≥ 1 and β ∈ (0,1), then

E
[
1[|I◦(n,L)|≥βn]

(
1 − Cn

(
ηβ/(L + 1),NB(X)

))]
< e−δn.

PROOF. Let Loop := [|I◦(n,L)| ≥ βn]. Note that if there are 3 times at which
a given loop in G is traversed, then necessarily the first of those times belongs to a
nontrivial cycle with at least one of the other times. In particular, if a given loop is
traversed at least L+ 2 times, then it belongs to a nontrivial long cycle. Therefore,
on Loop, there are ≥βn/(L + 1) times spent in distinct loops. If we take the first
traversal of a loop as a stopping time, then Lemma 4.8 supplies us with η, δ such
that on the event Loop, except for probability < e−δn, the number of new loops at
escape times is at least ηβn/(L+ 1). Necessarily, all such loops remain in NB(X).
Therefore, NB(X)�n also has at least ηβn/(L+1) loops on the event Loop except
for probability < e−δn. �

Let D(n) denote the maximal number of disjoint FNT-cycles in X�n, other than
loops.

LEMMA 4.11. There exist η, δ > 0 such that if n ≥ 1 and β ∈ (0,1), then

E
[
1[|D(n)|≥βn]

(
1 − Cn

(
ηβ,NB(X)

))]
< e−δn.

PROOF. Fix n ≥ 1. Let Cycs be a (measurable) set of pairs of times 1 ≤
s < t ≤ n such that (Xs,Xs+1, . . . ,Xt ) is an FNT-cycle other than a loop, cho-
sen so that |Cycs| = D(n). Let Cycs&Esc := {(s, t) ∈ Cycs; t ∈ Esc(X̂)}. By
Lemma 4.8, on the event D(n) ≥ βn, we have |Cycs&Esc| > η′βn for some
η′ > 0 except for exponentially small probability.

Let Sofar be the set of (s, t) ∈ Cycs such that Xs−1 �= −Xt or s = 1.
Note that for (s, t) ∈ Cycs, the cycle from Xs to Xt can be traversed in ei-

ther order, both being equally likely given X1, . . . ,Xs−1, and at least one of
them has the property that (s, t) ∈ Sofar [see Lemma 4.3, where we concate-
nate NB(X1, . . . ,Xs−1) with either NB(Xs, . . . ,Xt ) or NB(Xt ,Xt−1, . . . ,Xs), as
appropriate]. In fact, the same holds even conditioned on Cycs&Esc. Therefore,
we may couple to Bernoulli trials and conclude that on the event D(n) ≥ βn, we
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have |Cycs&Esc ∩ Sofar| > η′βn/3 except for exponentially small probabil-
ity. Note that for t ∈ Cycs&Esc ∩ Sofar, some edge in the cycle (Xs, . . . ,Xt )

belongs to NB(X) (see Lemma 4.3 again)—more precisely, u ∈ im� for some
u ∈ [s, t]—, whence on the event D(n) ≥ βn, we have NB(X)�n has > ηβn cycle
times except for exponentially small probability, where η := η′/3. �

LEMMA 4.12. Suppose that ρ := ρ(G) < 1, n ≥ 2, ε > 0 and L > 2e2. Then

P
[∣∣{L+-cycle times of X�n

}∣∣ ≥ εn
]
< e(6n/L) logLρεn/3/(1 − ρ).

PROOF. For every n and k, the chance that Xn begins a cycle of length k is
at most ρk . Suppose that the number of L+-cycle times of X�n is at least εn.
Then there are disjoint L+-cycles in X1, . . . ,Xn the sum of whose lengths is at
least εn/3 by Lemma 4.4. There are fewer than n/L starting points and fewer
than n/L ending points for those cycles since each has length > L and they are
disjoint. The number of collections of subsets of [0, n] of size at most 2n/L is
<e(n+1)h(2/L) < e(6n/L) logL, where h(α) := −α logα − (1 − α) log(1 − α). This
is because h(α) < −2α logα for α < e−2. For each such collection of starting and
ending points giving total length k, the chance that they do start L+-cycles is at
most ρk , whence summing over collections and total lengths that are ≥εn/3, we
get the result. �

Call a nonbacktracking cycle an NB-cycle. If an NB-cycle is a loop or has the
property that its last edge is different from the reverse of its first edge, then call
the cycle fully nonbacktracking, abbreviated FNB-cycle. Recall that the number of
NB-cycles of length n starting from x ∈ V(G) is bn(x). We also say that a cycle
starting from x is “at x”. Let the number of FNB-cycles of length n at x be b∗

n(x).
Recall that S(x) := {n;bn(x) �= 0}. We shall need the following bounds on bn(x).

PROPOSITION 1.5. Let G be a graph with cogr(G) ≥ 1. For each x ∈ V(G),
we have that limS(x)n→∞ bn(x)1/n exists and there is a constant cx such that
bn(x) ≤ cx cogr(G)n for all n ≥ 1. Furthermore, if x belongs to a simple cycle of
length L, then cx ≤ 2 + 2Lcogr(G)L−2. If G is d-regular, then G is Ramanujan
iff for all vertices x and all n ≥ 1, we have b∗

n(x) ≤ 2(d − 1)n/2.

PROOF. Write S∗(x) := {n;b∗
n(x) �= 0}. Given two FNB-cycles starting at x,

we may concatenate the first with either the second or the reversal of the second to
obtain an FNB-cycle at x, unless both FNB-cycles are the same loop. Therefore,
if b∗

n(x) is the number of FNB-cycles at x, we have b∗
m(x)b∗

n(x)/2 ≤ b∗
m+n(x) for

m + n ≥ 3, whence 〈b∗
n(x)/2;n ≥ 2〉 is supermultiplicative and Fekete’s lemma

implies that limS∗(x)n→∞ b∗
n(x)1/n exists and b∗

n(x) ≤ 2cogr(G)n for n ≥ 2. It is
easy to check that the same inequality holds for n = 1. Together with Theorem 1.3,
this also implies that if G is d-regular and Ramanujan, then for all vertices x and
all n ≥ 1, we have b∗

n(x) ≤ 2(d − 1)n/2.
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Let b̂n(x) := bn(x)−b∗
n(x) be the number of nonloop NB-cycles at x whose last

edge equals the reverse of its first edge, that is, NB-cycles that are not FNB-cycles.
We shall bound b̂n(x) when x belongs to a simple cycle, say, P0 = (e1, . . . , eL)

with L edges. Let P be a nonloop NB-cycle at x whose last edge is e′ and whose
first edge is −e′. If e′ is a loop, then removing e′ at the end of P gives an FNB-
cycle P ′ at x. Otherwise, decompose P as P1.P2, where . indicates concatenation,
and P2 is maximal containing only edges e such that e ∈ P0 or −e ∈ P0. By revers-
ing P0 if necessary, we may assume the former: all edges of P2 lie in P0. Suppose
the first edge of P2 is ek . Then P2 traverses the remainder of P0 and possibly
the whole of P0 several times. Thus, write P2 = P3.P4, where P3 = (ek, . . . , eL)

has length ≤ L. Finally, the NB-cycle P ′ := P1.(−ek−1, . . . ,−e1).P4 is FNB,
where the bar indicates path reversal. In addition, the length of P ′ differs from
the length of P by at most L − 2. Since the map P �→ P ′ is injective, b̂n(x) ≤∑L−2

i=−1 b∗
n+i(x) ≤ 2Lcogr(G)n+L−2.

Combining the results of the previous two paragraphs, we obtain that if x be-
longs to a simple cycle, then there is a constant cx such that for all n ≥ 1, we have
bn(x) ≤ cx cogr(G)n. We also get the bound claimed for cx .

We now prove the same for x that do not belong to a simple cycle. We claim
that if y is a neighbor of x, then bn(x) ≤ bn−2(y) + bn(y) + bn+2(y). Indeed, let
P be an NB-cycle at x. Suppose the first edge of P goes to y. If P is not FNB,
then removing the first and last edges of P yields an NB-cycle at y of length n−2.
If P is FNB, then shifting the starting point from x to y yields an FNB-cycle at y

of length n. Lastly, if the first edge of P does not go to y, then we may prepend
to P an edge from y to x and either append an edge from x to y if the last edge
of P was not from y, or else delete the last edge of P , yielding an NB-cycle at y

of length n + 2 or n. This map of NB-cycles at x to NB-cycles at y is injective,
which gives the claimed inequality. It follows that bn(x) ≤ cxbn(z), where z is the
nearest point to x that belongs to a simple cycle and cx does not depend on n.

Finally, if limS(x)n→∞ bn(x)1/n exists for one x, then it exists for all x by the
covering-tree argument we used earlier in Section 1. Suppose that for all x be-
longing to a simple cycle, limS∗(x)n→∞ b∗

n(x)1/n < cogr(G). Then the bounds
in the preceding paragraphs show that limS∗(x)n→∞ bn(x)1/n < cogr(G). It
is not hard to see that therefore lim supS(x)n→∞ bn(x)1/n < cogr(G) as well,
which is a contradiction to the definition of cogr(G). Hence for some x, we
have limS∗(x)n→∞ b∗

n(x)1/n = cogr(G) and, therefore, limS(x)n→∞ bn(x)1/n =
cogr(G) as well. Together with Theorem 1.3, this also implies that if G is d-
regular and for all vertices x and all n ≥ 1, we have b∗

n(x) ≤ 2(d − 1)n/2, then G is
Ramanujan, which completes the proof of the last sentence of the proposition. �

Let Y := NB(X). Let AL
n (β) be the event that there are ≥ βn times t ∈ [1, n]

for which there exist 1 ≤ s ≤ t ≤ u ≤ n such that (Ys, Ys+1, . . . , Yu) is a cycle with
u − s < L.
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LEMMA 4.13. Let G be d-regular with cogr(G) > 1 and β ∈ (0,1). For
every L < ∞, if

P
[
AL

n (β)
]
>

con(d − 1)−β2n/6+L/2

cogr(G) − 1
,

where co is as in Proposition 1.5, then ρ(G) > 2
√

d − 1/d . If

lim sup
n→∞

P
[
AL

n (β)
]1/n = 1,(4.3)

then

ρ(G) >

√
d − 1

d

(
(d − 1)β/24 + (d − 1)−β/24)

.

PROOF. We may suppose that ρ(G) < 1, as there is nothing to prove other-
wise.

Let An(β,L) be the event that Y �n has at least βn cycle times and that Yn

completes a cycle of length ≤L. Note that P[Ak(β,L)] ≥ P[AL
n (β)]/n for some

k ∈ [βn,n] by considering the last cycle completed.
Consider the following transformation P �→ P ′ of finite nonbacktracking paths

P : let I be the collection of cycles in P . Choose (measurably) a maximal sub-
collection J as in Lemma 4.4. Excise the edges in J from P , concatenate the
remainder, and remove backtracks to arrive at P ′. Then P ′ is a nonbacktracking
path without cycles and |P| − |P ′| is at least 1/3 the number of cycle times of P .

Fix n. Let pn(β,L) := P(An(β,L)). Let qn(β,L) be the probability that the
length of P ′ is at most n − βn/3. By the last paragraph, we have qn(β,L) ≥
pn(β,L).

We define another transformation P �→ P ′′ as follows, where P ′′ will be
a nonbacktracking cycle when Yn completes a cycle: Let m := min{i;Y+

i =
Y+

n }. Let s be minimal with P ′ ending in (Ys, Ys+1, . . . , Yn) and define P̂ by
P ′ = P̂.(Ys, Ys+1, . . . , Yn), where . indicates concatenation. Since P ′ has no cy-
cles, if m < n (which it is if Yn completes a cycle), then m < s. Now de-
fine P ′′ := P .P ′ if s = n, where the bar indicates path reversal, or else P ′′ :=
P .(Ym+1, Ym+2, . . . , Ys).P̂ .

Write b := d − 1. On the event An(β,L), we have that P ′′ is a nonbacktracking
cycle with length at most 2n − βn/3 + L. Furthermore, the map P �→ P ′′ is injec-
tive because the first part of P ′′ is simply P . Therefore, Proposition 1.5 provides a
constant co such that

dbn−1qn(β,L) ≤ ∑
k≤2n−βn/3+L

cobk(o),

whence

qn(β,L) ≤ co cogr(G)2n−βn/3+L

bn(cogr(G) − 1)
.
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For some k ≥ βn, we have

P[AL
n (β)]
n

≤ pk(β,L) ≤ qk(β,L) ≤ co cogr(G)2k−βk/3+L

bk(cogr(G) − 1)
.

It follows that if cogr(G) ≤ √
b, then the last quantity above is

≤ cob
−βk/6+L/2

cogr(G) − 1
≤ cob

−β2n/6+L/2

cogr(G) − 1
,

which proves the first part of the lemma. Similarly, if (4.3) holds, then

cogr(G) ≥ b1/(2−β/3) > b1/2+β/12,

whence by Theorem 1.3,

ρ(G) >
b1/2+β/12 + b1/2−β/12

d
. �

We remark that with more work, we may let L := ∞ in (4.3).

PROOF OF THEOREM 4.2. Let X = 〈Xn〉 be simple random walk on G and
X̂ = 〈X̂n〉 be its lift to the universal cover T of G.

Fix n. Let Good be the event that Cn(α,X) = 1. We may choose L ≤
34 log(10,368/α) so that the number rL of Lemma 4.6 satisfies rL < α/8. Fix
such an L.

Let Long := [|I (n,L)| ≥ αn/2]. By Lemma 4.9 (using β := α/2), we have that

E
[
1Long

(
1 − Cn

(
α/(4L),NB(X)

))]
< (8/9)αn/32.

Let Loop := [|I◦(n,L)| ≥ αn/(8L)]. Then by Lemma 4.10 (using β := α/4),

E
[
1Loop

(
1 − Cn

(
η1α/

(
8L2 + 8L

)
,NB(X)

))]
< e−δ1n

for some η1, δ1 > 0.
On the event (Good \ Long \ Loop), there are ≥ αn/4 times t ∈ [1, n] for

which there exist 1 ≤ s ≤ t ≤ u ≤ n such that (Xs,Xs+1, . . . ,Xu) is an NT-cycle
with 1 ≤ u − s < L and that does not contain any loops; this is because every
loop can be contained in at most 2L NT-cycles of length at most L in X�n. By
Lemma 4.4, on the event (Good \ Long \ Loop), there are ≥αn/(12L) disjoint
nonloop NT-cycles in X�n. Within every NT-cycle, there is an FNT-cycle. Thus,
on the event (Good \Long \Loop), there are ≥αn/(12L) disjoint nonloop FNT-
cycles in X�n, that is, D(n) > αn/(12L) in the notation of Lemma 4.11. Applying
that lemma with β := α/(12L) yields

E
[
1Good\Long\Loop

(
1 − Cn

(
η2α/(12L),NB(X)

))]
< e−δ2n

for some η2, δ2 > 0. Thus, the statement of the theorem holds with ζ :=
min{(α/32) log(9/8), δ1, δ2} and γ := min{η1/12, η2}.
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Now we prove the second part of the theorem.
Suppose that G is d-regular. We may also suppose that ρ(G) < (8/9)1/4, as

there is nothing to prove otherwise. Choose L so that L/ logL ≥ 2853/α, which
is >84/(α log(1/ρ)). Lemma 4.12 then ensures that the above event Long has
exponentially small probability:

P(Long) <
ραn/84

1 − ρ
.

Let Y := NB(X). Although we did not state it, our proofs of Lemmas 4.10 and 4.11
provide many cycle times of Y that occur in cycles of length ≤ L, that is, they show
that the event AL

n (β) occurs with high probability for certain β . Thus,

P
[
Good \ Long \ AL

n (α̂)
]
<

ραn/84

1 − ρ
+ e−ζn.

It follows by Lemma 4.13 that if

P(Good) ≥ con(d − 1)−α2n/24+L/2

cogr(G) − 1
+ ραn/84

1 − ρ
+ e−ζn,

then ρ(G) > 2
√

d − 1/d .
Finally, if lim supn→∞[ECn(α,X)]1/n = 1, then lim supn→∞ P[AL

n (α̂, Y )]1/n =
1, so Lemma 4.13 completes the proof. �

REMARK 4.14. Instead of requiring all degrees in G to be at least 3, one could
require that ρ(G) < 1. A similar result holds.

PROOF OF THEOREM 1.4. Let P be an infinite path. Write αn for the number
of NT-cycle times ≤ n in P , divided by n. Since we count here cycles that may
end after time n, this may be larger than the density βn of NT-cycle times in P�n.
However, we claim that lim supn→∞ βn ≥ lim supn→∞ αn, whence the limsups are
equal.

Suppose that αn > βn. Then there is some NT-cycle time t ≤ n that belongs to
an NT-cycle that ends at some time s > n. Every time in [t, s] then is an NT-cycle
time for P . It follows that βs ≥ αn, and this proves the claim.

It is now clear that Theorem 1.4 follows from Theorem 4.1. �

PROOF OF THEOREM 1.1. The proof follows just as for Theorem 1.4. �

5. Cycle encounters. Here, we prove Theorem 1.2. We first sketch the proof
that qn → 0. Assume the random walk has a good chance of encountering a short
cycle at a large time n. Because of the inherent fluctuations of random walk, the
time it reaches such a short cycle cannot be precise; there must be many times
around n with approximately the same chance. This means that there are actually
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many short cycles and if we look at how many are encountered at times around n,
we will have a good chance of seeing many. This means the cycles are relatively
dense (for random walk) in that part of the graph, which boosts the cogrowth and
hence the spectral radius.

We begin by proving the following nonconcentration property of simple random
walk on regular graphs.

LEMMA 5.1. Write pn(·, ·) for the n-step transition probability of simple ran-
dom walk on a given graph. Let d < ∞ and ε > 0. There exists c > 0 such that for
every d-regular graph G, every o ∈ V(G), and every n ≥ 1, there exists A ⊆ V(G)

that has the property that

pn(o,A) > 1 − ε(5.1)

and

∀x ∈ A,∀k ∈ [0,
√

n] pn+2k(o, x) ≥ cpn(o, x).(5.2)

PROOF. Write Qn(j) for the probability that a binomial random variable with
parameters �n/2� and 1/d takes the value j . Given ε, define c′ so that∑

|j−n/(2d)|≤c′√n

Qn(j) > 1 − ε2.

It has been known since the time of de Moivre that

Qn+2k(j + k) ≥ cQn(j)

whenever n ≥ 0, k ∈ [0,
√

n], and |j − n/(2d)| ≤ c′√n.
Given G, o ∈ V(G), and n ≥ 1, let X1, . . . ,Xn be n steps of simple random

walk on G starting with X−
1 = o. Define

Z := ∣∣{i ∈ [1, n/2];X2i−1 = −X2i

}∣∣.
The events [X2i−1 = −X2i] are Bernoulli trials with probability 1/d each, whence
Z has a binomial distribution with parameters �n/2� and 1/d . Thus,

P
[∣∣Z − n/(2d)

∣∣ ≤ c′√n
]
> 1 − ε2

by choice of c′. Define

A := {
x ∈ V(G);P

[∣∣Z − n/(2d)
∣∣ ≤ c′√n|X+

n = x
]
> 1 − ε

}
.

Since
1 − ε2 < P

[∣∣Z − n/(2d)
∣∣ ≤ c′√n

]
= ∑

x∈V(G)

pn(o, x)P
[∣∣Z − n/(2d)

∣∣ ≤ c′√n|X+
n = x

]
≤ pn(o,A) + (

1 − pn(o,A)
)
(1 − ε),

we obtain (5.1).
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If we excise all even backtracking pairs (X2i−1,X2i) (1 ≤ i ≤ n/2) from the
path (X1, . . . ,Xn), then we obtain simple random walk for n − 2Z steps condi-
tioned not to have any even-time step be a backtrack.

Given k ∈ [0,
√

n], let X′
1, . . . ,X

′
n+2k be simple random walk from o coupled

with X as follows: Define

Z′ := ∣∣{i ∈ [
1, (n + 2k)/2

];X′
2i−1 = −X′

2i

}∣∣.
By choice of c, we have P[Z′ = j + k] ≥ cP[Z = j ] whenever |j − n/(2d)| ≤
c′√n. Thus, we may couple X′ and X so that Z′ = Z + k with probability at
least c whenever X+

n ∈ A. Furthermore, we may assume that the coupling is such
that when Z′ = Z + k and we excise from each path the even backtracking pairs,
then what remains in X′ is the same as in X. This implies that with probability at
least c, we have X′+

n+2k = X+
n whenever X+

n ∈ A. This gives (5.2). �

THEOREM 1.2. Let G be an infinite Ramanujan graph and L ≥ 1. Let qn be
the probability that simple random walk at time n lies on a nontrivial cycle of
length at most L. Then limn→∞ qn = 0.

PROOF. Let S be the set of vertices that lie on a simple cycle of length at
most L, so that q ′

n := P[X−
n ∈ S] = �(qn) for n ≥ L. Suppose that q ′

n > 2ε.
Choose A and c as in the lemma. Then P[X−

n ∈ A ∩ S] ≥ ε, whence P[X−
n+2k ∈

A ∩ S] ≥ cε for k ∈ [0,
√

n].
Let IL(n1, n2) be the number of times t ∈ [n1, n2] for which there exist

n1 ≤ s ≤ t ≤ u ≤ n2 such that (Xs,Xs+1, . . . ,Xu) is a cycle with u − s ≤ L.
Then Eo[IL(n,n + √

n − 1),X−
n ∈ S] ≥ c′√n for some constant c′ > 0 (depend-

ing only on cε). Thus, there is some vertex x ∈ S (a value of X−
n ) for which

Ex[IL(1,
√

n)] ≥ c′√n. This also means

Px

[
IL(1,

√
n) ≥ c′√n/2

] ≥ c′/2.

Then Theorem 4.2 completes the argument when n is sufficiently large since cx ≤
2 + 2Lcogr(G)L−2. [The case cogr(G) = 1 is immediate.] Alternatively, one
can appeal to Lemmas 4.11 and 4.13 instead of Theorem 4.2. �
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